
PROGRAM SLICING*

Mark Weiser

Computer Science Department
Univers i ty of Maryland

College Park, MD 20742

Abs tra c t

Program s l i c l ng is a method used by experienc-
ed computer programmers for abstract ing from pro-
grams. Star t ing from a subset o f a program's be-
havior, s l i c ing reduces that program to a minimal
form which s t i l l produces that behavior. The
reduced program, cal led a " s l i c e " , is an indepen-
dent program guaranteed to f a i t h f u l l y represent
the o r ig ina l program wi th in the domain of the
speci f ied subset of behavior.

Finding a s l ice is in general unsolvable. A
dataflow algor i thm is presented for approximating
s l ices when the behavior subset is speci f ied as
the values of a set o f variables at a statement.
Experimental evidence is presented that these
sl ices are used by programmers during debugging.
Experience with two automatic s l i c i ng tools is
summarized. New measures of program complexity
are suggested based on the organizat ion o? a
program's s l ices.

KEYWORDS: debugging, program maintenance, so f t -
ware tools, program metrics, human factors, data-
flow analysis

In t roduct ion

A large con~puter program is ~ r e eas i ly con-
structed, understood, and maintained when broken
into smaller pieces. Several d i f f e r e n t methods
decompose programs during program design, such as
informat ion hiding (Parnas]972), data abstract ion
(Liskov and Z i l l e s 1975), and HIPO ~Stay 1976).
These methods are not mutal ly exclusive, but
rather complement one another. Proposed here is
another complementary method o f program decomposi-
t ion: program s l i c i ng . Unlike most other methods
(but see Tarjan and Valdes, 1980), s l i c i ng is
applied to programs a f t e r they are wr i t ten , and is
therefore useful in n~intenance rather than design.
Unlike design methodologies, working on actual
program tex t allows s l i c ing to be speci f ied pre-
c ise ly and performed automat ica l ly .

S l i c ing star ts with the observation that
these are times when only a por t ion o f a program's

*This research was supported in part by the
Computer Science Center at the University of
Maryland, and by grants from the Air Force Office
of Scientif ic Research and the General Research
Board at the University o f Maryland.

behavior is o f i n te res t . For instance, during
debugging a subset o f Dehavior is being corrected,
and in program modi f icat ion or maintenance a sub-
set o f behavior is being improved or replaced. In
these cases, a programmer star ts from the program
behavior and proceeds to f ind and modify the cor-
responding portions o f program code. Code not
having to do with behavior o f in te res t is ignored.
Gould and Dronkowski k19/4) report programmers
behaving this way during debugging, and a fur ther
confirming experiment is presented below.

A programmer n~in ta in ing a large, unfami l iar
program would almost have to use th is behavior-
f i r s t approach to the code. Understanding an en-
t i r e system to change only a small piece would
take too much time. Since most program mainte-
nance is done by persons other than the program
designers, and since 67 percent o f programming
e f f o r t goes in to maintenance (Zelkowitz, Shaw,
and Gannon 1979), decomposing programs by behavior
must be a common occurence.

Automatic s l i c ing requires that behavior be
specl f ied in a cer ta in form. I f the behavior o f
i n te res t can be expressed as the values of some
sets o f var iables a t some set oi ~ statements, then
th is spec i f i ca t ion is said to be a ~ c r i t e -
r ion. Dataflow analysis (Hecht 1977]-can f]n-d a l l
the program code which might have inf luenced the
speci f ied behavior, and this code is cal led a
s l i ce of the program. A s l i ce is i t s e l f an
executable program, whose behavior must be i d e n t i -
cal to the speci f ied subset of the o r ig ina l pro-
gram's behavior.

Figure 1 gives examples o f some s l i c i ng c r i t e -
r ia and the i r corresponding s l ices.

There are usual ly many d i f f e r e n t s l ices for
a given program and s l i c ing c r i t e r i o n , depending
on how minimal a s l ice is desired. The issue of
min imal i ty is discussed fu r ther below. There is
always at least one s l i ce - - the program i t s e l f .
The in te res t ing sl ices are the ones which, compar-
ed to the o r ig ina l program, are s i g n i f i c a n t l y
smaller and simpler.

The idea of i so la t i ng port ions of programs
according to t he i r behavior has appeared previous-
ly. Schwartz (1971) hints at such a p o s s i b i l i t y
for a debugging system. Browne and Johnson (1978)
describe a question-answerer for Fortran programs

439
CHI627-9/Sl/O000/0439500.75 © 1981 IEEE

The or i

Sl ice

Examples o f Slices

ginal program:
l BEGIN
2 READ(X,Y)
3 TUTAL := 0.0
4 SUM := 0.0
5 IF X ~ l
6 THEN SUM := Y
7 ELSE BEGIN
8 READ(Z)
9 TOTAL := X*Y

lO END
II WRITE(TOTAL,SUM)
12 END.

on the value of Z at statement 12.
BEGIN
READ(X,Y)
IF X < l

THEN
ELSE READ(Z)

END.

Sl ice on the value of X at statement 9.
BEGIN
REAB(X,Y)
END.

Sl ice on the value of TOTAL at statement 12.
BEGIN
READ(X,Y)
TOTAL := 0
IF X <-- l

THEN
ELSE TOTAL := X*Y

END.

Figure l

which, through a succession of questions, could be
made to reveal the s l ices of a program although
very slowly. Several on- l ine debuggers permit a
l im i ted traceback of the locat ion of var iab le
references (e.g. Aygun, 1973), and th is informa-
t ion is a kind of "dynamic s l i ce " .

S l ic ing is a source code transformation of a
program. Previous work in program transformation
has concentrated on preserving program correctness
while improving some desirable property of pro-
grams. For instance, Baker (1977) and Ashcroft
and Manna (1973) both are concerned with adding
"good structure" to programs. Wegbreit (1976),
Arsac (1979), Gerhart (1975), and Loveman (1977),
are more or iented to improving a program's per for-
mance.

S l ic ing Algorithms

This section more formal ly discusses the
ideas of a s l i c i ng c r i t e r i o n and a s l i c ing algo-
r i thm, using the reader's i n t u i t i v e understanding
of machine execution. Al l proofs have been c a r r i -
ed out in an abstract operat ional model (Weiser
1979).

