Using Predicate Abstraction to Reduce Object-Oriented
Programs for Model Checking

Willem Visser and SeungJoon Park

RIACS
NASA Ames Research Center
Moffet Field, CA 94035

ABSTRACT

While it is becoming more common to see model checking
applied to software requirements specifications, it is seldom
applied to software implementations. The Automated Soft-
ware Engineering group at NASA Ames is currently inves-
tigating the use of model checking for actual source code,
with the eventual goal of allowing software developers to
augment traditional testing with model checking. Because
model checking suffers from the state-explosion problem, one
of the main hurdles for program model checking is reducing
the size of the program. In this paper we investigate the
use of abstraction techniques to reduce the state-space of
a real-time operating system kernel written in C+4. We
show how informal abstraction arguments could be formal-
ized and improved upon within the framework of predicate
abstraction, a technique based on abstract interpretation.
We introduce some extensions to predicate abstraction that
all allow it to be used within the class-instance framework of
object-oriented languages. We then demonstrate how these
extensions were integrated into an abstraction tool that per-
forms automated predicate abstraction of Java programs.

1. INTRODUCTION

Model checking is becoming an increasingly successful tech-
nique for analyzing software requirement specifications and
software design models [1, 4, 9]. The main reason for this
trend is that, at high levels of abstraction, the limitations of
model checking are often avoided with minimal cost. This
is convenient because it is well known that discovering er-
rors early in the software life cycle is very cost-effective.
However, it is also the case that some errors cannot be dis-
covered in the requirements and design stages. This might
be because the details of the system are not elaborated to
sufficient detail to reveal problems until implementation, or
simply because errors are made during implementation.

The state of the art techniques for finding errors at the im-
plementation level are static analysis and testing. However,
testing is not well suited to giving high degrees of behavioral

~John Penix o
Computational Sciences Division

NASA Ames Research Center
Moffet Field, CA 94035

coverage of a system, especially when considering a concur-
rent system where testing has little, or no, control over the
scheduler. Static analysis has better success dealing with
concurrency, but it is sometimes challenging to obtain accu-
rate results [16]. Model checking, however, can provide more
extensive behavioral coverage in two ways. First, the model
checker can evaluate every possible interleaving of concur-
rent processes/threads in the system. Second, model check-
ers support nondeterministic operations that can be used
to construct an environment model to close a system for
verification. This can allow the model checker to generate
all combinations of environmental behaviors as the closed
system is checked.

There have been many cases of applying model checking to
programs. However, the standard approach is to extract
relevant portions of the code, create a model of its behavior
and then check the model. This has the drawback that the
modeling activity requires expertise in the use of the model
checking tools and will not, in general, allow software devel-
opers to check their own code during development. Ideally,
one would like a model checker that could operate directly
on the source program to find the errors that testing might
miss.

There are two obvious problems with applying model check-
ing to programs: getting the program source code into the
notation of your favorite model checker, and avoiding the
state-space explosion problem. The former is not a funda-
mental problem and some work has been done to create au-
tomatic translations from popular programming languages
to the input notations of model checkers [12, 15, 7]. We used
one such approach to translating object-oriented software to
Promela, the input notation of the Spin model checker [14],
for the work described in this paper. Avoiding the state
space explosion problem is more difficult than the transla-
tion problem. The implementation detail in the program
that was not present in the design now is a doubly edged
sword: on one side it is required to find some errors, but
on the other it may cause the model checking to exhaust
memory resources before finding any errors.

Abstraction has long been a favored method for reducing the
state-space size of a system to allow efficient model check-
ing [5]. Abstraction techniques are often based on abstract
interpretation [8] and require a user to give an abstraction
function relating concrete datatypes to abstract datatypes.
One approach is predicate abstraction, where an abstraction

function is specified as a number of predicates over the con-
crete data [11]. For example, one might be interested in
whether an integer x is positive, negative or zero and hence
the following predicates will be used to represent the state
space of the abstract system: z > 0, x < 0 and x = 0.

In this paper, we report on an investigation into the use
of abstraction to reduce the state space of a software sys-
tem written in C++ (4+-3000 lines). To the best of our
knowledge, this is the first time predicate abstraction has
been applied to a real software system at the source code
level. In section 2 we give an overview of the abstraction
techniques used in the paper. Section 3 contains a brief de-
scription of the DEOS real-time operating system as well
as the approach we took to model check the system. The
remaining sections contain the major contribution of this pa-
per, namely the application of predicate abstraction to the
DEOS model as well as the introduction of dynamic predi-
cate abstraction and its influence on the DEOS verification.
We then show that dynamic data manipulation cannot be
handled by automated (static) predicate abstraction tech-
niques and we then introduce dynamic predicate abstraction
to solve this problem. Section 6 describes the integration of
dynamic predicate abstraction into an automatic abstrac-
tion tool for Java. We then demonstrate the use of this
tool on another real program example. Section 7 contains
concluding remarks and points out future areas of research.

2. ABSTRACTION FOR VERIFICATION

Program abstraction is a very general concept with many
potential applications in program analysis, compilation and
verification. A common application of program abstraction
in verification is to reduce the complexity of a program in
order to make a verification algorithm more tractable. In
the specific case of model checking, abstractions are used to
reduce the state-space size of a program in an attempt to
overcome the memory limitations of model checking algo-
rithms.

There are two main approaches to model checking using ab-
straction:

e an abstract state graph can be generated for model
checking by executing the concrete transitions over the
abstract data, or

e the concrete transitions can be abstracted and the re-
sulting abstract system can be model checked.

