
Using Predicate Abstraction to Reduce Object-Oriented
Programs for Model Checking

Willem Visser and SeungJoon Park
RIACS

NASA Ames Research Center
Moffet Field, CA 94035

John Penix
Computational Sciences Division

NASA Ames Research Center
Moffet Field, CA 94035

ABSTRACTWhile it is becoming more common to see model checkingapplied to software requirements speci�cations, it is seldomapplied to software implementations. The Automated Soft-ware Engineering group at NASA Ames is currently inves-tigating the use of model checking for actual source code,with the eventual goal of allowing software developers toaugment traditional testing with model checking. Becausemodel checking su�ers from the state-explosion problem, oneof the main hurdles for program model checking is reducingthe size of the program. In this paper we investigate theuse of abstraction techniques to reduce the state-space ofa real-time operating system kernel written in C++. Weshow how informal abstraction arguments could be formal-ized and improved upon within the framework of predicateabstraction, a technique based on abstract interpretation.We introduce some extensions to predicate abstraction thatall allow it to be used within the class-instance framework ofobject-oriented languages. We then demonstrate how theseextensions were integrated into an abstraction tool that per-forms automated predicate abstraction of Java programs.
1. INTRODUCTIONModel checking is becoming an increasingly successful tech-nique for analyzing software requirement speci�cations andsoftware design models [1, 4, 9]. The main reason for thistrend is that, at high levels of abstraction, the limitations ofmodel checking are often avoided with minimal cost. Thisis convenient because it is well known that discovering er-rors early in the software life cycle is very cost-e�ective.However, it is also the case that some errors cannot be dis-covered in the requirements and design stages. This mightbe because the details of the system are not elaborated tosu�cient detail to reveal problems until implementation, orsimply because errors are made during implementation.The state of the art techniques for �nding errors at the im-plementation level are static analysis and testing. However,testing is not well suited to giving high degrees of behavioral

coverage of a system, especially when considering a concur-rent system where testing has little, or no, control over thescheduler. Static analysis has better success dealing withconcurrency, but it is sometimes challenging to obtain accu-rate results [16]. Model checking, however, can provide moreextensive behavioral coverage in two ways. First, the modelchecker can evaluate every possible interleaving of concur-rent processes/threads in the system. Second, model check-ers support nondeterministic operations that can be usedto construct an environment model to close a system forveri�cation. This can allow the model checker to generateall combinations of environmental behaviors as the closedsystem is checked.There have been many cases of applying model checking toprograms. However, the standard approach is to extractrelevant portions of the code, create a model of its behaviorand then check the model. This has the drawback that themodeling activity requires expertise in the use of the modelchecking tools and will not, in general, allow software devel-opers to check their own code during development. Ideally,one would like a model checker that could operate directlyon the source program to �nd the errors that testing mightmiss.There are two obvious problems with applying model check-ing to programs: getting the program source code into thenotation of your favorite model checker, and avoiding thestate-space explosion problem. The former is not a funda-mental problem and some work has been done to create au-tomatic translations from popular programming languagesto the input notations of model checkers [12, 15, 7]. We usedone such approach to translating object-oriented software toPromela, the input notation of the Spin model checker [14],for the work described in this paper. Avoiding the statespace explosion problem is more di�cult than the transla-tion problem. The implementation detail in the programthat was not present in the design now is a doubly edgedsword: on one side it is required to �nd some errors, buton the other it may cause the model checking to exhaustmemory resources before �nding any errors.Abstraction has long been a favored method for reducing thestate-space size of a system to allow e�cient model check-ing [5]. Abstraction techniques are often based on abstractinterpretation [8] and require a user to give an abstractionfunction relating concrete datatypes to abstract datatypes.One approach is predicate abstraction, where an abstraction

function is speci�ed as a number of predicates over the con-crete data [11]. For example, one might be interested inwhether an integer x is positive, negative or zero and hencethe following predicates will be used to represent the statespace of the abstract system: x > 0, x < 0 and x = 0.In this paper, we report on an investigation into the useof abstraction to reduce the state space of a software sys-tem written in C++ (+-3000 lines). To the best of ourknowledge, this is the �rst time predicate abstraction hasbeen applied to a real software system at the source codelevel. In section 2 we give an overview of the abstractiontechniques used in the paper. Section 3 contains a brief de-scription of the DEOS real-time operating system as wellas the approach we took to model check the system. Theremaining sections contain the major contribution of this pa-per, namely the application of predicate abstraction to theDEOS model as well as the introduction of dynamic predi-cate abstraction and its in
uence on the DEOS veri�cation.We then show that dynamic data manipulation cannot behandled by automated (static) predicate abstraction tech-niques and we then introduce dynamic predicate abstractionto solve this problem. Section 6 describes the integration ofdynamic predicate abstraction into an automatic abstrac-tion tool for Java. We then demonstrate the use of thistool on another real program example. Section 7 containsconcluding remarks and points out future areas of research.
2. ABSTRACTION FOR VERIFICATIONProgram abstraction is a very general concept with manypotential applications in program analysis, compilation andveri�cation. A common application of program abstractionin veri�cation is to reduce the complexity of a program inorder to make a veri�cation algorithm more tractable. Inthe speci�c case of model checking, abstractions are used toreduce the state-space size of a program in an attempt toovercome the memory limitations of model checking algo-rithms.There are two main approaches to model checking using ab-straction:� an abstract state graph can be generated for modelchecking by executing the concrete transitions over theabstract data, or� the concrete transitions can be abstracted and the re-sulting abstract system can be model checked.Recently there has been much work in automating boththese approaches by using decision procedures to determinethe abstract states and/or abstract transitions given theabstraction function, initial state(s) and concrete transi-tions [2, 6, 10, 11, 19, 20]. In the approach where abstracttransitions are generated, the number of calls to the decisionprocedures is bound by the size of the concrete system. Theabstract state graph approach is a dynamic abstraction, andhence, will in most cases require many more calls to the de-cision procedures. The abstract state graph approach canhowever be more precise since it can use dynamic informa-tion about the abstract state-space to generate abstractions.

