
5/3/2011

1

CSE503:

SOFTWARE ENGINEERING
DESIGN PATTERNS

David Notkin

Spring 2011

History

503 11sp © UW CSE • D. Notkin

2

 The Gang of Four (GoF)

 Erich Gamma, Richard Helm, Ralph E. Johnson, and John M. Vlissides.

1993. Design Patterns: Abstraction and Reuse of Object-Oriented

Design. In Proceedings of the 7th European Conference on Object-

Oriented Programming (ECOOP '93).

 Their book, Design Patterns: Elements of Reusable Object-Oriented

Software, was released at OOPSLA 1994.

 The book and the authors have won several awards including the Jolt

productivity award, the Software Development productivity award, and

the SIGSOFT Outstanding Research award

May 1, 2011

Pre-history: Christopher Alexander

503 11sp © UW CSE • D. Notkin

3

―At the core... is the idea that people should design

for themselves their own houses, streets and

communities. This idea... comes simply from the

observation that most of the wonderful places of the

world were not made by architects but by the

people.‖

—Christopher Alexander, A Pattern Language

http://en.wikipedia.org/wiki/File:Christopher_Alexander.jpg

bing ―design patterns‖ on 5/2/2011

65.5M hits including…

503 11sp © UW CSE • D. Notkin

4

 .NET Design Patterns in C# and VB.NET

 Yahoo! Design Pattern Library

 Azure Design Patterns

 ASP.NET Wiki: Architecture: Design Patterns

 SOA patterns

 Design Patterns for Building Flexible and Maintainable J2EE Applications

 Design Patterns and Refactoring

 Design Patterns in Ruby

 Ajax Patterns

 CSS Design Patterns

 PHP Design Patterns

 Train the Trainer Design Pattterns Design Patterns Training

 … and millions more!

http://en.wikipedia.org/wiki/File:Christopher_Alexander.jpg
http://en.wikipedia.org/wiki/File:Christopher_Alexander.jpg

5/3/2011

2

ACM Digital Library

Hits on ―design patterns‖ in title

503 11sp © UW CSE • D. Notkin

5

 2011

 Towards studying the performance effects of design patterns for service
oriented architecture

 Architectural patterns to design software safety based safety-critical
systems

 Evaluation of web application security risks and secure design patterns

 Type design patterns for computer mathematics

 2010 & 2009

 Object oriented design pattern decay: a taxonomy

 Design patterns to guide player movement in 3D games

 Design patterns for efficient graph algorithms in MapReduce

 Towards a Comprehensive Test Suite for Detectors of Design Patterns

 Design patterns in separation logic

What are design patterns?

503 11sp © UW CSE • D. Notkin

6

 First, your view based on experience, rumor, etc.

What are design patterns?

503 11sp © UW CSE • D. Notkin

7

 Solutions to commonly arising object-oriented design problems – solutions
actually used multiple times by multiple people over time

 Stylized descriptions that include (in part)

 a motivation (the problem and the context),

 a design-level description (in terms of interfaces and interconnections),

 one or more example implementations in a well-known programming language

 ―a ‗well-proven generic scheme‘ for solving a recurring design problem‖

 Often overcoming limitations of OO hierarchies

 Idioms intended to be ―simple and elegant solutions to specific problems in
object-oriented software design‖

 Patterns are a collection of ―mini-architectures‖ that combine structure and
behavior

 Gabriel: ―Alexander could have written a 1-sentence definition of what a
pattern is, or an essay, but instead he wrote a 550-page book to do it.
Because the concept is hard.‖

Similar in motivation to PL constructs

503 11sp © UW CSE • D. Notkin

8

5/3/2011

3

Simple example: singleton pattern

Only one object of the given type exists

class Bank {

 private static bank theBank;

 // private constructor

 private Bank() { ... }

 // factory method

 public static getBank() {

 if (theBank == null) {

 theBank = new Bank();

 }

 return theBank;

 }

 ...