This paper considers the s l i c ing of block-
structured, possibly recursive programs wr i t ten in
a Pascal - l ike language. Al l var iables are assumed
to be uniquely named, and a l l procedures are
assumed to be s ing le-ent ry , s ingle ex i t .

The fo l lowing notat ion is used throughout th is
paper. Due to typesett ing l i m i t a t i o n s , square
brackets ([. . .]) are used to enclose superscripted
and subscripted quant i t ies . Set notat ion is ex-
pressed as fo l lows. Let A and B denote sets, l e t
f and g be functions whose values are sets, and
l e t C(i) be a f i n i t e fami ly of sets indexed by i .
Then:

A union B denotes the set union of
L and B.

A in tersect B denctes the set in tersec-
t ion of A and B.

f union g denotes the funct ion whose
value is f (n) union
g(n) for each n in the
domain of f and g, and
is undefined elsewhere.

UNION C(i) denotes the union of a l l
C(i) fo r each i .

A slicing_ c r i t e r i o n for a program speci f ies a
window for observing i t s behavior. A window is
speci f ied as a statement and a set of var iab les.
The window al lows the observation of the values of
the speci f ied var iables jus t before executing the
speci f ied statement. I f the statement speci f ied by
the s l i c ing c r i t e r i o n is executed several times
while the program is running, then a sequence of
var iab le values w i l l be observed.

Iden t i f y ing statements by numbers and va r i -
ables by name, a s l i c ing c r i t e r i o n is a pai r
< i , v > , where i is the number of the statement at

which to observe and v is the set of var iab le
values to be observed.

There are two propert ies i n t u i t i v e l y desirable
in a s l ice . F i rs t , the s l ice must have been ob-
tained from the o r ig ina l program by statement dele-
t ion . Second, the behavior of the s l ice must cor-
respond to the behavior of the o r ig ina l program as
observed through the window of the s l i c ing c r i t e -
r ion. Both of these informal propert ies a l low
several in te rp re ta t ions . The i n te rp re ta t i on used
here is derived and j u s t i f i e d in the next several
paragraphs.

The problem with obtain ing a s l i ce by state-
ment de le t ion is that the source code of a program
may become ungrammatical. For instance, removing
the THEN clause from an IF-THEN-ELSE statement
leaves an ungrammatical fragment i f the "nu l l "
statement is not permitted between THEN and ELSE.
Because of the i r language dependence, deta i led
considerat ion of these issues is beyond the scope
of th is paper. See Arsac (1979) for some approach-
es. Instead, a flowgraph w i l l be used to represent
a program, with each node in the graph correspond-
ing to a single source language statement. The
terms "node" and "statement" w i l l be used i n t e r -
changably.

A flowgraph is a structure G = <N,E,nO>, where
N is the set of nodes, E is a set of edges in NxN,
and nO is the dist inguished i n i t i a l node. I f (n,m)
is an edge in E then n is an immediate predecessor
of m, and m is an immediate successor of n. A path
of length k from n to m is a set of nodes p(O),p(1),

440

. . . . p(k) such that p(O) : n, p(k) = m, and (p (i) ,
p (i + l)) i s i n E fo r a l l i ,O < i < k - l . There is a
path from nO to every othe~ note in N. A node n
is nearer than a node m to some node q i f the
shortest path from n to q has length less than the
shortest path from m to q. A node m is dominated
by a node n i f n is on every path from nO to m.
An inverse dominator is a dominator on the f low-
graph obtained by reversing the d i rec t ion of a l l
edges and making the f ina l node the i n i t i a l node.

Deleting statements in a f l o ~ r a p h produces a
meaningful new flowgraph so long as any group of
statements deleted have only a single successor
(see f igure 2). This r e s t r i c t i o n ensures that no
statement increases i t s numberof immediate succes-
sors as a resu l t of statement de le t ion . The
graph transformation fo l lowing statement de le t ion
is just : Al l predecessors of any member of a
deleted group of statements have the deleted
group's unique successor as the i r new successor.

I

Group of statements with a single successor

Nodes C,D, and E form a set with a single succes~
sor, F, not in the set. The flowgraph is shown
before and after removing this set.

Figure 2
l i l

The second desirable property of slices is
that they duplicate the behavior observable
through the window of the s l ic ing cr i ter ion. This
means observing original program and slice through
the "same" window, and not being able to dist ingu-
ish between them. But how can a s l ic ing cr i ter ion
for one program (the or ig inal) be used to specify
a window for a d i f ferent program (the slice)? A
sl ic ing cr i ter ion has the form <i,v>. v can be

used in both the sl ice and the original program,
of course. However statement number " i " may not
even exist in the sl ice. Therefore, the window
for observation of the sl ice is specified as
<SUCC(i),v>. SUCC(i) is the nearest successor to
" i " in the original program which is also in the
sl ice, or " i " i t se l f i f present. I t is easy to
prove that SUCC(i) is unique.

The program and i ts slice now have correspond-
ing windows for observing behavior. A reasonable
requirement for a sl ice might be that the trajec-
tories of behavior observable through the slice
window must be identical to that observable
through the original pragram window for al l inputs.
Unfortunately this condition is too strong, be-
cause i t implies the unsolvabi l i ty of f inding
slices. Consider the following program skeleton:

1 BEGIN
2 READ(X)
3 IF X = 0
4 THEN BEGIN

Perform i n f i n i t e loop
without changing X.

:= 1
END

ELSE X := 2
END.

Let the s l i c ing c r i t e r i o n be the value of X at
l i ne 8. A s l i c ing algor i thm based on equivalent
behavior t r a jec to r i es for a l l inputs would neces-
s a r i l y include l i ne 5 unless there were some as-
surance that for a l l input l i ne 5 was never reach-
ed. Such a s l i c ing algor i thm could be used to
determine the terminat ion of an a r b i t r a r y procedure
by su i tab ly inser t ing that procedure between l ines
4 and 5, and then not ic ing whether or not l i ne 5
appeared in the s l ice. But there can be no algo-
r i thm to determine i f an a r b i t r a r y procedure must
terminate, and hence no such s l i ce r can ex is t .

To f i x th is problem, the requirement of equi-
valent projected behaviors can be weakened to be:
projected behaviors must be equivalent whenever the
o r ig ina l program terminates. This d e f i n i t i o n is
the one intended in the remainder of th is paper
whenever the phrase "equiva lent behavior" is used.