2.1 Property PreservationWhen using abstraction to assist veri�cation, the main con-cern is that the abstractions must be property-preserving.There are two forms of property preservation:Weak Preservation { An abstraction is a weakly preserv-ing abstraction of a concrete system if a set of prop-erties true in the abstract system has correspondingproperties in the concrete system that are also true.Strong Preservation { An abstraction is a strong pre-serving abstraction if a set of properties with truth-values either true or false in the abstract system hascorresponding properties in the concrete system withthe same truth-values.Note that strong preservation does not seem to allow formuch scope in simplifying the system during abstraction.However, property preservation is with respect to a speci�cset of properties and properties outside of the set can bedisregarded. In fact, an abstraction is often applied in orderto preserve a single property. Therefore, strong preserva-tion is often useful in practice. But, as might be expected,abstractions that are only weakly preserving can be muchmore aggressive in reducing the state-space and thereforeare more popular for veri�cation purposes.
2.2 Over and Under ApproximationOver-approximation of the behaviors of the system occurswhen more behaviors are added than were present in theconcrete system. This approach provides a very popularclass of weakly preserving abstractions for universally quan-ti�ed path properties (for example LTL properties). Weakpreservation in this case follows trivially: if more behav-iors (i.e. more execution paths) are added and a propertyis true for all paths then it is true for any subset of thosepaths, including the subset that describes the behavior ofthe concrete system. Unfortunately, over-approximationsoften only work well for invariant properties, since livenessproperties may be erroneously invalidated by one of the ex-tra paths that was added. This highlights a drawback ofover-approximation, it can add behaviors that invalidate aproperty in the abstract system that is true of the concrete.These spurious errors must then be removed by constrain-ing the over-approximation, i.e. reduce the degree of over-approximation. This is often di�cult and is the reason whyinvariant properties are the properties of choice when do-ing abstraction with an over-approximation of the systembehavior. The problem encountered in dealing with over-abstraction are analogous to the problems encountered whenattempting to make static analysis more precise [21].Under-approximation, i.e. where behaviors are removed whengoing from the concrete to the abstract system, is clearly notweakly preserving for invariant properties, but is often usedduring model checking of such properties. This is becauseit can often be shown that the behaviors removed by under-approximation do not in
uence the veri�cation result. Typ-ical ways of making under-approximations are to reduce abu�er size, restrict the number of processes in a system, etc.Under-approximations are also often found in the construc-tion of an environment for a system to be checked: for ex-

ample, checking the system with just 5 input values insteadof in�nitely many. In fact, testing is a under-approximationof this type. In practice it is di�cult to determine whetheran under-approximation in the environment might in
uencethe truth-value of a property.
2.3 Predicate AbstractionPredicate abstraction, introduced by Graf and Saidi [11], is apopular form of over-approximation and forms the basis of anumber of automated abstraction tools [10, 19, 20]. The ba-sic idea of predicate abstraction is to replace a concrete vari-able by a boolean variable that evaluates to a given booleanformula (a predicate) over the original variable. This con-cept is easily extended to handle multiple predicates and,more interestingly, predicates over multiple variables. Forexample, assume we have a program with two integer vari-ables, x and y, which can grow in�nitely. Since this pro-gram will have an in�nite state-space, model checking can-not be complete in general, although a property might be(in)validated in a �nite portion of the state-space. However,closer inspection may reveal that the only relationship ofinterest between the two variables is whether or not theyare equal. We can then de�ne a predicate to represent thisrelationship, B0 : x == y, and use it to construct an over-approximation of the system's behavior as follows: whereverthe condition x == y appears in the program we replace itwith the predicate B0, and whenever their is an operationinvolving x or y we replace it with an operation changingthe value of B0 appropriately.Replacing concrete transitions with abstract transitions, canbe performed automatically with the aid of decision proce-dures [2]. Furthermore, it can take place dynamically duringstate generation [10, 19] or statically before state generationbegins [6, 20]. In both approaches, over-approximation oc-curs when not enough information is available for the de-cision procedure to calculate a deterministic next action orstate. For example, the operation y := y + 1 could lead totwo nondeterministic abstract transitions: B0 := false orB0 := true, because if B0 is false, it is unknown whetherit should become true (if y = x� 1). In the abstract stategraph approach, since it is dynamic, this information maybe available, hence showing one area in which this approachis better than the transition generation approach.Invariants of the system can often allow more precise ab-stractions (i.e. less nondeterminism, and hence less over-approximation). For example, the invariant x � y wouldallow the concrete transition y := y + 1 always to be ab-stracted to B := false. Note that this is an interesting casein predicate abstraction: when the predicate abstraction in-troduces no nondeterminism, over-approximation does notoccur and strong preservation is achieved [19]. One mightbelieve that this would be a rare occurrence, but we show(in section 4) that a speci�c class of in�nite state programsthat occur frequently in practice can be transformed to �nitestate programs by a predicate abstraction that introduces nonondeterminism.
3. DEOS VERIFICATIONThe Honeywell DEOS operating system is a portable micro-kernel based real-time operating system which provides bothspace and time partitioning between applications. The en-

