Automated Deduction for Verification

Natarajan Shankar

SRI International

Automated deduction uses computation to perform symbolic logical reasoning. It has been a core technology
for program verification from the very beginning. Satisfiability solvers for propositional and first-order logic
significantly automate the task of deductive program verification. We introduce some of the basic deduction
techniques used in software and hardware verification and outline the theoretical and engineering issues in
building deductive verification tools. Beyond verification, deduction techniques can also be used to support
a variety of applications including planning, program optimization, and program synthesis.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]: Mathematical
Logic; 1.2.3 [Artificial Intelligence]: Deduction and Theorem Proving

General Terms: Theory, Verification
Additional Key Words and Phrases:

ACM Reference Format:

Shankar, N. 2009. Automated deduction for verification. ACM Comput. Surv. 41, 4, Article 20 (October 2009),
56 pages. DOI = 10.1145/1592434.1592437, http://doi.acm.org/10.1145/1592434.1592437

1. INTRODUCTION

The feasibility of large-scale formal software verification rests squarely on the devel-
opment of robust, sophisticated, and scalable verification tools. Recent advances in
verification technology on a number of fronts have made it possible to contemplate
a major push toward large-scale software verification [Hoare 2003; Hoare and Misra
2008]. These advances have already yielded practical tools for solving hard verification
problems. Many of these tools are already in industrial use. Deductive techniques are
used both for finding bugs and for stating and proving correctness properties. They
can also be used to construct and check models and proofs, and to synthesize functions
and formulas in a wide range of logical formalisms. We survey deductive approaches
to verification based on satisfiability solving, automated proof search, and interactive

Funded by NSF CISE Grant 0646174 and 0627284, NSF SGER grant CNS-0823086, and NASA Cooperative
Agreement NNX08AY53A.

The views and opinions expressed in this article are not necessarily those of the National Science Foundation,
the National Aeronautics and Space Administration, or any other agency of the United States Government.

Author’s address: SRI International, Computer Science Laboratory, 333 Ravenswood Avenue, Menlo Park
CA 94025; email: shankar@csl.sri.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-
0481, or permissions@acm.org.

©2009 ACM 0360-0300/2009/10-ART20 $10.00

DOI 10.1145/1592434.1592437 http://doi.acm.org/10.1145/1592434.1592437

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:2 N. Shankar

proof checking. We examine some of the recent progress and outline a few of the most
promising avenues for further research.

Automated theorem provers and interactive proof checkers have been associated with
verification from the beginning [King 1969; King and Floyd 1970]. Jones [1992] covers
the history of verification research. McCarthy [1963], who initiated the formal study
of program verification, was also involved in the construction of one of the early proof
checkers. The early nexus between verification and deduction is beautifully surveyed
Elspas et al. [1972]. Hantler and King [1976] give a brief overview of the early results
in program verification.

In the 1970s, several research groups began working on the use of theorem provers
in verification. These included the Gypsy project at the University of Texas at
Austin [Smith et al. 1988]; the Affirm project [Gerhart et al. 1980] at USC-ISI; the
FDM project at System Development Corporation [Kemmerer 1980]; the Jovial Veri-
fier [Elspas et al. 1979] and HDM [Robinson et al. 1979], and STP [Shostak et al. 1982]
at SRI International; the Boyer—Moore prover [Boyer and Moore 1979] (initiated at
the University of Edinburgh and later continued at Xerox PARC, SRI International,
and the University of Texas at Austin); the LCF (Logic for Computable Functions)
project [Gordon et al. 1979] (initiated at Stanford University and continued at the Uni-
versity of Edinburgh and the University of Cambridge); and the FOL [Weyhrauch 1980]
and Stanford Pascal Verifier [Luckham et al. 1979] projects at Stanford University.

The basic problem in deduction is whether a statement is valid. If a statement has
a proof in a sound proof system, then it is valid, and if the proof system is complete,
then every valid statement does have a proof. If a statement is not valid, then it has
a counterexample. In other words, its negation is satisfiable. The validity problem is
decidable if there is a program that can, in principle, determine if a given statement
is valid. Some logics are semi-decidable so that there is a program that does terminate
with the right result when the given statement is valid, but it might not terminate on
invalid statements.

The first part of the survey (Section 2) is a brief introduction to the logical formalisms
that are used in automated deduction including propositional logic, equational logic,
first-order logic, set theory, and higher-order logic. The second part (Section 3) covers
satisfiability procedures for propositional logic and fragments of first-order logic includ-
ing theories such as linear arithmetic, arrays, and bit vectors. Satisfiability procedures
can be used as decision procedures to decide whether a given formula is valid. These are
the workhorses of deductive verification. We then move on to proof search procedures
(Section 4) which typically work in domains where the validity problem is not decid-
able. Most such procedures are uniform: the theory axioms are given as explicit inputs
without assuming any special knowledge about the theory-specific symbols. In contrast,
satisfiability procedures typically build in theory-specific techniques. Most verification
problems tend to be theory intensive so that the applicability of uniform methods has
been limited to problems that make heavy use of quantification. The third part of our
survey (Section 5) describes interactive proof engines that can be used to develop a
large body of mathematics through a sequence of definitions and lemmas. Proofs are
developed interactively with varying degrees of automated support. Both satisfiability
and proof search procedures can be usefully employed as automated tools in interactive
proof construction. We conclude with some observations about the promising research
directions for automated deduction.