A s imi la r problem now arises with f ind ing the
smallest possible s l ice. The reader can eas i l y
general ize the above example to show that no
algor i thm can always f ind the s l ice with the min i -
mum number of statements, because of the impossi-
b i l i t y o f evaluat ing the funct ional equivalence of
two d i f f e r e n t pieces of code. This problem
suggests that a pract ica l d e f i n i t i o n of a minimal
s l ice must avoid exact knowledge of the funct ions
computed by pieces of code. Dataflow information
about a program is of th is type, and i t permits an
exact s l i c ing algor i thm. The remainder of th is
section considers the computation of s l ices from
dataf low information alone.

Before going on, the object ion can be raised
that dataf low analysis provides information that
is too imprecise to be of any use. Programmers
know more about the i r programs than dataf low analy-
sis can reveal, and so dataf low sl ices may not be
s u f f i c i e n t l y smaller than the o r ig ina l program to
j u s t i f y t he i r use. For instance, arrays and
pointer var iables usual ly require worst-case as-
sumptions about var iab le inf luence (Aho and Ullman
1977). For more recent work see Reynolds (1979),
Luckham and Suzuki (1979), and Weihl (1980). How-
ever, dataf low approximations have the advantage
of being computable in polynomial time, andin prac-
t i ce are of ten good enough. Sections 3 and 4 below
present empirical evidence for the adequacy of
dataf low s l ices.

D a t a f l ow al gori thms

Finding s l ices using dataf low analysis begins
by t racing backwards possible inf luences of va r i -

441

ables. This process is similar to "reaching de-
f in i t ions" (e.g. Hecht 1978). In effect, s l ic ing
means knowing which variable assignments can
"reach" (i .e . have an ef fect on) the variables
observed through the window of the s l ic ing
cr i ter ion.

In general, for each statement in the program
there w i l l be some set of variables whose values
can affect, through some chain of assign-
ments, a variable observable at the s l ic ing
cr i ter ion. For instance, i f the statement "Y := X"
is followed by the statement "Z := Y", then the
value of X before the f i r s t statement can affect
the value of Z after the second statement. Let
R[O,C](n) be the variables at statement n whose
values can d i rec t l y affect what is observed
through the window defined by cr i ter ion C. The
"0" (zero) refers to the direct effect. R[l,C],
R[2,C], etc. w i l l be defined later for increasing
levels of indirect effect.

To define R[O,C] formally, consider the data-
flow information known about each statement. I t
is a convenient s impl i f icat ion to allow only two
kinds of dataflow information: variables altered
(called DEF), and variables referenced (called
REF). DEF(n) is the set of variables whose values
may be changed at node n. REF(n) is the set of
variables whose values may be referenced at node
n. The propagation of influence from variable to
variable is deduced from the assumption that i f w
and x are variable names, with w in DEF(n) and x
in REF(n) for some statement n, then the value of
x can influence the value of w.

This assumption may be inaccurate for cases
of mult iple assignment or procedure cal ls . A
more accurate formulation which uses precise with-
in-statement influences can be found in Weiser
(1979). Al l the results in th is section hold for
that more precise formulation.

R[O,C](n), where C = <i,v>, is defined re-
cursively as follows.

R[O,C](n) = a l l variables v such that either:
I . n=i and v is in V,

or 2. n is an immediate predecessor of a node
m, such that either:
a) v is in REF(n) and there is a w in

both DEF(n) and R[O,C](m),
or

b) v is not in DEF(n) and v is in
R[o, cT~).

The reader can check that the recursion is
over length of paths to reach node i , and that
case 2) above corresponds to observing behavior
just before executing a statement. Notice that
2b) assumes that a l l statements not al ter ing a
variable w i l l preserve i t s value. This is a
s impl i f icat ion of the usual dataflow information,
which separately uses "PRE" information for th is.

The def in i t ion of R[O] can also be specified
by a pair of equations giving values for R[O]
coming into and going out of a statement (Aho and
Ullman 1977). For those readers more fami l iar

wi th t h i s nota t ion, here is the d e f i n i t i o n :

(1) RIN(n) = ROUT(n) - DEF(n) union REF(n)
union f i f n=i then a l l v in V}

(2) ROUT(n) = UNION RIN(m), for a l l m imm.
successors of n.

I t happens that R[O] can be imbedded in a fast
monotone information propagation space, in the
sense of Graham and Wegman (1976). This means
R[O] can be found in worst-case time O(e log e)
for a flowgraph with e edges, and in time O(e) f o r
structured programs. The proof is immediate from
noticing that except for the constant union when
n = i , equation (I) above corresponds to Graham
and Wegman's example on the top of page 176. A
constant union is i rrelevent in defining the
information propagation space, so the Graham and
Wegman result applies.

The REF and DEF information about statements
can usually be obtained by inspection of the source
code. When i t can't because the statement is a
procedure ca l l , dataflow information about the cal l
must be obtained by an interprocedural dataflow
method. Barth (178) is good in practice, and has
been used in the implementation of the s l ic ing
algorithm described in section 4. Additional in-
terprocedural s l ic ing issues are also discussed
there.

RIO] provides a suf f ic ient condition for in-
cluding statements in a sl ice. Any statement n
which changes a variable in R[O,C](n) must be in
the sl ice on C. Excluding such a statement from
the sl ice would require additional information
about the function computed by that statement.
For instance, a statement n with REF(n) = DEF(n) =
{x} need not be in the sl ice i f i t computes the
ident i ty function on x. But this is just the sort
of information excluded from dataflow analysis,
although more sophisticated methods could take i t
pa r t ia l l y into account.

The statements included in the sl ice by R[O,C]
are denoted S[O,C]. S[O,C] is defined by:

S[O,C] = a l l nodes n such that
R[O,C~(n) intersect DEF(n) is non-
empty.

R[O] does not allow for the indi rect effects
of conditional control-f low, and therefore is not
a necessary condition for including statements in a
sl ice (see figure 3).

Sl icing Criterion C = <5,{Z}>

l READ(X)
2 I F X < I
3 THEN Z := l
4 ELSE Z := 2
5 WRITE(Z)

Even though statement 2 changes no variables
and hence is not in S[O,C], i t obviously has an
effect on the value of Z and should be in the sl ice
for C.