forcement of time partitioning involves innumerable inter-leavings of program executions due to the rich set of schedul-ing primitives supported by DEOS. The developers under-stood from the beginning of the DEOS development thattesting was going to be inadequate for ensuring the correct-ness of the scheduler. This led to a collaboration betweenNASA Ames and Honeywell to investigate the applicationof model checking to assist the veri�cation of DEOS [18]. Aslice of the scheduler code including one of the most subtleerrors detected during the DEOS development was selectedby Honeywell and delivered to NASA for analysis.Because our ultimate goal was to integrate our veri�cationtechnique as part of the software development process, wedecided to apply model checking directly on the source code,without �rst extracting a model of the system. We adopteda translation scheme similar to the one used within the JavaPathFinder tool [12]. The important point of our translationis that we translated the code line for line, such that thereis nearly a one-to-one mapping between the C++ and thePromela code1.DEOS threads can run in di�erent scheduling periods and re-quire a certain amount of CPU time to be allocated to them,called their budget, within their period. The scheduling pe-riod and budget of each thread is �xed at thread creation.During execution if a thread uses more time than its remain-ing budget then it will be interrupted by the kernel and anew thread will be scheduled. The property that we wantedto verify within DEOS was that of time partitioning: that allthreads in the system are guaranteed their requested budgetwithin their scheduling period.
3.1 Environment ModelingIn order to model check DEOS, we had to de�ne an envi-ronment for the kernel to execute in. Although environmentmodeling is not the main focus of this paper, we include thisshort discussion to provide context for the remainder of thepaper and to highlight the fact that environment modelingis a critical task involving abstraction which proves to bequite di�cult in practice.The environment for DEOS had to contain a model of thethreads that were to be scheduled and a model of the hard-ware that was needed to provide interrupts. In our versionof the kernel, a thread could either delete itself, yield theCPU or continue running until interrupted. In the last case,the kernel will stop a thread if it uses all of its allocatedbudget. Therefore, we simply allowed a thread to make anondeterministic choice between these three options. Thismodel of a thread is an over-approximation of a thread'sbehavior and will preserve any time partitioning errors thatmight exist in the kernel.The model of the hardware component of the system con-sists of a system tick generator and a timer. The systemtick must be generated periodically and the timer is usedto determine when a thread has used up its budget. Toprovide an accurate model of the environment, these twoevents must be synchronized. Otherwise, it becomes possi-1Due to certain Promela limitations, some C++ statementswould translate to more than one statement in Promela.

ble for a system tick to occur before a timer interrupt, eventhough the thread requests less time than is remaining inthe scheduling period. To deal with the large number ofpotential execution times after which a thread could yieldor delete itself, we used the following under-approximation:whenever the kernel requests the remaining time, the timerchooses nondeterministically one of the following values: 0,the time the timer was started with, or a value halfway be-tween these. This abstraction of time worked well for thisveri�cation e�ort, but it is di�cult to assess whether it pre-serves all time partitioning errors. We are currently inves-tigating techniques to support environment modeling andabstraction for DEOS.Although we realize that generating the environment forDEOS was made more di�cult due to the lack of real-timesupport in Spin, we still argue that our experience indicatesthat environment modeling is non-trivial when consideringcomplex systems. On the one hand, over-approximations al-low a clean way of introducing property preserving abstrac-tions, but on the other hand they introduce many spuriouserrors that would hamper its uptake in the world of everydaysoftware developers. Our solution was to reduce the spuriouserrors by introducing possibly unsafe under-approximations.
3.2 Verification ResultsAlthough we were told there was a time partitioning er-ror in the system, we often found ourselves considering theoption that the Honeywell team might have accidentally re-moved it from the code that they gave us. As it turnedout, the real problem was our attitude towards the state-space explosion: we were constantly under-approximatingthe system behavior (by disabling features such as dynamicthread creation and deletion) to avoid running out of mem-ory. These under-approximations however did not preservethe time partitioning error.After realizing that the under-approximations were probablyunsafe, we changed our approach from exhaustive veri�ca-tion of some part of the system behavior to looking for errorsonly up to a certain depth of execution. On the very �rstmodel checking run with 4 threads to schedule and each withall of its possible behaviors enabled, the error was found.The error only occurred if a thread deleted itself after us-ing a large amount of its allocated budget. At this pointthe deleted thread's budget is returned to the main threadin the process, which had the option of using this budgetagain. Hence the budget was used twice, causing anotherthread to be starved and time partitioning to fail. Spin can�nd this error at a minimum depth of 2556 steps.
4. PREDICATE ABSTRACTION FOR DEOSAlthough we rediscovered the time partitioning error with-out introducing any abstractions within the DEOS code it-self (all our abstractions were in the environment) we werestill unsatis�ed for several reasons. First, we were not guar-anteed to discover the error with the approach we used be-cause the model could not be exhaustively checked, even toa depth of 2500 transitions2. Second, we were interested inchecking other properties of the system that would required2A transition corresponds roughly to a program statementdue to our nearly 1-to-1 translation.