Automated deduction tools can be used in a variety of ways in formal verification in
applications ranging from modeling requirements and capturing program semantics to
generating test cases and validating compiler optimizations. Automated deduction can
be used to

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:3

(1) Capture and analyze software specifications and properties [Jones 1990; Spivey
1993].

(2) Formalize the mathematical background and domain knowledge used in reasoning
about program correctness.

(3) Define the semantics of programming languages and logics [Gordon 1989].

(4) Discharge verification, termination and type correctness conditions [Naur 1966;
Floyd 1967; King 1969; Owre et al. 1995; Detlefs et al. 1998; Gulwani and Tiwari
2006].

(5) Synthesize programs from the specification [Manna and Waldinger ; Darlington
1981] or to refine them in stages to yield executable software [Abrial 1996; Smith
19901].

(6) Implement the operations needed to compute symbolic fixed points for finite and
infinite-state systems [Cousot and Cousot 1977; Burch et al. 1992; Abdulla et al.
1996; Bultan et al. 1997; Delzanno and Podelski 2001; Jhala and Majumdar 2009].

(7) Construct and refine abstractions of systems guided by counterexamples [Saidi and
Graf 1997; Kesten and Pnueli 1998; Ball et al. 2001; Clarke et al. 2003; Wies et al.
2006].

(8) Generate test cases by solving constraints arising from the symbolic execution of a
program [Boyer et al. 1975; King 1976; Clarke 1976; Hamon et al. 2004; Godefroid
et al. 2005; Hierons et al. 2009].

These applications share many of the same basic deductive techniques. Automated
deduction is a vast and growing field and there are hundreds of systems that support
logic-based automated verification. Our survey covers a cross-section of the deductive
techniques and tools that are used in verification, with a particular emphasis on sat-
isfiability solvers. The exposition here is directed at nonexperts who are interested in
a deeper understanding of the techniques of automated deduction. We mainly focus on
those techniques that are relevant for formal verification. A recent book by Harrison
[2009] contains a more comprehensive modern treatment of automated deduction.

2. MATHEMATICAL LOGIC

A strong facility with logic is an essential skill for a computer scientist. We review
formal logic from the point of view of automated and semi-automated verification.
We briefly introduce propositional logic, equational logic, first-order logic, and higher-
order logic. A reader familiar with these topics can safely skip over this introduction.
Good introductions to logic are available from several sources including Barwise’s
article An Introduction to First-Order Logic [Barwise 1978b], and books by Kleene
[1952, 1967]; Shoenfield [1967]; Boolos and Jeffrey [1989]; Enderton [1972]; Mendelson
[1964]; Dalen [1983]; Fitting [1990]; Girard et al. [1989]; and Ebbinghaus et al. [1984].
The topic of logic in computer science is well covered in the book by Huth and Ryan
[2000]. There are several handbooks including those on Mathematical Logic [Barwise
1978al], Philosophical Logic [Gabbay and Guenthner 1983, 1984,1985], Logic in Com-
puter Science [Abramsky et al. 1992a; Abramsky et al. 1992b], Theoretical Computer
Science [van Leeuwen 1990], Automated Reasoning [Robinson and Voronkov 2001],
Tableau Methods [D’Agostino et al. 1999], and a recent one on Satisfiability [Biere
et al. 2009].

Gries and Schneider [1993] have observed that logic is the glue that binds to-
gether methods of reasoning, in all domains. Many different domains can be related
through their interpretation within logic. Inference procedures for logic can be applied

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:4 N. Shankar

to these embedded formalisms. Logic has been “unreasonably effective” in computer
science [Halpern et al. 2001; Feferman 2006] with deep connections to computability,
complexity, database theory, hardware design, and programming language semantics,
as well as the formal specification and verification of hardware and software.

Mathematical logic is basic to the operation of verification tools. Verification tools
make formal claims about software. We need a language in which these claims are
expressed. We also need a calculus in which these claims are justified and combined to
yield new claims. Logic is the calculus of computing. Within the purview of logic, there is
a wide range of formalisms for dealing with different aspects of software. First, there is
propositional logic, where the expressions are built from propositional variables using
the connectives for conjunction, disjunction, negation, implication, and equivalence.
Various modal and temporal logics extend propositional logic to reason about modalities
like time, necessity, knowledge, and belief over propositions. First-order logic extends
propositional logic to predicates and terms built from variables and function symbols,
and serves as a formal foundation for arithmetic and set theory. Equational logic is a
fragment of first-order logic that provides the foundation for algebraic reasoning using
equalities. Higher-order logic allows quantification over functions and predicates and is
suitable for modeling computation at varying levels of abstraction and for formalizing
much of classical mathematics.

A logic consists of a formal language, a formal semantics, and a formal proof system.
The language captures the rules for forming statements and circumscribes the range
of concepts that can be expressed. The formal semantics defines the intended interpre-
tation of the symbols and expressions used in these statements. The formal semantics
can be used to identify different expressions that have the same interpretation. It fixes
the meaning of certain symbols, for example, the logical connectives, and allows the
meaning of other symbols, for example, variables and functions, to vary within certain
bounds. The formal proof system is a framework of rules for deriving valid statements.
While the textbook presentation of a proof system is usually minimalist, any practical
system will employ quite sophisticated proof rules that can be justified in foundational
terms. Many practical proof checking systems also allow new proof rules to be added
when they can be explicitly justified in terms of existing ones.