Recently there has been much work in automating both
these approaches by using decision procedures to determine
the abstract states and/or abstract transitions given the
abstraction function, initial state(s) and concrete transi-
tions [2, 6, 10, 11, 19, 20]. In the approach where abstract
transitions are generated, the number of calls to the decision
procedures is bound by the size of the concrete system. The
abstract state graph approach is a dynamic abstraction, and
hence, will in most cases require many more calls to the de-
cision procedures. The abstract state graph approach can
however be more precise since it can use dynamic informa-
tion about the abstract state-space to generate abstractions.

2.1 Property Preservation

When using abstraction to assist verification, the main con-
cern is that the abstractions must be property-preserving.
There are two forms of property preservation:

Weak Preservation — An abstraction is a weakly preserv-
ing abstraction of a concrete system if a set of prop-
erties true in the abstract system has corresponding
properties in the concrete system that are also true.

Strong Preservation — An abstraction is a strong pre-
serving abstraction if a set of properties with truth-
values either true or false in the abstract system has
corresponding properties in the concrete system with
the same truth-values.

Note that strong preservation does not seem to allow for
much scope in simplifying the system during abstraction.
However, property preservation is with respect to a specific
set of properties and properties outside of the set can be
disregarded. In fact, an abstraction is often applied in order
to preserve a single property. Therefore, strong preserva-
tion is often useful in practice. But, as might be expected,
abstractions that are only weakly preserving can be much
more aggressive in reducing the state-space and therefore
are more popular for verification purposes.

2.2 Over and Under Approximation
Owver-approzimation of the behaviors of the system occurs
when more behaviors are added than were present in the
concrete system. This approach provides a very popular
class of weakly preserving abstractions for universally quan-
tified path properties (for example LTL properties). Weak
preservation in this case follows trivially: if more behav-
iors (i.e. more execution paths) are added and a property
is true for all paths then it is true for any subset of those
paths, including the subset that describes the behavior of
the concrete system. Unfortunately, over-approximations
often only work well for invariant properties, since liveness
properties may be erroneously invalidated by one of the ex-
tra paths that was added. This highlights a drawback of
over-approximation, it can add behaviors that invalidate a
property in the abstract system that is true of the concrete.
These spurious errors must then be removed by constrain-
ing the over-approximation, i.e. reduce the degree of over-
approximation. This is often difficult and is the reason why
invariant properties are the properties of choice when do-
ing abstraction with an over-approximation of the system
behavior. The problem encountered in dealing with over-
abstraction are analogous to the problems encountered when
attempting to make static analysis more precise [21].

Under-approximation, i.e. where behaviors are removed when
going from the concrete to the abstract system, is clearly not
weakly preserving for invariant properties, but is often used
during model checking of such properties. This is because
it can often be shown that the behaviors removed by under-
approximation do not influence the verification result. Typ-
ical ways of making under-approximations are to reduce a
buffer size, restrict the number of processes in a system, etc.
Under-approximations are also often found in the construc-
tion of an environment for a system to be checked: for ex-

ample, checking the system with just 5 input values instead
of infinitely many. In fact, testing is a under-approximation
of this type. In practice it is difficult to determine whether
an under-approximation in the environment might influence
the truth-value of a property.

2.3 Predicate Abstraction

Predicate abstraction, introduced by Graf and Saidi [11], is a
popular form of over-approximation and forms the basis of a
number of automated abstraction tools [10, 19, 20]. The ba-
sic idea of predicate abstraction is to replace a concrete vari-
able by a boolean variable that evaluates to a given boolean
formula (a predicate) over the original variable. This con-
cept is easily extended to handle multiple predicates and,
more interestingly, predicates over multiple variables. For
example, assume we have a program with two integer vari-
ables, and y, which can grow infinitely. Since this pro-
gram will have an infinite state-space, model checking can-
not be complete in general, although a property might be
(in)validated in a finite portion of the state-space. However,
closer inspection may reveal that the only relationship of
interest between the two variables is whether or not they
are equal. We can then define a predicate to represent this

relationship, By : * == y, and use it to construct an over-
approximation of the system’s behavior as follows: wherever
the condition x == y appears in the program we replace it

with the predicate By, and whenever their is an operation
involving x or y we replace it with an operation changing
the value of By appropriately.

Replacing concrete transitions with abstract transitions, can
be performed automatically with the aid of decision proce-
dures [2]. Furthermore, it can take place dynamically during
state generation [10, 19] or statically before state generation
begins [6, 20]. In both approaches, over-approximation oc-
curs when not enough information is available for the de-
cision procedure to calculate a deterministic next action or
state. For example, the operation y := y + 1 could lead to
two nondeterministic abstract transitions: Bg := false or
By := true, because if By is false, it is unknown whether
it should become true (if y = x — 1). In the abstract state
graph approach, since it is dynamic, this information may
be available, hence showing one area in which this approach
is better than the transition generation approach.

Invariants of the system can often allow more precise ab-
stractions (i.e. less nondeterminism, and hence less over-
approximation). For example, the invariant z < y would
allow the concrete transition y := y 4+ 1 always to be ab-
stracted to B := false. Note that this is an interesting case
in predicate abstraction: when the predicate abstraction in-
troduces no nondeterminism, over-approximation does not
occur and strong preservation is achieved [19]. One might
believe that this would be a rare occurrence, but we show
(in section 4) that a specific class of infinite state programs
that occur frequently in practice can be transformed to finite
state programs by a predicate abstraction that introduces no
nondeterminism.