voidStartOfPeriodEvent::pulseEvent(DWORD systemTickCount){ countDown = countDown - 1;if (countDown == 0){ itsPeriodId = itsPeriodId + 1;...}voidThread::startChargingCPUTime(){ // Cache current period for multiple uses here.periodIdentification cp = itsPeriodicEvent->currentPeriod();...// Has this thread run in this period?if (cp == itsLastExecution){ // Not a new period. Use whatever budget is remaining....}else{ // New period, get fresh budgets....// Record that we have run in this period.itsLastExecution = cp;...}...} Figure 1: Slice for itsPeriodIdan exhaustive check of the state-space of the system. Forexample, Honeywell sent us the \�x" for the error to ver-ify that it indeed resolved the problem. It was clear thatwe needed to �nd abstractions for some parts of the DEOScode in order to do exhaustive veri�cation. In this sectionwe related the steps we took to �rst introduce and ad-hocabstraction into the system, and then to re�ne the abstrac-tion using predicate abstraction.
4.1 Ad-hoc AbstractionThe �rst step toward introducing abstractions into the sys-tem was to determine whether their actually were any chancesto reduce the state space of the system without grosslyunder-approximating the system behaviors. We were guidedby several experiments showing traces through the systemthat were 2,000,000 steps long. Based upon our limited in-tuition of how DEOS works, this seemed too large becausethe system's behavior is cyclic in nature: at the end of thelongest scheduling period, the system should return to astate where all threads are available to be scheduled with allof their budget available. These extremely long traces indi-cated that some data was being carried over these longest pe-riod boundaries. We were able to identify this data by run-ning a simulation and observing the Spin data values panel;The itsPeriodId data member for the StartOfPeriodEventclass was operating as a counter, incrementing every timethe end of the corresponding period was reached. In addi-tion, the itsLastExecution variable in the Thread class wasalso climbing, because it is periodically assigned the value ofthe itsPeriodId counter for the StartOfPeriodEvent cor-responding to the thread's scheduling period.The section of the DEOS kernel involving itsPeriodId anditsLastExection is shown in Figure 1. These variables are

used to determine whether or not a thread has executed inthe current period; If it has not, then its budget can be safelyreset. When a thread starts running, itsLastExecutionis assigned the value of itsPeriodId (the return value ofcurrentPeriod()) whenever the two are not equal. There-fore, itsLastExecution will always increase by exactly one ifa thread is scheduled every period. If this is true, then bothvariable types can be replaced with much smaller ranges(namely bits) and still maintain the exact behavior of thesystem.Whether or not a thread is scheduled every period is very dif-�cult (if not impossible) to determine by inspection, becauseit is control
ow dependent upon the core of the schedulingcode. To test this hypothesis, we placed an assertion in thecode to check that itsLastExecution was only increment-ing by one. Spin failed to �nd an assertion violation to asearch depth of 76,000, but could not exhaustively verifythe system due to the same memory limitation that we wereattempting to circumvent. We then changed the incrementcode for the PeriodId to roll over at 8 (rather than 256) andran the veri�cation again. This resulted in the assertion be-ing violated at roll over (because 0=8+1 is false). While thisresult is not a complete con�rmation, it was consistent withour belief that that itsLastExecution only increments andincreased our level of con�dence in our code inspection.Assuming that itsLastExecution can only increment byone, we can safely use modulo 2 arithmetic (i.e. a bit) todetermine whether the thread has executed in the currentperiod. Therefore, we changed the PeriodId code to rollover at 2. Table 1 shows formal characterization of this ab-straction, where the e�ect of using modulo 2 arithmetic ismodeled by toggling a boolean variable. With this abstrac-tion in place, we found that the number of states droppedto under one million (980197) and we could now exhaus-tively verify a system with one user thread using 260MB ofmemory.
4.2 Predicate AbstractionIt turns out that, in the slice of the DEOS system beingveri�ed a thread runs every period. However, in the fullDEOS system there are synchronization mechanisms, suchas events and semaphores, that may cause threads to waitfor arbitrary amounts of time. In this case, our assumptionthat a thread will execute every period, and consequentlythe preservation property of the abstraction, breaks down.Therefore, a more general solution was required if the ab-straction was to be used in a broader context.Discussions with Honeywell revealed that the informationthat actually needs to be maintained is simply a booleanvariable that indicates whether a thread has executed inthe current period. These
ags would then be reset at ev-ery period boundary. However, this approach can not beimplemented in the system for e�ciency reasons: all ker-nel algorithms must be O(1), where as resetting the
ags isO(n), where n is the number of threads.This realization led us to try predicate abstraction. Wereplaced the variables itsPeriodId and itsLastExecutionby a single boolean variable, executedThisPeriod, de�nedby the predicate itsPeriodId == itsLastExecution.