Figure 3

a~$2

General ly, any branch statement which can
choose to execute or not execute some statement
in S[O] may cause a change in behavior observ-
able through the s l i c i n g c r i t e r i o n .

Finding such branch statements can be done in
several ways. For instance Denning and Denning
(1977), in computing secure informat ion f low, use
the nearest inverse dominator of a branch state-
ment to def ine i t s range of in f luence. An inverse
dominator D(n) of a statement n is on every path
from n to the f i na l statement of the flowgraph.
Therefore, for any statement x on a path from a
statement n to i t s nearest inverse dominator d,
there is another path from n to d which excludes
x. Presumably by choosing paths which did or did
not execute x, b could exert an i nd i r ec t i n f l u -
ence over any var iab le d i r e c t l y inf luenced by x.

Another method which is more exact but more
expensive is given in Weiser (1980). This is the
method used in the automatic s l i ce rs described in
section 4. In what fo l lows Denning's approach is
used fo r ease of presentat ion.

Let ND(b) be the set of statements which are
on a path from b to i t s nearest inverse dominator
d, excluding b and d themselves. ND(b) w i l l be
empty unless b has more than one immediate suc-
cessor. I f S[O] is the set of statements wi th
d i r ec t in f luence, then a statement b has i nd i r ec t
in f luence j us t i f S[O] in te rsec t ND(b) is non-
empty. This prompts the fo l low ing d e f i n i t i o n :

For any flowgraph G, and any set of statements P,
CS[G](P) = a l l nodes n such that e i ther :

a) n is in P,
or

b) ND(n) in te rsec t P is
non-empty.

The subscr ipt G w i l l be dropped when obvious
from context.

CS has the "semi- l inear" property that :
CS[G](A) union CS[G](B) = CS[G](A union B)

fo r any two sets of statements A and B. In most
of what fo l lows only the monotonic i ty of CS is
required, namely that :

A ~ B => CS(A) ~ CS(B)
This fo l lows immediately from the previous pro-
pe r t y .

The set of statements in CS(S[O]) w i l l i n -
clude those branch statements which can in f luence
the execution of a statement in S[O]. For conve-
nience the branch statements included by CS(S[O])
w i l l be denoted by B[O]. In other words, B[O,C] =
c s (s [o , c] 0 - s [o , c]) .

To include a l l i nd i r ec t inf luences, the s ta te-
ments wi th d i r e c ~ n f l u e n c e on B[O] must now be
considered, and then the branch statement i n f l u -
encing those new statements, etc.

For convenience, l e t BC(b) denote the s l i c i n g
c r i t e r i o n defined as <b,REF(b)>. I f b is a branch
statement, then REF(b) is assumed to be the set of
var iables which can in f luence the choice of paths
from b. The var iables at a statement n which

d i r e c t l y in f luence a branch statement b are j us t
R[O, BC(b)](n). The next level of in f luence, R [I] ,
is therefore defined as:

R[l ,C] (n) = R[O,C](n) union {s in R[O,C](n), fo r
a l l b in B[O,C]}.

S i m i l a r i l y for S [I] :

S[I ,C] = {n: DEF(n) in te rsec t R[I ,C] (n) is non-
empty,

or
n is in B[O,C]. }

More genera l ly , R,B, and $ are defined for a l l
leve ls :

R [i+ l ,C] (n) = R[i ,C] (n) union ~s in R[O, BC(b)](n) ,
such that b is in
B [i ,C] . }

B [i+ l ,C] = CS(S[i+I ,C])

S [i + l , C] = {n: DEF(n) in te rsec t R [i+ l ,C] (n) is non-
empty,

or
n is in B [i ,C] . }

The recursion s ta r ts wi th the S[O], RIO], and B[O]
as prev ious ly defined.

Considered as a funct ion of i , fo r f i xed n,
these d e f i n i t i o n s are non-decreasing. E.g.,
R[i ,C] (n) is a subset of R [i+ l ,C] (n) fo r a l l n, and
s i m i l a r i l y f o r B[i ,C] and S [i ,C] .

Dropping the superscr ip t , we l e t R[C] denote
the least f i xed -po in t of R[i ,C] , and S[C] the least
f i xed -po in t of S [i ,C] . Obviously,

R[C] = UNION R[i ,C] , for a l l i > O.
S[C] = UNION S[i ,C] , for a l l i ~-O.

I

The time to compute R and S is no worse than
O(n.eolog e) fo r a flowgraph wi th n nodes and e
edges. This bound is probably not t i g h t , since
pract ica l times seem much fas ter . The worst case
analys is i s as fo l lows: Each computation of
S [i+ I ,C] from S[i ,C] requires an i n i t i a l O(e,log e)
step to compute in f luence. The remaining computa-
t ion of B [i ,C] is l a rge ly f i nd ing the dominators,
which takes at most O(e.log n) time (Lengauer and
Tarjan 1979). The value of i can be at most n,
hence the to ta l complexi ty is at worst O(n.
(e~log e + e. log n)) , or approximately O (n e log e).

The algor i thm above is conservat ive, because
the statements in S[C] are s u f f i c i e n t to d isp lay
a l l the behavior observable from window C. I n t u i -
t i v e l y , t h i s is true because a l l possible sequences
of dataf low and control f low in f luence have been
accounted fo r , and there are no other sources of
in f luence. A more formal proof requires a deta i led
model of possible computations, and is too long to
reproduce here.

Sl ices have the fo l low ing proper t ies.

Propert ies of Sl ices:
Let C = <i,v>, D = <i,w>, E : < i , v union w>,

and F = <j,w>.
C,D,E, and F are a l l s l i c i ng c r i t e r i a .

Property A:
SIC] union S[O] = S[E]

443

R[C] union RID] = R[E]

Property B:
Let F = <j,w>
W c R[C](j) => S[W].~S[C]

Is S[C] always the "smallest" slice that can
be found using only dataflow and control flow
information? No. I f the code being sliced does
strange things, then the iterating of R and B can
produce anomalies in the an~sis, as shown in
figure 4. Such cases are probably rare in prac-
tice.

l A := constant
2 WHILE P(K)

DO
BEGIN

3 IF Q(C)
THEN BEGIN

4 B : = A
5 X : = I

END
ELSE BEGIN

6 C:=B
7 Y : = 2

END
8 K : : K + I

END
9 Z : : X + Y
lO WRITE(Z)

Criterion = < IO,[Z}>
The f i r s t level of anlaysis gives:

S[O] = {5,7,g}
B[O] = {2,3}

Because statement 3 uses C, the next level shows:
S[l] = {1,2,3,4,5,6,7,8,9}

Statement l is included because i t can influence
the value of C via statements 4 and 6. But the
value of C is only important to choose between
statements 5 and 7. By the time A can influence
C, al l possible successors to statement 3 must
have already been executed, so statement l actual-
ly can have no effect, and should not be in the
slice. Notice that this argument can be carried
out with dataflow information alone.