Logic can be used in all kinds of interesting ways. It can highlight the limitations of
a formal language by demonstrating that certain concepts are not definable in it. It can
of course be used to prove theorems, and this is the use that will be most interesting
here. Logic also has a dual use which is to generate concrete instances (models) of
a given formula as in planning, constraint solving, and test case generation. At the
metatheoretic level, relationships between logics can be used to map results from one
logic to another, or to reduce problems from one logic to another [Tarski et al. 1971;
Meseguer 1989].

2.1. Propositional Logic

Propositional logic plays an important role in digital hardware design as well as hard-
ware and software verification. A proposition is a declarative statement such as “Mary
has a book”. In propositional logic, the propositions are atomic so that “Mary has no
book” is a separate proposition that is unrelated to the first. Basic propositions are
just represented by propositional atoms or variables. Propositional formulas are built
from propositional atoms using the logical operators — (negation), v (disjunction), A
(conjunction), = (implication), and < (equivalence). In the classical interpretation,
propositional formulas are evaluated with respect to a Boolean truth assignment of
T or L to the atoms. A formula is satisfiable if there is some truth assignment un-
der which the formula evaluates to T. Thus, p A (p = q) is satisfied by the truth

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:5

x|y |ox | xvy
T[T T
1|7 T
TIL[L] T
T[T T

Fig. 1. Truth table semantics for — and v.

assignment {p — T,q +> T}. On the other hand, p A —p is not satisfiable. If a formula
is unsatisfiable, then its negation is valid, that is, evaluates to T under any assignment
of truth values to the atoms. Since a formula has finitely many distinct propositional
atoms, each of which has two possible truth values, the satisfiability of a formula with
n atoms can obviously be decided by evaluating the formula on the 2" possible truth
assignments. Later, we will examine more refined methods for finding satisfying truth
assignments or showing that the formula is unsatisfiable. However, since the satis-
fiability problem is NP-complete, there is no known subexponential algorithm for it.

Language and Semantics. For our purpose, a propositional formula ¢ is either an atom
from a set A of atoms, a negation —¢1, or a disjunction ¢; Vv ¢5. Conjunction, implication,
and equivalence can be easily defined from negation and disjunction. A structure or a
truth assignment M maps atoms in A to truth values from the set {T, L}. The truth
table semantics for the connectives is given in Figure 1 by defining — and v.

The interpretation of a formula ¢ with respect to a structure M is given by M[[¢] as
defined below.

Mlpll = M(p), forpe A
M[-¢ll = =Ml
M1V ¢poll = Mlp1llvMpell

A structure M is a model for a formula ¢, that is, M = ¢, if M[[¢] = T. A formula ¢
is satisfiable if for some structure M, M = ¢. A formula ¢ is valid if for all structures
M, M = ¢. For example, the formula p A —q is satisfied in the model {p — T,q — L}.
The formula p v —p is valid, and its negation —(p v —p) is unsatisfiable.

Normal Forms. Formulas can be transformed into equivalent forms that are more
convenient for syntactic manipulation. We first introduce conjunction into the language,
a formula in classical propositional logic. The negation normal form (NNF) applies
rules like =(p Aq) = —=p Vv —q, =(p Vq) = =p A —q, and ——p = p to ensure that only
atoms can appear negated. An atom or its negation is termed a literal. A clause is a
disjunction of literals. Any formula can be converted to conjunctive normal form (CNF)
where it appears as a conjunction of clauses. Dually, a formula can also be expressed
in disjunctive normal form (DNF) where it appears as a disjunction of cubes, where a
cube is a conjunction of literals. For example, the formula —(p v ¢) v —(=p Vv —q) can be
converted into the NNF (—=p A —q) Vv (p Aq). The latter formula is already in DNF. It can
be converted into CNF as (—qg Vv p) A (—=p V q), which happens to be the (—, v)-formula
representing p < q. The conversion of a propositional formula to an equisatisfiable
CNF can be done in linear time by introducing new propositional atoms to represent
subformulas. Practical algorithms for CNF conversion try to minimize the number of
clauses generated by identifying equivalent subformulas [Tseitin 1968; Jackson and
Sheridan 2004; Manolios and Vroon 2007].

Intuitionistic Logic. In contrast to the classical interpretation of the logical connec-
tives described above, intuitionistic logic [Troelstra and van Dalen 1988] disallows the

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:6 N. Shankar

| ‘ Elimination ‘ Introduction ‘
| Axiom | T,pF¢ |
r+= ¢1 AN d)g . 'k ¢i
A —1=1,2 —_i=1,2
I+ ¢ I'E¢1 A
= I'E¢1 ' ¢1= ¢ I, p1F ¢
'k ¢2 F'E¢1= ¢

Fig. 2. Natural deduction proof rules for implication and conjunction.

classically valid rules of the excluded middle p v —p and double negation elimination
——=p = p. Whereas classical logic is about proving that a formula is valid in all inter-
pretations, intuitionistic logic is about supporting the conclusion with actual evidence.
Thus, p v —p is classically valid, but evidence for a disjunction must be either evidence
for p or for —p, and we do not have such evidence. Similarly, evidence for —p shows
that any evidence for p can be used to construct a contradiction. Then, evidence for
——p demonstrates the absence of evidence for —p, which is not taken as evidence for
p. The excluded middle rule allows nonconstructive proofs of existence as is illustrated
by the following demonstration that there exist irrational numbers x and y such that

V2
x? is rational. Either +/2" ~ is rational, in which case, x and y can both be taken as v/2,

. V2
or we pick x to be v/2 ? and y to be v/2 so that x¥ is just «/52 which simplifies to 2.
We have demonstrated the existence of x and y without providing a construction since

2
we do not have a method for determining whether \/if is rational. We survey some
interactive proof checkers for intuitionistic proofs in Section 5.3.2.