3. DEOS VERIFICATION

The Honeywell DEOS operating system is a portable micro-
kernel based real-time operating system which provides both
space and time partitioning between applications. The en-

forcement of time partitioning involves innumerable inter-
leavings of program executions due to the rich set of schedul-
ing primitives supported by DEOS. The developers under-
stood from the beginning of the DEOS development that
testing was going to be inadequate for ensuring the correct-
ness of the scheduler. This led to a collaboration between
NASA Ames and Honeywell to investigate the application
of model checking to assist the verification of DEOS [18]. A
slice of the scheduler code including one of the most subtle
errors detected during the DEOS development was selected
by Honeywell and delivered to NASA for analysis.

Because our ultimate goal was to integrate our verification
technique as part of the software development process, we
decided to apply model checking directly on the source code,
without first extracting a model of the system. We adopted
a translation scheme similar to the one used within the Java
PathFinder tool [12]. The important point of our translation
is that we translated the code line for line, such that there
is nearly a one-to-one mapping between the C++ and the
Promela code!.

DEOS threads can run in different scheduling periods and re-
quire a certain amount of CPU time to be allocated to them,
called their budget, within their period. The scheduling pe-
riod and budget of each thread is fixed at thread creation.
During execution if a thread uses more time than its remain-
ing budget then it will be interrupted by the kernel and a
new thread will be scheduled. The property that we wanted
to verify within DEOS was that of time partitioning: that all
threads in the system are guaranteed their requested budget
within their scheduling period.

3.1 Environment Modeling

In order to model check DEOS, we had to define an envi-
ronment for the kernel to execute in. Although environment
modeling is not the main focus of this paper, we include this
short discussion to provide context for the remainder of the
paper and to highlight the fact that environment modeling
is a critical task involving abstraction which proves to be
quite difficult in practice.

The environment for DEOS had to contain a model of the
threads that were to be scheduled and a model of the hard-
ware that was needed to provide interrupts. In our version
of the kernel, a thread could either delete itself, yield the
CPU or continue running until interrupted. In the last case,
the kernel will stop a thread if it uses all of its allocated
budget. Therefore, we simply allowed a thread to make a
nondeterministic choice between these three options. This
model of a thread is an over-approximation of a thread’s
behavior and will preserve any time partitioning errors that
might exist in the kernel.

The model of the hardware component of the system con-
sists of a system tick generator and a timer. The system
tick must be generated periodically and the timer is used
to determine when a thread has used up its budget. To
provide an accurate model of the environment, these two
events must be synchronized. Otherwise, it becomes possi-

Due to certain Promela limitations, some C4++ statements
would translate to more than one statement in Promela.

ble for a system tick to occur before a timer interrupt, even
though the thread requests less time than is remaining in
the scheduling period. To deal with the large number of
potential execution times after which a thread could yield
or delete itself, we used the following under-approximation:
whenever the kernel requests the remaining time, the timer
chooses nondeterministically one of the following values: 0,
the time the timer was started with, or a value halfway be-
tween these. This abstraction of time worked well for this
verification effort, but it is difficult to assess whether it pre-
serves all time partitioning errors. We are currently inves-
tigating techniques to support environment modeling and
abstraction for DEOS.

Although we realize that generating the environment for
DEOS was made more difficult due to the lack of real-time
support in Spin, we still argue that our experience indicates
that environment modeling is non-trivial when considering
complex systems. On the one hand, over-approximations al-
low a clean way of introducing property preserving abstrac-
tions, but on the other hand they introduce many spurious
errors that would hamper its uptake in the world of everyday
software developers. Our solution was to reduce the spurious
errors by introducing possibly unsafe under-approximations.

3.2 Verification Results

Although we were told there was a time partitioning er-
ror in the system, we often found ourselves considering the
option that the Honeywell team might have accidentally re-
moved it from the code that they gave us. As it turned
out, the real problem was our attitude towards the state-
space explosion: we were constantly under-approximating
the system behavior (by disabling features such as dynamic
thread creation and deletion) to avoid running out of mem-
ory. These under-approximations however did not preserve
the time partitioning error.

After realizing that the under-approximations were probably
unsafe, we changed our approach from exhaustive verifica-
tion of some part of the system behavior to looking for errors
ounly up to a certain depth of execution. On the very first
model checking run with 4 threads to schedule and each with
all of its possible behaviors enabled, the error was found.
The error only occurred if a thread deleted itself after us-
ing a large amount of its allocated budget. At this point
the deleted thread’s budget is returned to the main thread
in the process, which had the option of using this budget
again. Hence the budget was used twice, causing another
thread to be starved and time partitioning to fail. Spin can
find this error at a minimum depth of 2556 steps.

4. PREDICATEABSTRACTION FORDEQOS

Although we rediscovered the time partitioning error with-
out introducing any abstractions within the DEOS code it-
self (all our abstractions were in the environment) we were
still unsatisfied for several reasons. First, we were not guar-
anteed to discover the error with the approach we used be-
cause the model could not be exhaustively checked, even to
a depth of 2500 transitions®. Second, we were interested in
checking other properties of the system that would required

2A transition corresponds roughly to a program statement
due to our nearly 1-to-1 translation.

void
StartOfPeriodEvent: :pulseEvent (DWORD systemTickCount)
{
countDown = countDown - 1;
if (countDown == Q)
{
itsPeriodIld = itsPeriodId + 1;

)

void

Thread: : startChargingCPUTime ()

{
// Cache current period for multiple uses here.
periodIdentification cp = itsPeriodicEvent->currentPeriod();

// Has this thread run in this period?

if (cp == itsLastExecution)
{
// Not a new period. Use whatever budget is remaining.
}
else
{

// New period, get fresh budgets.