}

 Pattern isn‘t explicit in

code

 Could be defined by a

programming

language

 Would appear

differently in different

languages

503 11sp © UW CSE • D. Notkin

9

http://www.eggheadcafe.com/tutorials/aspnet/280ee727-00a7-497a-84d2-6ebb16df4140/design-pattern-interview.aspx

503 11sp © UW CSE • D. Notkin

10

Interning pattern
11

 Reuse existing objects instead of creating new ones

 Less space

 May compare with == instead of equals()

 Permitted only for immutable objects

(Street-
Segment)

"Univ. Way"
(String)

"O2139"
(String)

101-200
(Street-

NumberSet)

(Street-
Segment)

"Univ. Way"
(String)

"O2139"
(String)

1-100
(Street-

NumberSet)

(Street-
Segment)

101-200
(Street-

NumberSet)

(Street-
Segment)

1-100
(Street-

NumberSet)

"Univ. Way"
(String)

"O2139"
(String)

StreetSegment

without interning

StreetSegment

with interning

503 11sp © UW CSE • D. Notkin

Interning mechanism

 Maintain a collection of all objects

 If an object already appears, return that instead
HashMap<String, String> segnames;

String canonicalName(String n) {

 if (segnames.containsKey(n)) {

 return segnames.get(n);

 } else {

 segnames.put(n, n);

 return n;

 }

}

 Java builds this in for strings: String.intern()

 Two approaches

– create the object, but perhaps discard it and return another

– check against the arguments before creating the new object

12

503 11sp © UW CSE • D. Notkin

http://www.eggheadcafe.com/tutorials/aspnet/280ee727-00a7-497a-84d2-6ebb16df4140/design-pattern-interview.aspx
http://www.eggheadcafe.com/tutorials/aspnet/280ee727-00a7-497a-84d2-6ebb16df4140/design-pattern-interview.aspx
http://www.eggheadcafe.com/tutorials/aspnet/280ee727-00a7-497a-84d2-6ebb16df4140/design-pattern-interview.aspx
http://www.eggheadcafe.com/tutorials/aspnet/280ee727-00a7-497a-84d2-6ebb16df4140/design-pattern-interview.aspx
http://www.eggheadcafe.com/tutorials/aspnet/280ee727-00a7-497a-84d2-6ebb16df4140/design-pattern-interview.aspx
http://www.eggheadcafe.com/tutorials/aspnet/280ee727-00a7-497a-84d2-6ebb16df4140/design-pattern-interview.aspx
http://www.eggheadcafe.com/tutorials/aspnet/280ee727-00a7-497a-84d2-6ebb16df4140/design-pattern-interview.aspx
http://www.eggheadcafe.com/tutorials/aspnet/280ee727-00a7-497a-84d2-6ebb16df4140/design-pattern-interview.aspx
http://www.eggheadcafe.com/tutorials/aspnet/280ee727-00a7-497a-84d2-6ebb16df4140/design-pattern-interview.aspx
http://www.eggheadcafe.com/tutorials/aspnet/280ee727-00a7-497a-84d2-6ebb16df4140/design-pattern-interview.aspx
http://www.eggheadcafe.com/tutorials/aspnet/280ee727-00a7-497a-84d2-6ebb16df4140/design-pattern-interview.aspx
http://www.eggheadcafe.com/tutorials/aspnet/280ee727-00a7-497a-84d2-6ebb16df4140/design-pattern-interview.aspx
http://www.eggheadcafe.com/tutorials/aspnet/280ee727-00a7-497a-84d2-6ebb16df4140/design-pattern-interview.aspx
http://www.eggheadcafe.com/tutorials/aspnet/280ee727-00a7-497a-84d2-6ebb16df4140/design-pattern-interview.aspx
http://www.eggheadcafe.com/tutorials/aspnet/280ee727-00a7-497a-84d2-6ebb16df4140/design-pattern-interview.aspx

5/3/2011

4

java.lang.Boolean

does not use the Interning pattern

public class Boolean {

 private final boolean value;

 // construct a new Boolean

value

 public Boolean(boolean

value) {

 this.value = value;

 }

 public static Boolean FALSE

= new Boolean(false);

 public static Boolean TRUE =

new Boolean(true);