Figure 4

Practical Slicing

Slicing has been empirically investigated in
two ways. Preliminary indications that sl icing is
useful were obtained by showing that experienced
programmers already use slicing during debugging.
This led to the construction of a series of s l ic-
ing tools. Preliminary results from using these
tools show that in practice sl icing is f a i r l y fast,
and can often eliminate large numbers of unneces-
sary statements from slices of programs.

The details of the experiment on slicing are
being reported elsewhere, so just an overview and
the important conclusions are given here. The
participants were 21 experienced programmers
drawn from the academic computing community at the
University of Michigan in Ann Arbor. Counting
multiple roles, 12 individuals had taught program-

ming, I0 were working as counselors to users of the
Univers i ty computing center, and6 were professional
programmers of several years experience. There
were no s i gn i f i can t cor re la t ions between type of
experience and s l i c ing .

Each participant in the experiment was given
three programs to debug. Supplied with each pro-
gram was a brief description of i ts purpose, and a
sample of output which clearly showed the bug. The
bugs were deliberately kept simple, and were found
in 59 out of the 63 possible opportunities.

The three programs being debugged had lengths
of 75, 121, and 150 lines each of ALGOLW code. All
the participants were familiar with ALGOLW. Each
program consisted of a main program which did al l
input and output, and at least one major subroutine
which contained the bug. Comments were few and
high-level.

After finding al l three bugs, each participant
was shown fragments of "algor i thms" that had been
present in the three programs. Par t ic ipants in -
dicated on a one to four scale (see f igure 5)
whether or not they thought each "a lgor i thm" had
been used in one of the three programs.

An example "algorithm" and rating scale

T1 := XI:
FOR B1 : : X2 UNTIL N1 DO

BEGIN
RI(N2,HI,BI,E2):
IF HI > X3 THEN

BEGIN
IF E2 THEN

E3 := (HI-X3)
END:

T1 := T1 + E3:
END:

[]
[]
[]
[]

almost certainly used.
probably used.
probably not used.
almost certainly not used.

Figure 5

The algorithms participants rated were two
local ly adjacent segments of code and three im-
bedded non-adjacent segments of code from each
original program. Adjacency and non-adjacency
refer to whether the statements in the code segment
were next to one another in the original program:
e.g. a slice is usually non-adjacent. Five
"algorithms" were taken from each program. Each
was truncated at top and bottom to a length of
about lO statements, and had al l of i ts variable
names changed.

For each program, one of the two adjacent
algorithms consisted of the lO statements nearest
(and including) the statement causing the bug, and
the other consisted of lO adjacent statements from
elsewhere in the program. Of the non-adjacent
algorithms, one was a slice based on the output

444

statement and variable at which the error became
visible. This slice had relat ively few statements
in common with either of the two adjacent algo-
rithms. One of the other two non-adjacent algo-
rithms was a slice not relevant to the bug, and the
other was constructed by doctoring the segment of
code consisting of every third or fourth statement
to look l ike a possible foreshortened algorithm.

In al l three programs, the slice relevant to
the bug was remembered as having been used or
probably used in almost half of the 63 cases. This
was not signif icantly worse than how well the two
adjacent code segments were remembered. Of course,
the adjacent code was expected to be remembered
since Shneiderman (1976) has shown that experienced
programmers can reproduce functionally equivalent
programs from memory. But no previous work would
have led to the expection that imbedded non-ad-
jacent algorithms would be remembered.

Of non-adjacent code, the relevant slice did
much better than the other two non-adjacent "algo-
rithms". A summary of the results pooled for al l
three programs is shown in figure 6.

38
- - ~ 36

I

36

17

12

Adjacent code slice Non-adjacent code

Graph shows the number of times 21 programmers,
after debugging three programs each, rated imbedded
algorithms as "probably" or "possibly" used. All
algorithms were actually present. See text for
details.

Figure 6

Since programmers remembered the relevant
sl ices from programs they had just debugged, they
probably were mentally constructing and using
those sl ices while debugging. The results for the
i r re levant sl ices show that not just any imbedded
algorithm was remembered. Presumably, each pro-
grammer had in his or her career independently
developed the s l ic ing method, indicating that s l i c -
ing must have been a useful technique for each of
them.

All the participant~ in this experiment were
experienced programmers. I t would be interesting
to look at novice/expert differences in the use of
s l ic ing, and also at differences in debugging per-
formance between novice programmers taught and not
taught about sl icing as a debugging technique.

Slicin 9 Real P rojgrams

The f i r s t program sl icer was implemented as a
post-processor to the DAVE program for analyzing
FORTRAN source code (Fosdick and Osterweil, 1976).
This arrangement could slice only main programs,
although calls from the main program to other
subroutines were permitted.

Several programs were sliced by this proto-
type system (see table l) . Slicing cri teri~ were
based on variables whose values were printed near
the end of the program. In a l l , three different
slices were taken of each of four programs. For
the larger programs, the slices were considerably
smaller than the original code. This was what was
hoped for.

Results from Prototype Slicer

PROGRAM Number of Lines Average Slice Size

MMGS 15 15
PH2B 60 20
TALLY 67 25
MAIN 380 lO0

Table l

The small program identif ied as "MMGS" is a
matrix multiplication subroutine in the IBM
Scientif ic Subroutine Library (IBM 1968). Almost
all i ts slices included every statement. The
single-mindedness of i ts mathematical code made i t
d i f f i cu l t to slice, since all i ts statements
directly or indirect ly affected the matrix product.
Only by choosing a t r i v ia l slicing cri ter ion, such
as the value of a loop control variable, could any
statements be eliminated. But this does not gen-
eralize to all mathematical software, since the
routine TALLY in table l is from the same sub-
routine l ibrary as MMGS.