Proof Systems for Propositional Logic. In Hilbert-style proof systems, each inference rule
has zero or more premise formulas and one conclusion formula, and a proof is a tree
of inference rule applications. The rule of modus ponens which derives F ¢ from the
premises - ¢ and - ¢ = v is a typical Hilbert-style rule. In the natural deduction style
due to Gentzen [Szabo 1969], proof rules involve conditional judgments that assert
the derivability of a consequent formula from some assumption formulae. The infer-
ence rules of natural deduction indicate how compound consequent formulas such as
conjunctions, disjunctions, and implications are introduced or eliminated in a proof.
Natural deduction judgements have the form I' - ¢ where T is a set of assumptions
and ¢ is the consequent formula. The proof rules for implication and conjunction are
shown in Figure 2. Apart from the axiom rule, the proof rules consist of introduction and
elimination rules for connectives in the consequent formula. Natural deduction rules
with proof terms are shown in Figure 14 and the exact form of these rules is explained
in Section 5.3.2.

Gentzen’s sequent calculus shown in Figure 3 has a Hilbert-style inference form but
the premises and conclusions are sequents, which are of the form I' = A, where T'
is a finite set of antecedent formulas and A is a finite set of consequent formulas. A
sequent I - A asserts that the conjunction of the formulas in I' implies the disjunction
of the formulas in A. Hence, if a sequent is not valid, then there is an interpretation
under which all the formulas in I' evaluate to T and all the formulas in A evaluate to
L. Figure 3 displays the rules for —, v, A, and =. While the natural deduction proof
rules introduce connectives in both antecedent and consequent formulas, the sequent
calculus has, for each connective, an introduction rule for antecedent formulas (left
rule) and another one for consequent formulas (right rule). The rules for = and A could
easily be derived from their definitions in terms of — and v, but in the sequent calculus,
the connectives are defined by their proof rules.

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:7

\ \ Left Right
Ax T,AF A4
_ TFA A TLAFA
I,-AF A TF—4,A
y TLAFA T,BFA TFAB,A
ILAVBF A FFAVB,A
R T,ABFA TFAA TFB,A
ILAABF A 'AAB,A
_ | ILBFA TFAA TLAF B, A
A= BFA '-A= B,A
TFA, A T,AFA
Cut TrFa

Fig. 3. A sequent calculus for propositional logic.

For example, the validity of Peirce’s law ((p = ¢) = p) = p in classical propositional
logic can be demonstrated semantically by the truth-table method, or it can be proved
in the sequent calculus.

— Ax

pPEp,q = "
Fp,p=q ‘pkp .
(p=q¢)=>pkp
F(p=>q) =p=p

The cut rule of the sequent calculus is admissible in terms of the remaining inference
rules, that is, if the premises are provable, then so is the conclusion of the cut rule.
Note that the cut rule is not derivable, that is, the conclusion cannot be proved from
the premises without the use of the cut rule. Every derivable rule is also admissible.
The equivalence rule

pPegq
¢ olpq)’

where ¢{p — q} is the result of substituting the proposition ¢ for p in ¢ is an example
of a derived rule.

An intuitionistic sequent calculus is obtained from the classical one by restricting
the consequents in any sequent in a proof to at most one formula. It can be checked,
for example, that Peirce’s formula is not provable with this restriction since the proof
requires a sequent of the form - p, p = q.

Soundness and Completeness. For soundness, every provable statement must be valid.
For the sequent calculus, this can be shown by induction on proofs since each axiom is
valid and each proof rule asserts a valid conclusion when given valid premises. Note
that a sequent I' - A is valid if for any interpretation M, either M [~ y for some y € T
or M = § for some § € A.

A proof calculus is complete if every valid statement is provable. In particular, if
formula ¢ does not have a proof, then there is an M such that M = —¢. There are
several ways to prove completeness. One way is to start with a set H which is initially
set to {—¢} and an enumeration of the formulas v;, i > 0. We say that a (—, v)-formula
¥ is consistent with H if t/ (Vgeg—0) v = in the proof calculus. For each v, if ¥; is
consistent with H, we add v; to H, and otherwise we add —;. We can then check with

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:8 N. Shankar

respect to the proof system that

(1) If ¥ € H then =y ¢ H
(2) If =y € H theny ¢ H
(8) If y vy’ € H, then either v € H or y' € H.

Note that for each atom p, either p or —p is in H. We construct the model My so that
Mp(p) =T <= p € H.Itis easy to check that for each formula v € H, Mg = . In
particular, we have My &= —¢.