// Record that we have run in this period.
itsLastExecution = cp;

Figure 1: Slice for itsPeriodId

an exhaustive check of the state-space of the system. For
example, Honeywell sent us the “fix” for the error to ver-
ify that it indeed resolved the problem. It was clear that
we needed to find abstractions for some parts of the DEOS
code in order to do exhaustive verification. In this section
we related the steps we took to first introduce and ad-hoc
abstraction into the system, and then to refine the abstrac-
tion using predicate abstraction.

4.1 Ad-hoc Abstraction

The first step toward introducing abstractions into the sys-
tem was to determine whether their actually were any chances
to reduce the state space of the system without grossly
under-approximating the system behaviors. We were guided
by several experiments showing traces through the system
that were 2,000,000 steps long. Based upon our limited in-
tuition of how DEOS works, this seemed too large because
the system’s behavior is cyclic in nature: at the end of the
longest scheduling period, the system should return to a
state where all threads are available to be scheduled with all
of their budget available. These extremely long traces indi-
cated that some data was being carried over these longest pe-
riod boundaries. We were able to identify this data by run-
ning a simulation and observing the Spin data values panel;
The itsPeriodId data member for the StartOfPeriodEvent
class was operating as a couunter, incrementing every time
the end of the corresponding period was reached. In addi-
tion, the itsLastExecution variable in the Thread class was
also climbing, because it is periodically assigned the value of
the itsPeriodId counter for the Start0fPeriodEvent cor-
responding to the thread’s scheduling period.

The section of the DEOS kernel involving itsPeriodId and
itsLastExection is shown in Figure 1. These variables are

used to determine whether or not a thread has executed in
the current period; If it has not, then its budget can be safely
reset. When a thread starts running, itsLastExecution
is assigned the value of itsPeriodId (the return value of
currentPeriod()) whenever the two are not equal. There-
fore, itsLastExecution will always increase by ezactly one if
a thread is scheduled every period. If this is true, then both
variable types can be replaced with much smaller ranges
(namely bits) and still maintain the exact behavior of the
system.

Whether or not a thread is scheduled every period is very dif-
ficult (if not impossible) to determine by inspection, because
it is control flow dependent upon the core of the scheduling
code. To test this hypothesis, we placed an assertion in the
code to check that itsLastExecution was only increment-
ing by one. Spin failed to find an assertion violation to a
search depth of 76,000, but could not exhaustively verify
the system due to the same memory limitation that we were
attempting to circumvent. We then changed the increment
code for the PeriodId to roll over at 8 (rather than 256) and
ran the verification again. This resulted in the assertion be-
ing violated at roll over (because 0=8+1 is false). While this
result is not a complete confirmation, it was consistent with
our belief that that itsLastExecution only increments and
increased our level of confidence in our code inspection.

Assuming that itsLastExecution can only increment by
one, we can safely use modulo 2 arithmetic (i.e. a bit) to
determine whether the thread has executed in the current
period. Therefore, we changed the PeriodId code to roll
over at 2. Table 1 shows formal characterization of this ab-
straction, where the effect of using modulo 2 arithmetic is
modeled by toggling a boolean variable. With this abstrac-
tion in place, we found that the number of states dropped
to under one million (980197) and we could now exhaus-
tively verify a system with one user thread using 260MB of
memory.

4.2 Predicate Abstraction

It turns out that, in the slice of the DEOS system being
verified a thread runs every period. However, in the full
DEOS system there are synchronization mechanisms, such
as events and semaphores, that may cause threads to wait
for arbitrary amounts of time. In this case, our assumption
that a thread will execute every period, and consequently
the preservation property of the abstraction, breaks down.
Therefore, a more general solution was required if the ab-
straction was to be used in a broader context.

Discussions with Honeywell revealed that the information
that actually needs to be maintained is simply a boolean
variable that indicates whether a thread has executed in
the current period. These flags would then be reset at ev-
ery period boundary. However, this approach can not be
implemented in the system for efficiency reasons: all ker-
nel algorithms must be O(1), where as resetting the flags is
O(n), where n is the number of threads.

This realization led us to try predicate abstraction. We
replaced the variables itsPeriodId and itsLastExecution
by a single boolean variable, executedThisPeriod, defined
by the predicate itsPeriodId == itsLastExecution.

To generate an abstract program, the statements that ma-
nipulate the variables must map to statements that prop-
erly update the predicate variable. In this case, it is obvi-
ous that the statement itsLastExecution = itsPeriodId
should be mapped to executedThisPeriod = TRUE. How-
ever, the mapping for the program statement itsPeriodId
= itsPeriodId + 1 is nontrivial because, depending on the
previous values of itsPeriodId and itsLastExecution, the
value of the predicate after the increment could be either
TRUE or FALSE. However, in the real system, itsPeriodId
is always incremented, and itsLastExecution is only ever
assigned the value of itsPeriodId. Therefore, it is easy
to “prove” (by inspection of the code in Figure 1) that
itsPeriodId will always be greater than or equal to the
value of itsLastExecution and therefore the result of in-
crementing itsPeriodId will be that the predicate becomes
FALSE. This abstraction mapping is shown in Table 2.

In practice, the case where itsPeriodId rolls over (at MAX-
INT) is an exception to the above assumption. However,
the correct behavior of the real system implementation also
depends on this assumption (specifically, that itsPeriodId
does not roll over and catch up with itsLastExecution,
meaning that a thread will not wait MAXINT periods). This
is precisely the case where the above predicate abstraction
will become invalid. Therefore, this abstraction does not in-
troduced any stronger assumptions on the system than those
imposed by the implementation and is therefore a strongly
preserving abstraction of the code.