A second sl icer is now being implemented to
slice programs written in the SIMPL family of
languages (Basili 1976). The slice is done on a
language independent representation of the program
flowgraph, and extensions to other source languages
are planned. Among the languages in the SIMPL
family is SIMPL-D (Gannon 1979), which has abstract
datatype fac i l i t i es similar to CLU (Liskov 1976),
MESA (Geschke, Morris, and Satterthwaite 1977), or
ADA (U.S.D.O.D 1979). The sl icer i t se l f , l ike the
SIMPL-D compiler, is written in SIMPL-D.

Incorporated into the SIMPL compiler is a
program which writes to a f i l e all of the infor-
mation necessary to slice the program. The pro-
grammer need not be aware of this f i l e unti l the
program is to be sliced.

Interprocedural sl ic i n~

Unlike the DAVE sl icer, the SIMPL sl icer per-
forms fu l l interprocedural dataflow analysis. The
most accurate interprocedural sl icing algorithm
requires sl icing called and cal l ing procedures
repeatedly unti l convergence. This was actually
implemented, and was very slow. The algorithms of
Barth (1978) are s l ight ly less accurate because

445

they do not distinguish separate calls on a proce-
dure. But they are very fast, and are now being
used. See Rosen (1979) for another discussion of
interprocedural dataflow analysis.

To slice across systems of subroutines re-
quires two steps. First, a single slice is made of
the procedure containing the sl icing cri terion.
Summary dataflow information about calls to other
procedures is used, but no attempt is made to slice
the other procedures. In the second step, for each
procedure call which could influence variables
relevant to the slice generated in step one, a new
sl icing cri terioniscreated in the called pro-
cedure. Steps one and two are then repeated for
each of these new cr i ter ia unti l no new cr i ter ia
are generated.

There are two basic ways in which sl icing can
cross a procedure boundary. The f i r s t occurs when
a procedure being sliced contains a call to another
procedure. Summary information about the possible
effects of the call is suff ic ient to continue s l ic-
ing within the call ing routine, but not within the
called routine. The second kind of influence is
going in the opposite direction--that is, when the
procedure sliced is called by another procedure.

Extending a slice from a call ing procedure P
to a called procedure Q is done as follows. Sup-
pose the call to procedure Q is statement number i
in procedure P. Then there is some set of vari-
ables (namely ROUT(i)) relevant to the current
slice of P. Recall that this set is just UNION
R[C](j), for al l j successors to i . C is the s l i c -
ing cr i ter ion for P. ROUT(i) is easily transformed
into a sl icing cri terion for Q by simply changing
actual parameters in the call to Q which are also
in ROUT(i) to their corresponding formal para-
meters in Q (See figure 7). Any variables not in
the scope of Q are also removed from the cri ter ion.
The statement number in the new sl icing criterion
for Q is simply the f inal staten~nt in Q.

Extending slices to called and cal l ing routines

l READ(A,B)
2 CALL Q(A,B)
3 Z : = A + B

procedure Q(var x,y : integer)
4 X :=O
5 Y := X+3

Slicing on a criterion C=<3,{Z}> causes a new
criterion C'=<6,{X,Y}> to be generated. The
complete slice on C is {2,3,4,5}.
Slicing on a cr i ter ion D=<4,{Y}> causes a new
cri terion D'=<2,{B}> to be generated. The complete
slice on D is { l } .

Figure 7

Extending a slice from a called procedure Q
to a call ing procedure P is done as follows. Let i
be the i n i t i a l statement of Q. Then the variables
in RIN(i) form the basis of the sl icing cri ter ion
for P. Local variables are removed from RIN(i),
and formal parameters are replaced by actual para-
meters. I f an actual parameter is an expression,

all the variables in the expression are added to
the cri terion for P. The statement for the slicing
cri terion of P is the statement which calls Q.

Generating these additional sl icing cr i ter ia
and slicing on them could be very time consuming
i f several slices are to be found. This is
especially true since the SIMPL sl icer can only
keep in memory enough information to slice a single
subroutine at a time, and therefore has to make
successive passes over the f i l e of dataflow infor-
mation. What is needed is a way of computing as
many slicing cr i ter ia as possible at one time, so
as not to miss any opportunities. This is done as
follows.

Let PC be the set of al l possible sl icing
cr i ter ia . For each criterion C for a procedure P,
there is a set of cr i ter ia UPO(C) which are those
needed to slice callers of P, and a set of cr i ter ia
DOWNO(C) which are those needed to slice procedures
called by P. UPO(C) and DOWNO(C) are computed by
the methods outlined above. UPO and DOWNO can be
extended to functions UP and DOWN which map sets
of cr i ter ia into sets of cr i ter ia. Let CC be any
subset of PC. Then:

UP(CC) = UNION UPO(C), for al l C in CC,

DOWN(CC) = UNION DOWNO(C), for al l C in CC.

The transit ive closure of UP and DOWN, denoted
(UP union DOWN)*, w i l l map any set of cr i ter ia into
all those cr i ter ia necessary to complete the cor-
responding slices through all call ing and called
routines. The complete inter-proc~ural slice for
a criterion C is then just the union of the intra-
procedural slices for each cri terion in (UP union
DOWN)* (C).

In implementing this, l i s t s are kept of a l l
the cr i ter ia generated so far, the intra-procedural
slice for each cr i ter ion, and (UP ~) union DOWN(C))
for each criterion C on the l i s t . Bitmaps are
used for representing (UP(C) UNION DOWN(C)) and the
intra-procedural slices.

This algorithm could possibly be improved by
using the properties of slices mentioned in section
3. For instance, before sl icing on a cr i ter ion
<a,v>, the l i s t o~F cr i ter ia could be checked to
see i f there were already cr i ter ia <a,vl>, <a,v2>
such that vl union v2 = v. Other improvements in
speed at the expense of accuracy and memory might
make use of the value of R from previous slices,
together with property B from section 3, to avoid
recomputing slices. This seems to have the poten-
t i a l . f o r eliminating quite a b i t of sl icing work,
at the expense of remembering the value of R for
al l slices.

None of these tricks have been implemented in
the current SIMPL sl icer. I t remains to be seen
i f slow sl icing speeds wi l l compell the use of such
speed-up heuristics.