Modal Logics. Propositional logic captures reasoning over truth assignments to the
propositions. In particular, a statement is valid if it holds for all possible truth assign-
ments. Modal logics admit modal operators for concepts such as possibility, belief, and
time that are indexed by truth assignments (worlds). A Kripke model consists of a set of
worlds with an accessibility relation between worlds. The modality O¢ when evaluated
in a world w signifies that ¢ holds in all the worlds w’ accessible from w. Dually, (¢
holds in w if there is an accessible w’ where ¢ holds. Most modal logics contain the
inference rules of modus ponens, substitution, and necessitation

i

Op
They also satisfy the distributivity axiom K: O(p = ¢) = Op = Og. With a reflexive
accessibility relation, we get the logic T corresponding to the axiom Op = p. A reflexive
and transitive accessibility relation yields S4 with the added axiom Op = OOp. The
modal logic S5, where the accessibility relation is an equivalence relation (i.e., reflexive,
symmetric, and transitive), is obtained by adding the axiom p = O0p to S4. Naturally,
the valid formulas of T are a subset of those of S4, which are in turn a subset of those
of S5.

Several modal logics are widely used in formal verification including those for linear
time LTL, branching time CTL, the logic CTL*, which combines branching and linear
time logics, interval temporal logics, real-time temporal logics, dynamic logic, epistemic
logics, and deontic logics. Satisfiability procedures for modal logic can be constructed
either directly or through a translation into another decidable logic such as the guarded
fragment of first-order logic where the quantified variables must appear in an atomic
guard formula, or to the weak second order logic of two successors (WS2S) [Ohlbach
et al. 2001]. Modal and temporal logics are surveyed by Goldblatt [1992], Mints [1992],
Emerson [1990], and Blackburn et al. [2002].

Applications. Propositional logic has innumerable applications since any problem over
a bounded domain can be expressed in it and the resulting formula can be solved for
satisfiability. Solvable variants of satisfiability include the problems of generating all
satisfying solutions (AIISAT), unsatisfiable cores consisting of the smallest unsatisfiable
subset of input clauses, and the largest subset of satisfiable clauses (MAXSAT), are also
solvable.

Propositional logic can be used to model electrical circuits by representing the pres-
ence of a high voltage on a wire as a proposition. A half adder with inputs a and b and
output s,,; can be represented as s,,; = (@ ® b), where @ is the exclusive-or operator so
that a @ b is defined as (@ = —b) A (—=b = a). An n-bit adder that adds two n-bit bit-
vectors a and b with a carry-in bit ¢;,, to produce an n-bit sum s,,; and a carry-out bit ¢y,
can be defined using the half adder to produce the sum and carry in a bit-wise manner.

Constraints over finite domains can be expressed in propositional logic. For example,
the pigeonhole principle asserts that is impossible to assign n + 1 pigeons to n holes so

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:9

that there is at most one pigeon per hole. For this, we need n(n+1) atoms p;jfor0 <i <n
and 0 < j < n expressing the proposition that the i’th hole holds the jth pigeon. We

can assert that each pigeon is assigned a hole as /\;?:0 \/?:_01 pij. The constraint that no

hole contains more than one pigeon is expressed as /\:-:01 /\;l-:0 Nr<;j(=pij vV =Dpir)-

Planning is another application of constraint solving in the Boolean domain [Kautz
and Selman 1996]. Consider the problem of planning truck routes to transfer packages
between cities given the initial location of each truck and its fuel gauge reading, the
source and destination of each package, the routes connecting the cities with the fuel
needs, and the locations of the gas stations. The goal is to find the shortest plan that
gets the packages delivered where in each step of the plan, a truck can load a package,
unload a package, fill gas, or drive between two adjacent cities.

Scheduling is similar to planning and can also be encoded by means of a propositional
formula. For example, consider the problem of constructing a timetable for a sports
league consisting of n teams that must each play n/2 home games and n/2 away games
so that each team plays every other team at least once and never has more than two
away games in a row.

Program behavior for programs where the program state can be encoded using a
bounded number of bits can also be modeled using propositional logic [Kroening et al.
2003]. For example, a program that computes the absolute value of a 32-bit two’s-
complement word can be verified purely in Boolean terms. That is, given a procedure
abs on a 32-bit bit-vector x, we can check that

y=abs(xX)=>(y >0A(y =5V y=—x)).

More generally, a state of bounded size can be represented as a bit-vector of length
n. The initial state of the program can be specified by a state predicate I. The (possibly
nondeterministic) transition relation for the program can be encoded as a relation N
on the state bit-vectors. In bounded model checking [Biere et al. 1999; D’Silva et al.
2008], we want to check that the property P is not violated within % steps by verifying
that

k-1 k
@) A A\ NG, 20 A [\ —P&))
i=0 j=0

is not satisfiable. If this formula turns out to be satisfiable, we can construct a se-
quence of states &, ..., & from the Boolean assignment to each Boolean variable x;[/1,
for 0 <i <k and 0 < j < n. The Cook-Levin theorem [1971, 1973] showing that
polynomial-bounded Turing machine computations can be reduced in polynomial time
to propositional satisfiability can be seen as form of bounded model checking of Turing
machines over p(n) steps with a state consisting of an array of 2p(n) tape symbols, a
control state, and a head position.