4.3 Implementation Details

The reasoning described above to determine the abstract
program statements for DEOS is quite formal, and can be
automated using existing program abstraction tools. How-
ever, due to the object-oriented nature of the program, the
actual abstraction that was required was slightly more com-
plex than the mapping in Table 2 and existing tools could
not be used to generate the abstract program. The prob-
lem arises because the C++ code describes classes while the
state space that we are attempting to abstract is composed
of instances of these classes. Existing abstraction techniques
do not address this distinction between class and instance
variables and this becomes problematic in practice. The
fact that there are multiple instances of the classes that we
want to abstract means there must be multiple predicates
introduced to perform the abstraction and that abstracted
program statements must be generated that properly ma-
nipulate all of these predicates at once.

The specific problem in DEOS was the one-to-many relation-
ship between StartOfPeriodEvents and Threads because
more than one thread can execute within a period. There-
fore, a predicate was required for each Thread instance to
store the relationship between itsLastExecution and the
itsPeriodId of its StartOfPeriodEvent. When construct-
ing the abstract program, we need to know which of these
predicates should be updated when either itsPeriodId or
itsLastExecution is updated. From the perspective of the
thread this is simple because there is only one predicate per
thread. However, from the perspective of the period, this
meant that whenever the itsPeriodId was incremented we
needed to go through all the threads that can run in that
period and update the appropriate predicates.

Concrete Program

Abstract Program |

int itsPeriodld;
int itsLastExecution;

bool itsPeriodId;
bool itsLastExecution;

itsPeriodld = itsPeriodld + 1;

itsPeriodId = litsPeriodId;

itsLastExecution = itsPeriodId;

itsLastExecution = itsPeriodId;

Table

1: Abstraction of itsPeriodId

and itsLastExectution to booleans

Concrete Program

Abstract Program |

int itsPeriodld;
int itsLastExecution,;

bool executedThisPeriod;

itsPeriodld = itsPeriodId + 1;

executedThisPeriod = FALSE;

itsLastExecution = itsPeriodld;

executed ThisPeriod = TRUE;

Table 2: Abstraction of itsPeriodId and itsLastExectution to a single boolean

This is a precise approximation of the original system be-
havior because the predicates are always assigned to false if
itsPeriodId is incremented and true when the assignment
itsLastExecution = itsPeriodId is executed. Note that
this algorithm corresponds precisely to the O(n) updating
algorithm that could not be used in the implementation.
However, the O(1) real-time constraint does not apply to
the verification model, so this is not a problem.

This predicate abstraction allowed us to exhaustively check
the original (faulty) system as well as the fixed system for
the configuration with 4 threads with their full behavior.
We found another error on the very first run with the fixed
software, which turned out to be an error that the DEOS en-
gineers already found themselves and had corrected. Unlike
the original time partitioning error this second error could
have been found easily with traditional testing.

4.4 The Event-Counter Pattern

The target of our abstraction within DEOS was an instance
of a more general pattern where a counter is used to indicate
that an event has occurred. This is a form of time-stamping
that is common in distributed and database programming.
We believe that finding a precise approximation to remove
the infinite behavior associated with this common pattern
could be an important result in the quest to model check
programs. In fact, this event-counter pattern was also used
within NASA’s Deep Space 1 Remote Agent control system,
which we have also used as a case study for program verifi-
cation. In Section 6 we show how this same abstraction can
enable model checking to discover a deadlock in the program
that actually occurred during flight [13].

In there general case, this pattern consists of an Event class
containing a counter and any number of other Listener
classes which monitor the occurrence of events by keeping a
local copy of the event counter and periodically comparing
the two values. This general case removes several simplifying
assumptions that occurred in the DEOS system, most im-
portantly that listeners can monitor more than one event.
In the following sections, we describe a generalization our
approach used for DEOS that can be used to support au-
tomatic generation of abstract programs for these types of
object-oriented abstractions.

5. DYNAMIC PREDICATEABSTRACTION

One drawback of the abstraction approach described in the
previous section is that it required a fairly deep understand-
ing of the system to be able to introduce the code to achieve
the predicate abstraction. Ideally, one would want to sim-
ply identify the abstraction predicate and the verification
system would automatically create the abstract transitions.
This is how the current automated predicate abstraction
tools work, but in these systems the predicates relate static
variables, whereas in our case the predicate relates variables
from different objects that get created dynamically.

We propose the use of dynamic predicates in order to per-
form predicate abstractions in programs that uses dynamic
data. Dynamic predicates are simply predicates augmented
with dynamic information. For example, if we want to
create a predicate abstraction for the program statement
q.x == r.y, where ¢ is an object of class) and r is an object
of class R, we use a dynamic predicate B : (¢, r,q.x == r.y)
which not only holds the static predicate but also the dy-
namic information relating the specific objects g and r. Note
that for each program statement, there will typically be
many dynamic predicates in each abstract program. In the
above example involving two dynamic objects we would re-
quire in the worst-case |@| % |R| dynamic predicates, where
|@Q| and |R| refers to the number of objects instantiated of
class @ and class R, respectively.

To calculate the abstract transitions for the dynamic pred-
icates, we use the techniques for generating abstract tran-
sitions for static predicates and then augment the resulting
transitions with information available during run-time. For
the B : g.x == r.y example from above, decision procedures
are used to calculate the following abstract transitions from
the corresponding concrete transitions (assuming that there
is an invariant that states ¢.xz < r.y hence there is no non-
deterministic choice for the third statement):

qr==ry — B
qxr:=ry — B:=true
ry:=ry+1 — B:= false

For each of the above abstract program statements, we re-
quire a “wrapper” function in order for it to be used dy-

namically. Lets assume we have a list of dynamic predicates
with each predicate having the following structure: (¢, r, B)
where B is the predicate from above. We replace the state-
ments ¢.x == r.y with the function isEqual(q,r) defined by
the following pseudo-code:

boolean isEqual(qq,rr) {
find the dynamic predicate with (q==qq) and (r==rr)
return the value of B for this predicate

}

The statements g.x := 7.y are replaced by the function
setEqual(q,r):

void setEqual(qq,rr) {
find the dynamic predicate with (q==qq) and (r==rr)
set the B field for this entry to true

}

Lastly the statements for r.y := r.y + 1 is replaced by the
function inc(r):

void inc(rr) {
find all the dynamic predicates with (r==rr)
for each one set the B field to false

The third line of each of these functions is taken directly
from the translations calculated (by the use of decision pro-
cedures) from the static predicates. This provides a straight-
forward way of allow the use of predicate abstraction in a
dynamic setting.