// factory method that uses

interning

 public static

valueOf(boolean value) {

 if (value) {

 return TRUE;

 } else {

 return FALSE;

 }

 }

}

13

503 11sp © UW CSE • D. Notkin

Recognition of the problem
14

 Javadoc for Boolean constructor includes…

 Allocates a Boolean object representing the value argument

 ―Note: It is rarely appropriate to use this constructor. Unless a
new instance is required, the static factory
valueOf(boolean) is generally a better choice. It is likely to
yield significantly better space and time performance.‖

 Josh Bloch (JavaWorld, January 4, 2004):

 ―The Boolean type should not have had public constructors.
There's really no great advantage to allow multiple trues or
multiple falses, and I've seen programs that produce millions of
trues and millions of falses, creating needless work for the
garbage collector.‖

 So, in the case of immutables, I think factory methods are great.‖

503 11sp © UW CSE • D. Notkin

My eye-opening experience

503 11sp © UW CSE • D. Notkin

15

 At Dagstuhl

 With Griswold

 And with Helms

and Vlissides

 In the bar

 ―How to rethink our design

for a program restructuring

system?‖

Patterns are an example of chunking
16

 Advanced chess players are in part superior because they
don‘t see each piece individually

 Instead, they chunk groups of them together

 This reduces the search space they need to assess in deciding on
a move

 This notion of chunking happens in almost every human
endeavor

 Such chunking can lead to the use of idioms

 As it has in programming languages

 The following slides show some parts of a particular pattern:
flyweight

 I won‘t go through the slides in detail, but they give a feel for
people who haven‘t seen more concrete information on patterns

503 11sp © UW CSE • D. Notkin

5/3/2011

5

Example: flyweight pattern

503 11sp © UW CSE • D. Notkin

17

 What happens when you try to represent lots of

small elements as full-fledged objects?

 It‘s often too expensive

 And it‘s pretty common

column

rowrowrow

a tnerapp

An alternative approach

column

rowrowrow

a tnerapp

a mlkjihgfedcb

n zyxwvutsrqpo

503 11sp © UW CSE • D. Notkin

18

 Use sharing to support many fine-grained objects efficiently

 Fixed domain of objects

 Maybe other constraints

 Similar to interning

503 11sp © UW CSE • D. Notkin

19

Flyweight structure

GetFlyweight(key)

FlyweightFactory

Operation(extrinsicState)

Flyweight

flyweights

Client

Operation(extrinsicState)

intrinsicState

ConcreteFlyweight

Operation(extrinsicState)

allState

UnsharedConcreteFlyweight

503 11sp © UW CSE • D. Notkin

20

Participants

 Flyweight (glyph in text example)

 Interface through which flyweights can receive and act

on extrinsic state

 ConcreteFlyweight (character)

 Implements flyweight interface, shareable, only intrinsic

state (independent of context)

 UnsharedConcreteFlyweight (row, column)

 FlyweightFactory

 Creates and manages flyweight objects

5/3/2011

6

Sample code

class Glyph {

public:

 virtual ~Glyph();virtual

 void Draw(…);

 virtual void SetFont(…);

 …

}

class Character : public Glyph {

 Character(char);

 virtual void Draw(…);

private:

 char _charcode;

};

 The code itself is in the

domain (glyphs, rows,

etc.)

 But it‘s structured based

on the pattern

 The client interacts with

Glyph, Character

503 11sp © UW CSE • D. Notkin

21

503 11sp © UW CSE • D. Notkin

22

A little more code

Character* GlyphFactory::CreateCharacter(char c) {

 if (!_character[c]) {

 _character[c] = new Character();

}

return _character[c];

}

 Explicit code for each of the elements in the

flyweight structure

Classes of patterns: structural

503 11sp © UW CSE • D. Notkin

23

 These provide ways to compose interfaces and define ways to compose objects to
obtain new functionality

 Adapter allows classes with incompatible interfaces to work together by wrapping
its own interface around that of an already existing class

 Bridge decouples an abstraction from its implementation so that the two can vary
independently