~a ra te compilation

SIMPL-D allows separate compilation of modules,
and this complicates interprocedural sl icing in two

446

respects. F i r s t , ca l l s on separately compiled
r o u t i n e s are assumed to both reference and change
any var iab le known outside the current compi lat ion.
This worst case assumption ensures that s l i ces are
at leas t as large as necessary. The second compli-
cat ion is from procedures in the current compila-
t ion which can be cal led from some other compila-
t i on . These are known as "ent ry" procedures.

The worst case assumption for entry procedures
is that there is an external ly compiled program
which cal ls them in every possible order, and
between each ca l l referenc~es and changes al l vari-
ables used as parameters and al l variables known
outside the current compilation. The worst case
assumption therefore implies a certain dataflow
between entry procedures. As with called and ca l l -
ing procedures, this dataflow causes a sl ice for
one entry procedure to generate s l ic ing c r i te r ia
for other entry procedures.

Let ENTO be a function which maps a cr i ter ion
into the set of c r i t e r i a possible under the above
worst case assumption. Specif ical ly, ENTO(C) is
empty unless C is a c r i te r ion for an entry proce-
dure P, in which case ENTO is computed as follows:
Let i be the unique i n i t i a l statement in P, le t EE
be the set of a l l entry procedures, le t OUT be the
set of al l variables known outside the compilation,
and for each E in EE le t f(E) be the unique f inal
statement in E. Then: ENTO(C) = {<f(E), R[C](i)
union OUT> : for al l E in EE}.
ENTO can be extended to a function ENT which maps
sets of c r i te r ia into sets of c r i te r ia in the
same manner as UP and DOWN.

Of course, i t is now a simple matter to in-
clude the entry c r i te r ia in the interprocedural
s l ic ing algorithm. ENT need only be unioned with
UP and DOWN when taking the t rans i t ive closure of
generated sl ices.

Slicing Based Metrics

lhere are two investigations now in progress
on the practical use of s l ic ing. One is to use
s l ic ing in a program debugging and maintenance aid.
Programmers w i l l be able to interact ively obtain
slices of programs, and so use this information in
making program changes or to look for bugs. Com-
parison w i l l be made of programmer performance with
and without a s l icer . This should help establish
whether or not s l ic ing aids are useful programming
i~ols. The second practical use being looked at is
slicing-based program metrics. Numbers of sl ices,
their spatial arrangement, etc., may hold s i gn i f i -
cant information about the structuring of a pro-
gram. Since programmers do already break programs
in to s l ices, s l ic ing-based metrics may be par t i cu -
l a r i l y meaningful, compared to measures such as
McCabe's (1976) or Halstead's (1977).

Some possible s l ic ing-based metrics are:

I . "Coverage" compares the length of slices
to the length of the entire program. Coverage
might be expressed as the ratio of mean sl ice
length to program length. A low coverage value,

indicating a long program with many short sl ices,
may indicate a program which has several d is t inc t
conceptual purposes.

2. "Overlap" is a measure of how many state-
ments in a sl ice are found only in that sl ice.
This could be computed as the mean of the ratios
of non-unique to unique statements in each sl ice.
A high overlap might indicate very interdependent
code.

3. "Clustering" reveals the degree to which
slices are reflected in the original code layout.
I t could be expressed as the mean of the ratio of
statements formerly adjacent to total statements
in each sl ice. A low cluster value indicates
slices intertwined l ike spaghetti, while a high
cluster value indicates slices physically ref lect-
ed in the code by statement grouping.

4. "Parallelism" is the number of slices
which have few statements in common. Parallelism
could be computed as the number of slices which
have a pair wise overlap less than a certain
threshold. A high degree of parallelism would
suggest that assigning a processor to execute each
sl ice in parallel could give a s igni f icant program
speed-up.

5. "Tightness" measures the number of state-
ments which are in every s l ice, expressed as a
rat io over the total program length. The pres-
ence of re la t i ve ly high tightness might indicate
that al l the slices in a subroutine real ly belong-
ed together because they al l shared certain act iv-
i t ies .

Slicing-based metrics are now being applied
to several student-written load-and-go compilers.
Much more work is needed, but the fo l low ing are
some i n i t i a l resu l ts and conclusions.

Slicing on every output statement leads to a
great many similar sl ices. Clustering together
slices which d i f f e r by only a few statements gives
a more meaningful set of slices on which to apply
metrics.

Fo r
compi I er

l)

instance, the 48 output statements in one
could be c lustered in to seven categor ies:
object code i n te rp re ta t i on messages and
errors

2). source code scanning messages and errors
3) miscellaneous f ixed messages (e.g.

"EXECUTION BEGINS")
4) global er ror messages (e.g. "NO PROCEDUR-

ES")
5) symbol table l i s t i n g
6) object code l i s t i n g
7) symbol table er ror messages

Slices within a cluster differed by less than
seven statements, while in ter-c luster differences
were between 30 and 400 statements, with most more
than lO0. There were about 500 executable state-
ments altogether, divided among 21 procedures and
functions.

The cost of f inding these 48 slices is inte-
resting. Together, the 48 or iginal s l ic ing c r i te -
r ia generated 217 additional s l ic ing c r i te r ia as a

44?

resu l t of ca l led and ca l l i ng procedures. (There
were no entry procedures.) The en t i re process of
f i nd ing the c r i t e r i a , propogating the s l ices
in te rp rocedura l l y , and ca lcu la t ing the 217 i n t r a -
procedural s l i ces took about I0 minutes of CPU
time on a Univac 1100/40. Six passes over the
f i l e of dataf low informat ion were necessary.

There were cer ta in core groups of statements
which showed up in many d i f f e r e n t s l i ces . For
instance, in the same compiler as above, a set of
115 statements showed up in every n o n - t r i v i a l
s l i ce . These statements were drawn mostly from
the scanner, wi th a few from the parser and symbol
table sections of code. The 115 statements are
not themselves a s l i ce , because they do not con-
s t i t u t e an independently executable program. But
they form the core of a str ipped down compiler,
since any n o n - t r i v i a l output requires that they be
executed.