One potential inefficiency of this approach is that it may
introduce too many predicates. For example, if we have 10
objects of class @ and 10 from class R then there will be
100 dynamic predicates for q.z == r.y. However, it might
be the case that during program execution only 1 of the
objects of class () interacts with all the objects of class R and
therefore only 10 dynamic predicates were really required.
This is the case in DEOS where threads monitor a single
start of period event during program execution. We believe
this problem can be overcome by either allowing more user
interaction or using static analysis techniques to determine
which objects interact and hence can be used to minimize
the number of dynamic predicates. One potential source of
information that can be used to refine the abstractions may
be from UML class diagrams. The fact that DEOS threads
only monitor one event can be expressed using multiplicity
constraints in UML.

| Description || States | Time (s) | Memory (Mb) |
Manual 1255010 100 126
Dynamic (con) || 1670880 143 135
Dynamic (opt) || 1291510 113 126

Table 3: Predicate Abstractions for DEOS

The results of applying the different predicate abstraction
techniques to the DEOS kernel is shown in Table 3. The ta-
ble shows the number of states visited, space requirements

and time taken during a deadlock detection run, during
which Spin generates the full state space of the system. The
DEOS system configuration used to obtain these results was
four schedulable threads with their full capabilities enabled.
The results were obtained on a SUN ULTRA60 with 512Mb
of memory. The Manual abstraction refers to the predi-
cate abstraction described in Section 4 where a considerable
amount of user intervention was required. Next we con-
sidered a dynamic predicate abstraction that conservatively
creates dynamic predicates for all possible thread and pe-
riod objects, regardless of whether the thread can execute
within the period. Finally, we look at an optimization of the
conservative approach that only creates dynamic predicates
for the thread and period combinations that actually occur
within the program. The results indicate that the optimized
dynamic abstraction performs almost as well as the method
that requires considerable user intervention.

6. AUTOMATED TOOL SUPPORT

In the preceding sections we showed how predicate abstrac-
tions can make model checking tractable when analyzing
object-oriented programs. Although we alluded to the fact
that we believe the dynamic predicate abstractions can be
automated, all the work was done by hand. In this sec-
tion we describe an automated abstraction tool, which con-
verts a Java program to an abstract program with respect
to user-specified abstraction criteria. We will illustrate how
to use the tool on an example derived from flight software
used within the NASA Deep Space 1 Remote Agent experi-
ment [17]>. The Java program, given in Figure 2, is a frag-
ment of code translated from the original Lisp code that
illustrates a deadlock that happened during flight [13]. In
fact, the program in Figure 2 makes use of the same event-
counter pattern encountered within DEOS and therefore has
an unbounded state-space.

To interact with the abstraction tool, a user specifies ab-
stractions by removing variables in the concrete program
and/or adding new variables (currently the tool only sup-
ports adding boolean types) to the abstract program. This
is illustrated by the calls to the methods Abstract.remove
and Abstract.addBoolean in Figure 2. Given a Java pro-
gram and such abstraction criteria, the tool generates an
abstract Java program in terms of the new abstract vari-
ables and remaining concrete variables. Part of the abstract
Java program for Figure 2 is shown in Figure 3. To compute
the conversion automatically, we use a decision procedure,
SVC (Stanford Validity Checker), which checks the valid-
ity of logical expressions [2]. The tool extracts information
from the concrete Java program during parsing, translates
the Java statements to SVC notation to determine what the
abstract statements should look like and translates the re-
sults back to Java. In the translation back to Java the tool
embeds the SVC results inside wrapper code, see Figure 3,
to handle the dynamic nature of the predicates as described
in Section 5.

The abstraction tool was designed to be used as a front-end
tool for our Java model checking tools. Java PathFinderl

3We cannot demonstrate the tool on DEOS because DEOS
in written in C++ and the code of interest cannot be fully
published.

class Event{

int count = 0;

public synchronized void wait_for_event(){
try{wait () ; }catch(InterruptedException e){};

}

public synchronized void signal_event(){
Abstract.remove (count) ;
count = count + 1; notifyAll();

}3

class FirstTask extends Thread{
Event eventl,event2;
int count = 0;
public FirstTask(Event el, Event e2){
this.eventl = el; this.event2 = e2;
Abstract.remove (count) ;
Abstract.addBoolean("FcntEQEcnt", count == eventl.count);
Abstract.addBoolean("FcntLEEcnt", count <= eventl.count);
}
public void run(){
count = eventl.count;
while (true){
if (count == eventl.count)
eventl.wait_for_event();
count = eventl.count;
event2.signal_event();

LA

class SecondTask extends Thread{
Event eventl,event2;
int count = 0;
public SecondTask(Event el, Event e2){
this.eventl = el; this.event2 = e2;
Abstract.remove (count);
Abstract.addBoolean("ScntEQEcnt", count == event2.count);
Abstract.addBoolean("ScntLEEcnt", count <= event2.count);
}
public void run(){
count = event2.count;

while (true){
eventl.signal_event();
if (count == event2.count)

event2.wait_for_event();
count = event2.count;