 Composite composes zero-or-more similar objects so that they can be manipulated
as one object

 Decorator dynamically adds/overrides behavior in an existing method of an
object

 Facade provides a simplified interface to a large body of code

 Flyweight reduces the cost of creating and manipulating a large number of similar
objects

 Proxy provides a placeholder for another object to control access, reduce cost, and
reduce complexity

Classes of patterns: creational

503 11sp © UW CSE • D. Notkin

24

 For instantiating classes and objects

 Class-creation patterns tend to exploit inheritance

 Object-creation patterns tend to exploit delegation

 Abstract Factory groups object factories that have a
common theme

 Builder constructs complex objects by separating
construction and representation

 Factory Method creates objects without specifying the
exact class to create

 Prototype creates objects by cloning an existing object

 Singleton restricts object creation for a class to only one
instance

5/3/2011

7

Classes of patterns: behavioral

503 11sp © UW CSE • D. Notkin

25

 These patterns are concerned with communication between objects.

 Chain of responsibility delegates commands to a chain of processing objects

 Command creates objects which encapsulate actions and parameters

 Interpreter implements a specialized language

 Iterator accesses the elements of an object sequentially without exposing its underlying representation

 Mediator allows loose coupling between classes by being the only class that has detailed knowledge of

their methods

 Memento provides the ability to restore an object to its previous state (undo)

 Observer is a publish/subscribe pattern which allows a number of observer objects to see an event

 State allows an object to alter its behavior when its internal state changes

 Strategy allows one of a family of algorithms to be selected on-the-fly at runtime

 Template method defines the skeleton of an algorithm as an abstract class, allowing its subclasses to

provide concrete behavior

 Visitor separates an algorithm from an object structure by moving the hierarchy of methods into one

object

Patterns: ergo, anti-patterns

503 11sp © UW CSE • D. Notkin

26

 Rarely clear to me how they are actionable

 But they have lots of cute names

 God object

 Object cesspool

 Object orgy

 Poltergeists

 Yo-yo problem

 Big ball of mud

 Gold plating

 Magic pushbutton

Organizational/management anti-patterns

503 11sp © UW CSE • D. Notkin

27

 Analysis paralysis

 Cash cow

 Design by committee

 Escalation of commitment

 Management by perkele

 Moral hazard

 Mushroom management

 Stovepipe or Silos

 Death march

 Groupthink

 Smoke and mirrors

 Software bloat

Design patterns: not a silver bullet…

 ..but they are impressive, important and worthy of

attention and study

 I think that some of the patterns have and more will

become part and parcel of designers‘ vocabularies

 This will improve communication and over time

improve the designs we produce

 The relatively disciplined structure of the pattern

descriptions may be a plus

28

503 11sp © UW CSE • D. Notkin

5/3/2011

8

Show trial

503 11sp © UW CSE • D. Notkin

29

 “Indeed, this notorious cabal will soon be brought to justice at OOPSLA '99

during a panel entitled the ShowTrialOfTheGangOfFour for crimes against

computer science.” [http://c2.com/cgi/wiki?GangOfFour]

 ―The Accused, by making it possible to design object-oriented programs in

C++, have inhibited the rightful growth of competing object-oriented

languages such as SmalltalkLanguage, CommonLisp, and JavaLanguage.‖

 ―The Accused have engaged in an usurpation of perfectly good English

words and well-known technical terms for the purpose of establishing an

arcane argot known only to a narrow circle of GoF initiates.‖

 ―The Accused, by cataloging mere experience, rather than conducting novel

research, have displayed an utter disregard for traditional standards of

academic originality.‖

 …

Discussion?

503 11sp © UW CSE • D. Notkin

30

 Questions might include

 What do patterns say, if anything, about the

correspondence between names and invokes

relations?

 Should patterns be turned into PL constructs? If so, why

and when? If not, why not?

 Does AOP save the day with patterns (at least with

Observer?)

 What‘s on your mind about patterns?

http://c2.com/cgi/wiki?ShowTrialOfTheGangOfFour
http://c2.com/cgi/wiki?GangOfFour