Given some representation of state, a transition system is a pair (I, N) of an ini-
tialization predicate I on the state and a transition relation N between the states
before and after the transition. A state predicate P is an invariant for the transi-
tion system if for any infinite state sequence & of the form (&, &1, &, .. .), the assertion
I(&) A ((ViI.N (&, &41)) = Vi.P(&) is valid. We can check that a predicate P is inductive
by verifying that I(x) = P(x) and P(x) A N(x,x’) = P(x’) are both valid. An inductive
predicate is an invariant, but not all invariants are inductive. Invariant checking can
be strengthened through the use of 2-induction [Sheeran et al. 2000] to check that state
predicate P is k-inductive. Here, the base case is exactly the bounded model checking

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:10 N. Shankar

step above, and the induction step is

k k
ANG, g0 [N\ PE) | = P@Erg).
i=0 j=0

A k-inductive predicate is also an invariant.

For symbolic model checking [Burch et al. 1992; McMillan 1993; Clarke et al. 1999],
the set of reachable states is computed by representing the state at each iteration as
a propositional formula R; so that Ry = I(x) and R; 1 = image(N(x,x"))R;), where
image(d)(y) = 3x" (¢ A Y){x — x"D{x’ — x}, where ¢ is a formula over the variables
x,x', ¥ is over x, and {x’ > «x} is shorthand for the substitution {x}| > x1,...,x, — x,}.
The fixed point in the iteration is reached when R;,; & R;. Symbolic model checkers
use representations of propositional formulas such as reduced ordered binary decision
diagrams [Bryant 1992] for representing and computing images and fixed points ef-
ficiently and compactly. The image computation can also be done using a variant of
AIISAT. A different use of bounded model checking based on the construction of inter-
polants has proved to be quite effective in building over-approximations of the reachable
state space [McMillan 2003]. Different approaches to symbolic model checking based
on propositional satisfiability are surveyed and compared by Amla et al. [2005].

Bounded model checking can also be used for generating test cases corresponding to
paths through the control flow graph [Hamon et al. 2005; Godefroid et al. 2005]. This
is done by checking the satisfiability of the conjunction of conditions and transitions
corresponding to the path. If it is satisfiable, a test case is generated as a satisfying
assignment. If not, we know that the path is infeasible. The same approach can also be
used to modify an existing test case to direct the computation along a different symbolic
path.

Propositional logic is useful for model finding over a bounded universe. The Alloy
language and system translate the problem of model finding in a first-order logic over
relations to propositional satisfiability [Jackson 2006]. In Alloy, the variables range over
me-ary relations over a bounded universe of cardinality n. The term language allows re-
lations to be constructed using operations such as union, intersection, transposition,
join, comprehension, and transitive closure. The basic predicates over these relational
terms are those of subset, emptiness, and singularity. As we saw with the pigeonhole
example, an m-ary relation over a universe of cardinality n can be represented by n™
propositional atoms and constants. The relational operations are defined using matri-
ces. The resulting formulas are then translated to Boolean form for satisfiability check-
ing. Many problems over sets and relations exhibit symmetry. It is therefore enough to
look for just one model in each equivalence class given by a partitioning of the universe
with respect to symmetry. By searching for models over a finite universe, Alloy is able
to detect the presence of bugs and anomalies in specifications and programs [Torlak
and Jackson 2007].

2.2. First-Order Logic

In propositional logic, the propositions are treated as atomic expressions ranging over
truth values. Thus, the proposition “Mary has a book” is either true or false. First-order
logic admits individual variables that range over objects such as “Mary”, predicates
such as Book(x) that represents the claim that the variable x is a book, and relations
such as Has(y,x) that expresses the claim that person y has object x. It also has
existential quantification to represent, for example, the proposition “Mary has a book”
as Jx.Book(x) AHas(Mary, x). Universal quantification can be used to express the claim

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:11

“Mary has only books” as Vx.Has(Mary, x) = Book(x). First-order logic also has function
symbols that can be used to assert, for example, that “Mary’s father has a book”, by
writing 3x.Book(x) A Has(father(Mary), x).

The equality relation has a special role in first-order logic. It can be treated as a
relation that satisfies certain axioms, or it can be treated as a logical symbol with a
fixed interpretation. We take the latter approach and present first-order logic as a series
of increasingly expressive fragments. A first-order language is built from a signature
2[X] where T contains function and predicate symbols with associated arities and X
is a set of variables.

The signature X[X] can be used to construct terms and formulas, where x ranges
over the variables in X, f ranges over the n-ary function symbols in X, and p ranges
over the n-ary predicate symbols in X.

—Termst :=x| f(t1,...,t,)
—Formulas = p(t1,...,t,) | to =11 | =¥ |
Vo V1 | Yo A Y | Bx.abo) | (Vx.3po)

Given a first-order signature ¥ (ignoring variables), a first-order Z-structure M con-
sists of
—A non-empty domain |M |
—A map M (f) from |M|* — |M|, for each n-ary function symbol f € X
—A map M (p) from |M|* — {T, L}, for each n-ary predicate symbol p.

For example, if ¥ = {0, +, <}, then we can define a X-structure M such that |M| =

{a, b, c} and + is interpreted as addition modulo 3, where a, b, and ¢ represent 0, 1, and
2, respectively.