To generate an abstract program, the statements that ma-nipulate the variables must map to statements that prop-erly update the predicate variable. In this case, it is obvi-ous that the statement itsLastExecution = itsPeriodIdshould be mapped to executedThisPeriod = TRUE. How-ever, the mapping for the program statement itsPeriodId= itsPeriodId + 1 is nontrivial because, depending on theprevious values of itsPeriodId and itsLastExecution, thevalue of the predicate after the increment could be eitherTRUE or FALSE. However, in the real system, itsPeriodIdis always incremented, and itsLastExecution is only everassigned the value of itsPeriodId. Therefore, it is easyto \prove" (by inspection of the code in Figure 1) thatitsPeriodId will always be greater than or equal to thevalue of itsLastExecution and therefore the result of in-crementing itsPeriodId will be that the predicate becomesFALSE. This abstraction mapping is shown in Table 2.In practice, the case where itsPeriodId rolls over (at MAX-INT) is an exception to the above assumption. However,the correct behavior of the real system implementation alsodepends on this assumption (speci�cally, that itsPeriodIddoes not roll over and catch up with itsLastExecution,meaning that a thread will not wait MAXINT periods). Thisis precisely the case where the above predicate abstractionwill become invalid. Therefore, this abstraction does not in-troduced any stronger assumptions on the system than thoseimposed by the implementation and is therefore a stronglypreserving abstraction of the code.
4.3 Implementation DetailsThe reasoning described above to determine the abstractprogram statements for DEOS is quite formal, and can beautomated using existing program abstraction tools. How-ever, due to the object-oriented nature of the program, theactual abstraction that was required was slightly more com-plex than the mapping in Table 2 and existing tools couldnot be used to generate the abstract program. The prob-lem arises because the C++ code describes classes while thestate space that we are attempting to abstract is composedof instances of these classes. Existing abstraction techniquesdo not address this distinction between class and instancevariables and this becomes problematic in practice. Thefact that there are multiple instances of the classes that wewant to abstract means there must be multiple predicatesintroduced to perform the abstraction and that abstractedprogram statements must be generated that properly ma-nipulate all of these predicates at once.The speci�c problem in DEOS was the one-to-many relation-ship between StartOfPeriodEvents and Threads becausemore than one thread can execute within a period. There-fore, a predicate was required for each Thread instance tostore the relationship between itsLastExecution and theitsPeriodId of its StartOfPeriodEvent. When construct-ing the abstract program, we need to know which of thesepredicates should be updated when either itsPeriodId oritsLastExecution is updated. From the perspective of thethread this is simple because there is only one predicate perthread. However, from the perspective of the period, thismeant that whenever the itsPeriodId was incremented weneeded to go through all the threads that can run in thatperiod and update the appropriate predicates.

Concrete Program Abstract Programint itsPeriodId; bool itsPeriodId;int itsLastExecution; bool itsLastExecution;itsPeriodId = itsPeriodId + 1; itsPeriodId = !itsPeriodId;itsLastExecution = itsPeriodId; itsLastExecution = itsPeriodId;Table 1: Abstraction of itsPeriodId and itsLastExectution to booleansConcrete Program Abstract Programint itsPeriodId; bool executedThisPeriod;int itsLastExecution;itsPeriodId = itsPeriodId + 1; executedThisPeriod = FALSE;itsLastExecution = itsPeriodId; executedThisPeriod = TRUE;Table 2: Abstraction of itsPeriodId and itsLastExectution to a single booleanThis is a precise approximation of the original system be-havior because the predicates are always assigned to false ifitsPeriodId is incremented and true when the assignmentitsLastExecution = itsPeriodId is executed. Note thatthis algorithm corresponds precisely to the O(n) updatingalgorithm that could not be used in the implementation.However, the O(1) real-time constraint does not apply tothe veri�cation model, so this is not a problem.This predicate abstraction allowed us to exhaustively checkthe original (faulty) system as well as the �xed system forthe con�guration with 4 threads with their full behavior.We found another error on the very �rst run with the �xedsoftware, which turned out to be an error that the DEOS en-gineers already found themselves and had corrected. Unlikethe original time partitioning error this second error couldhave been found easily with traditional testing.
4.4 The Event-Counter PatternThe target of our abstraction within DEOS was an instanceof a more general pattern where a counter is used to indicatethat an event has occurred. This is a form of time-stampingthat is common in distributed and database programming.We believe that �nding a precise approximation to removethe in�nite behavior associated with this common patterncould be an important result in the quest to model checkprograms. In fact, this event-counter pattern was also usedwithin NASA's Deep Space 1 Remote Agent control system,which we have also used as a case study for program veri�-cation. In Section 6 we show how this same abstraction canenable model checking to discover a deadlock in the programthat actually occurred during
ight [13].In there general case, this pattern consists of an Event classcontaining a counter and any number of other Listenerclasses which monitor the occurrence of events by keeping alocal copy of the event counter and periodically comparingthe two values. This general case removes several simplifyingassumptions that occurred in the DEOS system, most im-portantly that listeners can monitor more than one event.In the following sections, we describe a generalization ourapproach used for DEOS that can be used to support au-tomatic generation of abstract programs for these types ofobject-oriented abstractions.

5. DYNAMIC PREDICATE ABSTRACTIONOne drawback of the abstraction approach described in theprevious section is that it required a fairly deep understand-ing of the system to be able to introduce the code to achievethe predicate abstraction. Ideally, one would want to sim-ply identify the abstraction predicate and the veri�cationsystem would automatically create the abstract transitions.This is how the current automated predicate abstractiontools work, but in these systems the predicates relate staticvariables, whereas in our case the predicate relates variablesfrom di�erent objects that get created dynamically.We propose the use of dynamic predicates in order to per-form predicate abstractions in programs that uses dynamicdata. Dynamic predicates are simply predicates augmentedwith dynamic information. For example, if we want tocreate a predicate abstraction for the program statementq:x == r:y, where q is an object of class Q and r is an objectof class R, we use a dynamic predicate B : (q; r; q:x == r:y)which not only holds the static predicate but also the dy-namic information relating the speci�c objects q and r. Notethat for each program statement, there will typically bemany dynamic predicates in each abstract program. In theabove example involving two dynamic objects we would re-quire in the worst-case jQj � jRj dynamic predicates, wherejQj and jRj refers to the number of objects instantiated ofclass Q and class R, respectively.To calculate the abstract transitions for the dynamic pred-icates, we use the techniques for generating abstract tran-sitions for static predicates and then augment the resultingtransitions with information available during run-time. Forthe B : q:x == r:y example from above, decision proceduresare used to calculate the following abstract transitions fromthe corresponding concrete transitions (assuming that thereis an invariant that states q:x � r:y hence there is no non-deterministic choice for the third statement):q:x == r:y ! B (1)q:x := r:y ! B := true (2)r:y := r:y + 1 ! B := false (3)For each of the above abstract program statements, we re-quire a \wrapper" function in order for it to be used dy-