}r

class START{
public static void main(String[] args){

Event eventl = new Event();
Event event2 = new Event();
FirstTask taskl = new FirstTask(eventl,event2);
SecondTask task2 = new SecondTask(eventl,event2);
taskl.start(); task2.start();

} 3

Figure 2: Example Java Program with a Deadlock

class Event{
public synchronized void wait_for_event(){
// Abstract.remove (count);
try { wait();} catch(InterruptedException e){}

public synchronized void signal_event(){
Verify.beginAtomic(); // model checker trap
// count = count + 1;
FcntEQEcnt.incEcnt (this); FcntLEEcnt.incEcnt (this);
ScntEQEcnt.incEcnt (this); ScntLEEcnt.incEcnt(this);
Verify.endAtomic(); // model checker trap

notifyAll();
}
Event () {
FcntEQEcnt.setEvent (this); FcntLEEcnt.setEvent(this);
ScntEQEcnt.setEvent (this); ScntLEEcnt.setEvent (this);
} 3

// Class defined for a new multi-class
// abstraction variable
class FcntEQEcnt {
static final int MAX = 3;
static public int numFirstTask = 0;
static public FirstTask[] objFirstTask
= new FirstTask[MAX];
static public void setFirstTask(FirstTask obj){
objFirstTask[numFirstTask++] = obj;
}
static public int getFirstTask(FirstTask obj){
for(int i = 0; i < numFirstTask; ++i)
if (obj == objFirstTask[i]) return ij;
return MAX + 1;
}
static public int numEvent = 0;
static public Event[] objEvent = new Event[MAX];
static public void setEvent(Event obj){
objEvent [numEvent++] = obj;

static public int getEvent(Event obj){
for(int i = 0; i < numEvent; ++i)
if (obj == objEvent[il) return i;
return MAX + 1;
}
static public boolean[][] pred
= new boolean[MAX] [MAX];

static public void incEcnt(Event event) {
for(int i = 0; i < numFirstTask; ++i){
// pre-image calculation
if (pred[il[getEvent(event)] ||
FcntLEEcnt .pred[i] [getEvent (event)])
// ‘‘false’’ generated by SVC
pred[i] [getEvent (event)] = false;
else
// nondeterminism generated by SVC
pred[i] [getEvent (event)] = Verify.randomBool();
}}
static public void setEqual(FirstTask task,
Event event) {
for(int i = 0; i < numEvent; ++i){
if (i == getEvent(event))
// ‘‘true’’ generated by SVC
pred[getFirstTask(task)1[i] = true;
else
// nondeterminism generated by SVC
pred[getFirstTask(task)][i] =
Verify.randomBool() ;
} 3
static public boolean isEqual(FirstTask task,
Event event) {
return pred[getFirstTask(task)] [getEvent (event)];
}}

Figure 3: Section of Abstracted Java Program

(JPF1) is based on a translation from Java to Spin [12]. Cur-
rently we are working on Java PathFinder2 (JPF2) which
is a model checker built on top of our own Java virtual ma-
chine [3]. Since the abstraction tool does a source to source
translation, both JPF1 and JPF2 can use it as a front-end.
Java does not support nondeterminism, so our model check-
ers trap special method calls, random(n) and randomBool ()
from the Verify class to introduce respectively nondeter-
ministic values between 0 and n or true and false. Since
the abstraction tool currently only support predicate ab-
straction it relies heavily on the randomBool method call to
introduce over-approximations). Furthermore, the abstract
Java code often contains more statements than the concrete
program, hence in order to assure correctness, all the ab-
stract code related to one statement in the concrete program
must be placed between beginAtomic() and endAtomic()
methods that are also trapped by the model checkers to en-
sure atomicity (see Figure 3).

When the Java program in Figure 2 is checked for dead-
lock with JPF1/JPF2, no result is obtained since the model
checker runs out of memory. This is due to the fact that
the program has a very large state-space caused by the in-
crementing of the count variables when an event is signaled.
However, when it is observed that the count variables within
the program are really only used to test equality, predicate
abstractions can be used to reduce the state-space. Unfortu-
nately, if only the equality predicates are introduced, over-
approximation can introduce a spurious deadlock: the count
= count + 1 statements can set the predicates to true or
false nondeterministically and hence make both FirstTask
and SecondTask wait for a signal. To avoid this problem,
the user must notice that the Tasks’ count variables will al-
ways be less or equal to the Events’ count variables and add
these predicates to the system, as shown in figure 2. This
allows the abstraction tool to refine the abstraction and re-
move the over-approximations. The reason for the refine-
ment lies in the tool’s use of pre-image calculations to guard
the execution of the abstract Java program. For example,
the abstract statement corresponding to count = count +
1 first tests whether the less-or-equal predicate holds and if
so sets the equality predicate to false. Otherwise it picks a
nondeterministic value (see comments in incEcnt methods
in the code of Figure 3). JPF2 finds the deadlock in the ab-
stract program in in 184 steps (transitions) from the initial
state.

7. CONCLUSIONS AND FUTURE WORK

The results of this investigation have shown that by ex-
tending predicate abstraction techniques to support object-
oriented languages, they can be very effective in practice
for reducing programs for model checking. Because predi-
cate abstraction is a very general (and somewhat simple)
technique, we believe that it will be applicable to many
other programming patterns beyond the event-counter pat-
tern that we have shown here. In general, the framework
of abstract interpretation on which predicate abstraction is
based allows abstraction to be applied in a controlled and
minimal fashion, which helps to provide an understanding
of exactly what can be done to avoid state space explosion.