M) = a

—_ <a7a’a>7 (a7 b’ b)’ <a7 c’ c>7 (b’a’ b)’ <c’a’ c>7
M) = { (b, b, c), (b c,a), (¢, b,a), (c,c,b) }

_) T, if (x, y) € {{a,), (b, c)
M(<)x, y) = {J_, otherwise. }

A Y[X]-structure M also maps variables in X to domain elements in |M |. The inter-
pretation M[s] of a [X]-term s as an element of |M | is defined as

Mlx]l = M(x)
MIf(s1,...,800 = M(f)Mls1l, ..., Ms,I)
Given a X[X]-structure M, let M[x +— a] be a structure that maps x to a but behaves

like M, otherwise. The interpretation M[¢]l of a Z[X]-formula ¢ in a X[X |-structure
M is defined as

MEs=t < Mlsl=MI[:]
M = p(si,....80) = MP)(Mlsi, ..., MIs, 1) =T
ME—-Y < MEY
MEyovy1 < MEvyoor M =y,
MEvyoAYy1 < MEvyoand M =y,
MEWNxYy) < Mlx+—alkEvy, forallac |M|
ME=@xy) < Mlx+ al =1, forsomeac |M|.

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:12 N. Shankar

Reflexivity TFacaxr
a=a,
F'Fa=05bA
Symmetry Frb=an
F'a=5b,A Fb=c, A
Transitivity o X
a=c,

F'Fay=b,A...TFa,=b,,A
r+ fla,..., a,) = f(by,..., bn), A
I, pla,...,an) Far =b1,A...T, plas,...,a,) Fa, =b,, A
T, play,..., ap) + plby, ..., b)), A

Function Congruence

Predicate Congruence

Fig. 4. Proof rules for equality.

For example, the following claims hold of the X-structure given above, where X~ =
{0, +, <}

(1) M = (Vx, y.(3z. + (y,2) = x)).
(2) M (= (Vx.(Ay .x < y)).
B M E (Vx.3y. + (x, y) = x)).

A Y[X]-formula ¢ is satisfiable if there is a X[X]-structure M such that M | ¢,
that is, M is a model for ¢. Otherwise, the formula ¢ is unsatisfiable. The set of free
variables in a formula ¢ is given by vars(¢). For example, the set of free variables of
the formula (Vx.x < y) v (@y.x < y)is {x, y}. A formula with an empty set of free
variables is a sentence. For a sequence of variables x1, ..., x, abbreviated as x, let 3x.¢
represent Jxi.---3x,.¢. If a formula ¢ is satisfiable, so is its existential closure 3x.¢,
where X is a sequence consisting of the variables in vars(¢). A Z[X]-formula ¢ is valid
if M & ¢ in every X[X |-structure. If a formula ¢ is unsatisfiable, then the negation of
its existential closure —3x.¢ is valid, for example, —(Vx.(3y.x < ¥)). Note that if ¢ A —yr
is unsatisfiable, ¢ = ¢ is valid.

We introduce the prooftheory of first-order logic in a series of fragments. Propositional
logic is the fragment of first-order logic where there are no terms and all predicate
symbols are 0-ary. The proof rules from Figure 3 however apply not just to propositional
logic but to the propositional skeleton of formulas where the atoms can be atomic
formulas which include both atoms of the form s = ¢ and p(#,...,t,) for an n-ary
predicate p, as well as quantified formulas.

The set of sequent calculus proof rules shown in Figure 4 introduces equality with
rules for reflexivity, symmetry, transitivity, and congruence.

These rules in sequent form lack the symmetry of the inference rules for the proposi-
tional connectives. Reflexivity is presented as an axiom, that is, a rule with no premises,
whereas symmetry, transitivity, and function and predicate congruence are presented
as proof rule schemas, that is, there is a congruence rule for each application of a func-
tion or predicate symbol to a sequence of terms. These congruence rules can also be cap-
tured by the axiom scheme a; = b4,...,a, =b, + f(ay,...,a,) = f(by,...,b,), for each
n-ary function symbol f, and the axiom scheme a; = b4, ...,a, = b,, p(ai,...,a,) -
p(by, ..., by), for each n-ary predicate symbol p.

Equational Logic. This is a fragment of first-order logic restricted to equality judg-
ments which are sequents of the form E + a = b, where E is a set of equations, each of
which is implicitly universally quantified [Burris and Sankappanavar 1981]. A natural
deduction presentation of equational logic is given by the rules in Figure 5. A substi-
tution o maps variables to terms so that f(ay,...,a,)0 = f(aio,...,a,0). Equational

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:13

Axiom Erazbo’ for a = b € E and substitution o
Reflexivit; _—
eflexivity TFac—a
T itivit Eta=0b Etr-b=c
ransitivi
v Eta=c
C E}—a1=b1...E|—an=bn
ongruence
& Er flan a0 = f (b1, -, b)
Fig. 5. Equational logic.
[] Left [Right |
v [A{x —> ¢t} = A ' Afx ¢}, A
[,¥xAF A [+ Vx.A, A
3 ILA{x —>cl- A M- Afx = ¢}, A
rLax.AFA F3x.A A

Fig.6. Sequent proofrules for quantification. The constant c must be fresh: it must not occur in the conclusion
sequents of the proof rules V-right and 3-left.

logic is sound and complete in the sense that E + a = b is derivable iff every model of
E is a model of a = b. Many theories such as semigroups, monoids, groups, rings, and
Boolean algebras can be formalized in equational logic. Term rewriting systems [Baader
and Nipkow 1998] can be used to prove equalities in certain equational theories.
McCune’s celebrated proof of the Robbins conjecture with the EQP theorem prover is
an exercise in equational logic. Given a binary operator + and a unary operator n such
that + is associative and commutative, a Robbins algebra satisfies Robbins’s equation

n(n(x + y) +nlx +n(y))) = x,
whereas a Boolean algebra satisfies Huntington’s equation
n(n(x) + y) +nn(x) +n(y)) = x.