namically. Lets assume we have a list of dynamic predicateswith each predicate having the following structure: (q; r;B)where B is the predicate from above. We replace the state-ments q:x == r:y with the function isEqual(q; r) de�ned bythe following pseudo-code:boolean isEqual(qq,rr) {find the dynamic predicate with (q==qq) and (r==rr)return the value of B for this predicate}The statements q:x := r:y are replaced by the functionsetEqual(q; r):void setEqual(qq,rr) {find the dynamic predicate with (q==qq) and (r==rr)set the B field for this entry to true}Lastly the statements for r:y := r:y + 1 is replaced by thefunction inc(r):void inc(rr) {find all the dynamic predicates with (r==rr)for each one set the B field to false}The third line of each of these functions is taken directlyfrom the translations calculated (by the use of decision pro-cedures) from the static predicates. This provides a straight-forward way of allow the use of predicate abstraction in adynamic setting.One potential ine�ciency of this approach is that it mayintroduce too many predicates. For example, if we have 10objects of class Q and 10 from class R then there will be100 dynamic predicates for q:x == r:y. However, it mightbe the case that during program execution only 1 of theobjects of class Q interacts with all the objects of class R andtherefore only 10 dynamic predicates were really required.This is the case in DEOS where threads monitor a singlestart of period event during program execution. We believethis problem can be overcome by either allowing more userinteraction or using static analysis techniques to determinewhich objects interact and hence can be used to minimizethe number of dynamic predicates. One potential source ofinformation that can be used to re�ne the abstractions maybe from UML class diagrams. The fact that DEOS threadsonly monitor one event can be expressed using multiplicityconstraints in UML.Description States Time (s) Memory (Mb)Manual 1255010 100 126Dynamic (con) 1670880 143 135Dynamic (opt) 1291510 113 126Table 3: Predicate Abstractions for DEOSThe results of applying the di�erent predicate abstractiontechniques to the DEOS kernel is shown in Table 3. The ta-ble shows the number of states visited, space requirements

and time taken during a deadlock detection run, duringwhich Spin generates the full state space of the system. TheDEOS system con�guration used to obtain these results wasfour schedulable threads with their full capabilities enabled.The results were obtained on a SUN ULTRA60 with 512Mbof memory. The Manual abstraction refers to the predi-cate abstraction described in Section 4 where a considerableamount of user intervention was required. Next we con-sidered a dynamic predicate abstraction that conservativelycreates dynamic predicates for all possible thread and pe-riod objects, regardless of whether the thread can executewithin the period. Finally, we look at an optimization of theconservative approach that only creates dynamic predicatesfor the thread and period combinations that actually occurwithin the program. The results indicate that the optimizeddynamic abstraction performs almost as well as the methodthat requires considerable user intervention.
6. AUTOMATED TOOL SUPPORTIn the preceding sections we showed how predicate abstrac-tions can make model checking tractable when analyzingobject-oriented programs. Although we alluded to the factthat we believe the dynamic predicate abstractions can beautomated, all the work was done by hand. In this sec-tion we describe an automated abstraction tool, which con-verts a Java program to an abstract program with respectto user-speci�ed abstraction criteria. We will illustrate howto use the tool on an example derived from
ight softwareused within the NASA Deep Space 1 Remote Agent experi-ment [17]3. The Java program, given in Figure 2, is a frag-ment of code translated from the original Lisp code thatillustrates a deadlock that happened during
ight [13]. Infact, the program in Figure 2 makes use of the same event-counter pattern encountered within DEOS and therefore hasan unbounded state-space.To interact with the abstraction tool, a user speci�es ab-stractions by removing variables in the concrete programand/or adding new variables (currently the tool only sup-ports adding boolean types) to the abstract program. Thisis illustrated by the calls to the methods Abstract.removeand Abstract.addBoolean in Figure 2. Given a Java pro-gram and such abstraction criteria, the tool generates anabstract Java program in terms of the new abstract vari-ables and remaining concrete variables. Part of the abstractJava program for Figure 2 is shown in Figure 3. To computethe conversion automatically, we use a decision procedure,SVC (Stanford Validity Checker), which checks the valid-ity of logical expressions [2]. The tool extracts informationfrom the concrete Java program during parsing, translatesthe Java statements to SVC notation to determine what theabstract statements should look like and translates the re-sults back to Java. In the translation back to Java the toolembeds the SVC results inside wrapper code, see Figure 3,to handle the dynamic nature of the predicates as describedin Section 5.The abstraction tool was designed to be used as a front-endtool for our Java model checking tools. Java PathFinder13We cannot demonstrate the tool on DEOS because DEOSin written in C++ and the code of interest cannot be fullypublished.

class Event{int count = 0;public synchronized void wait_for_event(){try{wait();}catch(InterruptedException e){};}public synchronized void signal_event(){Abstract.remove(count);count = count + 1; notifyAll();} }class FirstTask extends Thread{Event event1,event2;int count = 0;public FirstTask(Event e1, Event e2){this.event1 = e1; this.event2 = e2;Abstract.remove(count);Abstract.addBoolean("FcntEQEcnt", count == event1.count);Abstract.addBoolean("FcntLEEcnt", count <= event1.count);}public void run(){count = event1.count;while(true){if (count == event1.count)event1.wait_for_event();count = event1.count;event2.signal_event();} } }class SecondTask extends Thread{Event event1,event2;int count = 0;public SecondTask(Event e1, Event e2){this.event1 = e1; this.event2 = e2;Abstract.remove(count);Abstract.addBoolean("ScntEQEcnt", count == event2.count);Abstract.addBoolean("ScntLEEcnt", count <= event2.count);}public void run(){count = event2.count;while(true){event1.signal_event();if (count == event2.count)event2.wait_for_event();count = event2.count;} } }class START{public static void main(String[] args){Event event1 = new Event();Event event2 = new Event();FirstTask task1 = new FirstTask(event1,event2);SecondTask task2 = new SecondTask(event1,event2);task1.start(); task2.start();} }Figure 2: Example Java Program with a Deadlock