We are continuing to work on extending the applicability
of predicate abstraction and to integrate it with related ab-

straction techniques [7]. We are also planning to investigate
the use of predicate abstraction to support environment gen-
eration, because this is usually the most time consuming
aspect of performing model checking in practice.

Acknowledgments

We would like to thank Eric Engstrom, Aaron Larson, Nick-
olas Weininger and Robert Goldman at Honeywell Technol-
ogy Center for their collaboration and support in the trans-
lation and verification of DEOS. We would also like to thank
Phil Oh, Klaus Havelund, Charles Pecheur, Michael Lowry,
Thomas Uribe, Hassen Saidi, Matt Dwyer, John Hatcliff,
David Dill, Satyaki Das and Jens Skakkabaek for numerous
technical discussions that contributed to this work.

8. REFERENCES
[1] R. J. Anderson, P. Beame, S. Burns, W. Chan,

F. Modugno, D. Notkin, and J. D. Reese. Model
checking large software specifications. In Proceedings
of the 4th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, volume 21 of
SIGSOFT Software Engineering Notes, pages 156-166.
ACM, October 1996.

[2] C. Barrett, D. Dill, and J. Levitt. Validity Checking
for Combinations of Theories with Equality. In Formal
Methods In Computer-Aided Design, volume 1166 of
LNCS, pages 187-201, November 1996.

[3] Guillaume Brat, Klaus Havelund, SeungJoon Park,
and Willem Visser. Model checking programs. In
Proceedings of the 14th IEEE International Automated
Software Engineering Conference. IEEE Computer
Society Press, September 2000.

[4] W. Chan, R. Andersen, P. Beame, D. Jones,
D. Notkin, and W. Warner. Decoupling
Synchronization from Local control for Efficient
Symbolic Model Checking of Statecharts. In
Proceedings of the 21st International Conference on
Software Engineering, pages 142-151, Los Angeles,
May 1999.

[5] E. Clarke, O. Grumberg, and D. Long. Model
checking and abstraction. ACM Translactions on
Program Languages and Systems, 16(4), sep 1994.

[6] M. Colén and T. Uribe. Generating Finite-state
Abstractions of Reactive Systems using Decision
Procedures. In Proceedings of the 10th Conference on
Computer-Aided Verification, volume 1427 of LNCS,
July 1998.

[7] James C. Corbett, Matthew B. Dwyer, John Hatcliff,
Shawn Laubach, Corina S. Pasareanu, Robby, and
Hongjun Zheng. Bandera : Extracting finite-state
models from java source code. In In Proceedings of the
22nd International Conference on Software
Engineering, June 2000.

[8] P. Cousot and R. Cousot. Abstract Interpretation
Frameworks. Journal of Logic and Computation,
4(2):511-547, August 1992.

[9]

[10]

[11]

[14]

[15]

Z. Dang and R. Kemmerer. Using the ASTRAL
Model Checker to Analyze Mobile IP. In Proceedings
of the 21st International Conference on Software
Engineering, pages 132-141, Los Angeles, May 1999.

S. Das, D. Dill, and S. Park. Experience with
predicate abstraction. In Proceedings of the 11th
International Conference on Computer Aided
Vericifaction 99, volume Lecture Notes in Computer
Science 1633, pages 160-171, 1999.

S. Graf and H. Saidi. Construction of abstract state
graphs with PVS. In Proceedings of the 9th
International Conference on Computer Aided
Vericifaction, Lecture Notes in Computer Science
1254, pages 72-83, 1997.

K. Havelund and T. Pressburger. Model checking java
programs using java pathfinder. International Journal
on Software Tools for Technology Transfer, 1999.

Klaus Havelund, Michael Lowry, SeungJoon Park,
Charles Pecheur, John Penix, Willem Visser, and
Jon L. White. Formal analysis of the remot agent
before and after flight. In Lfm 2000: Fifth NASA
Langley Formal Methods Workshop, 2000.

G. Holzmann. The model checker SPIN. IEEE
Transactions on Software Engineering, 23(5):279-295,
1997.

G. Holzmann and M. Smith. A practical Method for
Verifying Event-Driven Software. In Proceedings of the
21st International Conference on Software
Engineering, pages 597-607, Los Angeles, May 1999.

[16]

[17]

[19]

[20]

[21]

Gleb Naumovich, George S. Avrunin, and Lori A.
Clarke. Data flow analysis for cehcking properties of
concurrent java programs. In Proceedings of the 21st
International Conference on Software Engineering,
pages 399-410. ACM Press, May 1999.

B. Pell, E. Gat, R. Keesing, N. Muscettola, and

B. Smith. Plan Execution for Autonomous
Spacecrafts. In Proceedings of the International Joint
Conference on Artificial Intelligence, August 1997.
Nagoya, Japan.

John Penix, Willem Visser, Eric Engstrom, Aaron
Larson, and Nicholas Weininger. Verification of time
partitioning in the deos scheduler kernel. In
Proceedings of the 22nd International Conference on
Software Engineering. ACM Press, June 2000.

H. Saidi. Modular and Incremental Analysis of

Concurrent Software Systems. In Proceedings of the
14th IEEE International Conference on Automated
Software Engineering, pages 92-101, October 1999.

H. Saidi and N. Shankar. Abstract and Model Check
while you Prove. In Proceedings of the 11th
Conference on Computer-Aided Verification, volume
1633 of LNCS, pages 443-454, July 1999.

D. A. Schmidt and B. Steffen. Data-flow analysis as
model checking of abstract interpretations. In G. Levi,
editor, Proceedings of the 5th Static Analysis
Symposium, volume 1503 of LNCS. Springer, sep 1998.