Conclusion

S l i c i ng is a new way of decomposing programs
automat ica l ly . Limited to code already w r i t t en ,
i t may prove useful during the debugging, tes t ing ,
and maintenance port ions of the software l i f e -
cycle. Unlike design methodologies which decom-
pose a program in j us t one way, many d i f f e r e n t
s l i c i n g decompositions can be chosen by se lect ing
appropriate s l i c i n g c r i t e r i a . This paper con-
centrated on the basic methods fo r s l i c i n g pro-
grams and t h e i r embodiment in automatic s l i ce rs .
Future work on s l ic ing-based programming aids and
s l ic ing-based program metrics is necessary before
the imp l ica t ions of t h i s kind of decomposition
are f u l l y known.

References

I . Aho, A.V. and Ullman, J.D.
1977 Pr inc ip les of Compiler Design.

Addison-Wesley, 1 977.

2. Arsac, J.J.
1979 Syntact ic Source to Source Trans-

formaHs and Program Manipulat ion.
CACM 22, 1 (Jan. 1979) pp. 43-53.

3. Ashcroft and Manna
1973 The Trans la t ion of GOTO Programs in to

WHILE programs. Information Process-
ing 71, North Holland Pub. Co.
#Jnsterdam, pp. 250-255.

4. Aygun, B.O.
1973 Dynamic analys is of execut ion: pos-

s i b i l i t i e s , techniques, and problems.
PhD thes is , Carnegie-Mellon Un ivers i t y
Sept. 1973.

5. Baker, B.
1977 An Algori thm for St ructur ing Flow-

graphs. JACM 24, 1 (Jan. 1977)
pp. 98-I 20.

6. Barth, J.M.
1978 A Pract ical Interprocedural Dataflow

Analysis Algori thm. CACM 21, 9
(Sept. 1978) pp. 724-736.

7. B a s i l i , V.R.
1976 The design and implementation of a

fami ly of app l i ca t ion -o r ien ted lan-
guages. F i f t h Texas Conference on
Computing Systems. pp. 6-I 2.

8. Browne, J.C. and Johnson, D.B.
1978 FAST: A second generation program

analysis system. Third i n t ' l confer-
ence on software engineer ing. IEEE
catalog no. 78CH1317-7C. May 1978.
pp. 142-148.

9. Denning, D.E. and Denning, P.J.
1977 C e r t i f i c a t i o n of programs fo r secure

informat ion f low. CACM 20, 7 (Ju ly
1977) pp. 504-513.

I0 . Fosdick. L.D. and Osterwei l , L.J.
1976 Data Flow Analysis in Software Re l i -

a b i l i t y . ACM Computing Surveys 8, 3
(Sept. 1976) pp. 305-330.

I I . Gannon, J.D. and Rosenberg, J.
1979 Implementing data abst ract ion features

in a stack-based language. Software-
Pract ice and Experience, Vol. 9, pp.
547-560.

12. Gerhart, S.
1975 Correctness Preserving Program Trans-

formations. Second Conference on the
Pr inc ip les of Programming Languages.
ACM (Jan. 1975) pp. 54-66.

13. Gould, J.D. and Drongowski, P.
1974 An Exploratory Study of Computer Pro-

gram Debugging. Human Factors I , 6.
pp. 258-277.

14. Graham, S.L. , and Wegman, M.
1976 A fas t and usua l ly l i nea r a lgor i thm fo r

global f low ana lys is . JACM 23, I .
January 1976, pp. 172-202.

1 5. Hal stead, M.
1977 Elements of Software Science. E lsev ier

Computer Science L ib rary . 1977.

16. Hecht, M.S.
1977 Flow Analysis of Computer Programs.

North-Holland (1977).

1 7. IBM
1968 S c i e n t i f i c Subroutine Package (PL/ I) .

360-ACM-O7X. Program Descr ipt ion and
Operations Manual. Form 6H20-0586-0.

18. Lengauer, T. and Tarjan, R.E.
1979 A fas t algor i thm for f i nd ing dominators

in a f iowgraph. ACM T. on Prog. Lan.
and Systems, Vol I , no. 1 July 1979,
pp. 121-141.

19. Liskov, B.H. and Z i l l e s , S.N.
1975 Spec i f i ca t ion techniques fo r data ab-

s t rac t ions . IEEE Trans of Software
Engineering. March 1975.

20. Loveman, D.B.
1977 Program Improvement by Source to Source

Transformation. JACM 24, 1 (Jan. 1977)
pp. 121-145.

21. Luckham, D.C. and Suzuki, N.
1979 V e r i f i c a t i o n of array, record, and

po in ter operat ions in Pascal. ACM T.
on Prog. Lan. and Systems, Vol. I ,

448

no. 2 Oct. 1979, pp. 226-244.

21. McCabe, Thomas J.
1976 A Complexity Measure. IEEE Trans-

actions on Software Engineering. SE-2,

22. Parnas, D.L.
1972 On the c r i t e r i a used in decomposing

systems into modules. CACM 15, 12
(Dec. 1972) pp. 1053-1058.

23. Schwartz, J.T.
1971 An overview of bugs. in Debugging

techniques in large systems. Rustin,
Randall, ed. Prentice-Hall.

24. Shneiderman, B.
1976a Exploratory Experiments in Programmer

Behavior. International J. of Com-
puter and Information Sciences, 5, 2.

25. Stay, J.F.
1976 HIPO and integrated program design.

IBM systems journal.

26. Tarjan, R.E. and Valdes, J.
1980 Prime subprogram parsing of a pro-

gram. Seventh annual ACM symposium
on the principles of programming
languages. Jan. 1980, pp. 95-I 05.

27. U.S.D.O.D.
1979 Preliminary Ada reference manual and

rat ionale. Sigplan notices 14, 6.

28. Wegbreit, Ben
1976 Goal-directed program transformation

IEEE Transactions on Software Engin-
eering. Vol SE-2, 2 (June 1976)
pp. 69-80.

29. Weihl, W.E.
1980 Interprocedural data flow analysis in

the presence of pointers, procedure
variables and label variables. Seven~

ACM Symposium on the Principles of
Programming Languages pp. 83-94.

30. Weiser, M.D.
1979 Program Slices: Foraml Psychological,

and Practical Investigations of an
Automatic Program Abstraction Method.
Ph.D. Thesis, Computer and Communica-
t ion Sciences Dept., University of
Mi chi gan.

31. Weiser, M.D.
1980 Color dominance: a new graph coloring

program with applications to computer
program optimization. In preparation.

32. Zelkowitz, M.W., Shaw, A.C., and Gannon, J.D.
1979 Principles of software engineering

and design. Prentice-Hall.

449