class Event{public synchronized void wait_for_event(){// Abstract.remove(count);try { wait();} catch(InterruptedException e){}}public synchronized void signal_event(){Verify.beginAtomic(); // model checker trap// count = count + 1;FcntEQEcnt.incEcnt(this); FcntLEEcnt.incEcnt(this);ScntEQEcnt.incEcnt(this); ScntLEEcnt.incEcnt(this);Verify.endAtomic(); // model checker trapnotifyAll();}Event() {FcntEQEcnt.setEvent(this); FcntLEEcnt.setEvent(this);ScntEQEcnt.setEvent(this); ScntLEEcnt.setEvent(this);} }// Class defined for a new multi-class// abstraction variableclass FcntEQEcnt {static final int MAX = 3;static public int numFirstTask = 0;static public FirstTask[] objFirstTask= new FirstTask[MAX];static public void setFirstTask(FirstTask obj){objFirstTask[numFirstTask++] = obj;}static public int getFirstTask(FirstTask obj){for(int i = 0; i < numFirstTask; ++i)if(obj == objFirstTask[i]) return i;return MAX + 1;}static public int numEvent = 0;static public Event[] objEvent = new Event[MAX];static public void setEvent(Event obj){objEvent[numEvent++] = obj;}static public int getEvent(Event obj){for(int i = 0; i < numEvent; ++i)if(obj == objEvent[i]) return i;return MAX + 1;}static public boolean[][] pred= new boolean[MAX][MAX];static public void incEcnt(Event event) {for(int i = 0; i < numFirstTask; ++i){// pre-image calculationif (pred[i][getEvent(event)] ||FcntLEEcnt.pred[i][getEvent(event)])// ``false'' generated by SVCpred[i][getEvent(event)] = false;else// nondeterminism generated by SVCpred[i][getEvent(event)] = Verify.randomBool();} }static public void setEqual(FirstTask task,Event event) {for(int i = 0; i < numEvent; ++i){if (i == getEvent(event))// ``true'' generated by SVCpred[getFirstTask(task)][i] = true;else// nondeterminism generated by SVCpred[getFirstTask(task)][i] =Verify.randomBool();} }static public boolean isEqual(FirstTask task,Event event) {return pred[getFirstTask(task)][getEvent(event)];} }Figure 3: Section of Abstracted Java Program

(JPF1) is based on a translation from Java to Spin [12]. Cur-rently we are working on Java PathFinder2 (JPF2) whichis a model checker built on top of our own Java virtual ma-chine [3]. Since the abstraction tool does a source to sourcetranslation, both JPF1 and JPF2 can use it as a front-end.Java does not support nondeterminism, so our model check-ers trap special method calls, random(n) and randomBool()from the Verify class to introduce respectively nondeter-ministic values between 0 and n or true and false. Sincethe abstraction tool currently only support predicate ab-straction it relies heavily on the randomBool method call tointroduce over-approximations). Furthermore, the abstractJava code often contains more statements than the concreteprogram, hence in order to assure correctness, all the ab-stract code related to one statement in the concrete programmust be placed between beginAtomic() and endAtomic()methods that are also trapped by the model checkers to en-sure atomicity (see Figure 3).When the Java program in Figure 2 is checked for dead-lock with JPF1/JPF2, no result is obtained since the modelchecker runs out of memory. This is due to the fact thatthe program has a very large state-space caused by the in-crementing of the count variables when an event is signaled.However, when it is observed that the count variables withinthe program are really only used to test equality, predicateabstractions can be used to reduce the state-space. Unfortu-nately, if only the equality predicates are introduced, over-approximation can introduce a spurious deadlock: the count= count + 1 statements can set the predicates to true orfalse nondeterministically and hence make both FirstTaskand SecondTask wait for a signal. To avoid this problem,the user must notice that the Tasks' count variables will al-ways be less or equal to the Events' count variables and addthese predicates to the system, as shown in �gure 2. Thisallows the abstraction tool to re�ne the abstraction and re-move the over-approximations. The reason for the re�ne-ment lies in the tool's use of pre-image calculations to guardthe execution of the abstract Java program. For example,the abstract statement corresponding to count = count +1 �rst tests whether the less-or-equal predicate holds and ifso sets the equality predicate to false. Otherwise it picks anondeterministic value (see comments in incEcnt methodsin the code of Figure 3). JPF2 �nds the deadlock in the ab-stract program in in 184 steps (transitions) from the initialstate.
7. CONCLUSIONS AND FUTURE WORKThe results of this investigation have shown that by ex-tending predicate abstraction techniques to support object-oriented languages, they can be very e�ective in practicefor reducing programs for model checking. Because predi-cate abstraction is a very general (and somewhat simple)technique, we believe that it will be applicable to manyother programming patterns beyond the event-counter pat-tern that we have shown here. In general, the frameworkof abstract interpretation on which predicate abstraction isbased allows abstraction to be applied in a controlled andminimal fashion, which helps to provide an understandingof exactly what can be done to avoid state space explosion.We are continuing to work on extending the applicabilityof predicate abstraction and to integrate it with related ab-

straction techniques [7]. We are also planning to investigatethe use of predicate abstraction to support environment gen-eration, because this is usually the most time consumingaspect of performing model checking in practice.
AcknowledgmentsWe would like to thank Eric Engstrom, Aaron Larson, Nick-olas Weininger and Robert Goldman at Honeywell Technol-ogy Center for their collaboration and support in the trans-lation and veri�cation of DEOS. We would also like to thankPhil Oh, Klaus Havelund, Charles Pecheur, Michael Lowry,Thomas Uribe, Hassen Saidi, Matt Dwyer, John Hatcli�,David Dill, Satyaki Das and Jens Skakkabaek for numeroustechnical discussions that contributed to this work.
8. REFERENCES[1] R. J. Anderson, P. Beame, S. Burns, W. Chan,F. Modugno, D. Notkin, and J. D. Reese. Modelchecking large software speci�cations. In Proceedingsof the 4th ACM SIGSOFT Symposium on theFoundations of Software Engineering, volume 21 ofSIGSOFT Software Engineering Notes, pages 156{166.ACM, October 1996.[2] C. Barrett, D. Dill, and J. Levitt. Validity Checkingfor Combinations of Theories with Equality. In FormalMethods In Computer-Aided Design, volume 1166 ofLNCS, pages 187{201, November 1996.[3] Guillaume Brat, Klaus Havelund, SeungJoon Park,and Willem Visser. Model checking programs. InProceedings of the 14th IEEE International AutomatedSoftware Engineering Conference. IEEE ComputerSociety Press, September 2000.[4] W. Chan, R. Andersen, P. Beame, D. Jones,D. Notkin, and W. Warner. DecouplingSynchronization from Local control for E�cientSymbolic Model Checking of Statecharts. InProceedings of the 21st International Conference onSoftware Engineering, pages 142{151, Los Angeles,May 1999.[5] E. Clarke, O. Grumberg, and D. Long. Modelchecking and abstraction. ACM Translactions onProgram Languages and Systems, 16(4), sep 1994.[6] M. Col�on and T. Uribe. Generating Finite-stateAbstractions of Reactive Systems using DecisionProcedures. In Proceedings of the 10th Conference onComputer-Aided Veri�cation, volume 1427 of LNCS,July 1998.[7] James C. Corbett, Matthew B. Dwyer, John Hatcli�,Shawn Laubach, Corina S. Pasareanu, Robby, andHongjun Zheng. Bandera : Extracting �nite-statemodels from java source code. In In Proceedings of the22nd International Conference on SoftwareEngineering, June 2000.[8] P. Cousot and R. Cousot. Abstract InterpretationFrameworks. Journal of Logic and Computation,4(2):511{547, August 1992.

[9] Z. Dang and R. Kemmerer. Using the ASTRALModel Checker to Analyze Mobile IP. In Proceedingsof the 21st International Conference on SoftwareEngineering, pages 132{141, Los Angeles, May 1999.[10] S. Das, D. Dill, and S. Park. Experience withpredicate abstraction. In Proceedings of the 11thInternational Conference on Computer AidedVericifaction '99, volume Lecture Notes in ComputerScience 1633, pages 160{171, 1999.[11] S. Graf and H. Saidi. Construction of abstract stategraphs with PVS. In Proceedings of the 9thInternational Conference on Computer AidedVericifaction, Lecture Notes in Computer Science1254, pages 72{83, 1997.[12] K. Havelund and T. Pressburger. Model checking javaprograms using java path�nder. International Journalon Software Tools for Technology Transfer, 1999.[13] Klaus Havelund, Michael Lowry, SeungJoon Park,Charles Pecheur, John Penix, Willem Visser, andJon L. White. Formal analysis of the remot agentbefore and after
ight. In Lfm 2000: Fifth NASALangley Formal Methods Workshop, 2000.[14] G. Holzmann. The model checker SPIN. IEEETransactions on Software Engineering, 23(5):279{295,1997.[15] G. Holzmann and M. Smith. A practical Method forVerifying Event-Driven Software. In Proceedings of the21st International Conference on SoftwareEngineering, pages 597{607, Los Angeles, May 1999.

[16] Gleb Naumovich, George S. Avrunin, and Lori A.Clarke. Data
ow analysis for cehcking properties ofconcurrent java programs. In Proceedings of the 21stInternational Conference on Software Engineering,pages 399{410. ACM Press, May 1999.[17] B. Pell, E. Gat, R. Keesing, N. Muscettola, andB. Smith. Plan Execution for AutonomousSpacecrafts. In Proceedings of the International JointConference on Arti�cial Intelligence, August 1997.Nagoya, Japan.[18] John Penix, Willem Visser, Eric Engstrom, AaronLarson, and Nicholas Weininger. Veri�cation of timepartitioning in the deos scheduler kernel. InProceedings of the 22nd International Conference onSoftware Engineering. ACM Press, June 2000.[19] H. Saidi. Modular and Incremental Analysis ofConcurrent Software Systems. In Proceedings of the14th IEEE International Conference on AutomatedSoftware Engineering, pages 92{101, October 1999.[20] H. Sa��di and N. Shankar. Abstract and Model Checkwhile you Prove. In Proceedings of the 11thConference on Computer-Aided Veri�cation, volume1633 of LNCS, pages 443{454, July 1999.[21] D. A. Schmidt and B. Ste�en. Data-
ow analysis asmodel checking of abstract interpretations. In G. Levi,editor, Proceedings of the 5th Static AnalysisSymposium, volume 1503 of LNCS. Springer, sep 1998.