The question of whether Robbins’s equation implied Huntington’s equation remained
open for sixty years until McCune [1997] used EQP to show that Robbins’s equation does
imply Huntington’s equation. The actual proof shows that Robbins’s equation implies
3C.3D.n(C + D) = n(C), which was already known to imply Huntington’s equation.
The existential quantification suggests that this proof is beyond equational logic, but
the actual proof demonstrates a specific C and D, that can be used to construct an
equational proof (see http://www.cs.unm.edu/ "mccune/ADAM-2007/robbins/).

First-Order Logic. The next step is to introduce quantification. We have already seen
the limited use of quantification in the equational logic framework where the equations
in E are implicitly universally quantified. The sequent proof rules for the universal and
existential quantifiers are given in Figure 6. In any application of the V-right and 3-
left rules, the constant ¢ that appears in the premise sequents must be chosen so that
it does not appear in the conclusion sequent. With this proviso, it is easy to check
that the inference rules are sound. If the premise of the V-left rule is valid because
M[A{x — t}] = L, then M[[Vx.A]l = L also holds. In the V-right rule, if the conclusion
is not valid because there is an M such that My = T for each y € T, M[[§]] = L for
each§ € A, and M[Vx.A] = L, then for some a in |M |, M[x — allAl = L. In this case,
the premise is also invalid because M[c — allA{x — ¢}l = L.

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:14 N. Shankar

The first-order logic proof system in Figures 3, 4, and 6 is sound and complete. Sound-
ness is easily established since each proof rule yields a valid conclusion when given
valid premises. Let —=A abbreviate the set {—¢ | ¢ € A}. For completeness [Godel 1930;
Henkin 1949, 1996; Shoenfield 1967], we must show that whenever a sequent I' - A in
afirst-order signature X is not provable, then the set of sentences 'U—A has a ¥-model.
We show that any consistent set of sentences I', that is, where I' + ¢ (with an empty
consequent) is not provable, has a model. For this, we start with £y = £ and 'y = I' and
introduce a fresh constant ¢4 for each existential X sentence ¢ of the form 3x.¢ along
with the Henkin axioms (3x.y) = ¢/ {x > c,} to obtain X; and I'y. Iterating the addition
of constants so that ¥;; = £;UC;, where C; is the set of constants ¢, for each X;-sentence
Jx.y that is not a ¥;_;-sentence. Similarly, I';1; = I'; U {(3x.¢) = ¥ {x — cpllcy € Ci).
Let " denote U;T;, the result of adding all the Henkin constants and axioms toT. As
with the completeness proof in Section 2.1, page 8, we order the sentences in I" into a
sequence ¢y, ¢1, ... and define ©; so that @y =TI, and ;1 = ©; U {¢;} if ©; ¥ —=¢;, and
®;11 = O; U {—¢;}, otherwise. It can be shown that the set © is consistent. Moreover,
note that for any ¢; v ¢ in ©, either ¢ or ¢ is in ©. Also, whenever ¢ of the form Jx.¢;
is O, then ¢1{x — cy} is in ©. Exactly one of ¢ or —¢ is in ®. This means that we can
read off a model from ® where the domain consists of the equivalence classes of the
ground (i.e., variable-free) terms with respect to the equalities in ©, and the ground
atoms in © are all assigned true.

A sentence ¢ in first-order logic can be converted into the equivalent prenex normal
form: a first-order formula of the form @ix;i.--- @,x,.v, where each @; is either a
universal or an existential quantifier and v is a quantifier-free formula. This is done
by applying equivalence-preserving transformations to move the quantifiers outwards
so that (@x.¢) X ¢ becomes (Q y.¢{x — y} X) for a variable y that does not occur
free in v, where X is either A or v, and @ is either V or 3. Similarly, —=Vx.P becomes
Jdx.—P, and —3x.P becomes Vx.—P. A prenex sentence can be placed in an equivalent
Skolemized form by iteratively replacing the existential quantifiers in the formula by
Skolem functions as follows. Let @; be the first existential quantifier in the prefix of
the formula so that it is preceded by the universally quantified variables x1, ..., x;_1.
We then transform Vxy. - - - Va;_1.3x;.% to Vxq. - - - Va;_1.9 {x; = fi(x1,...,x;,_1)}, where f;
is a freshly chosen (Skolem) function symbol. By successively eliminating existential
quantifiers in this manner, we arrive at a formula of the form Vz;... .V&,,.0 that is
equisatisfiable with ¢, where v is a quantifier free formula and #%i,...,%,, are the
universally quantified variables from x1, ..., x,.

The Herbrand theorem [Herbrand 1930] asserts that such a sentence V&,,.7 is unsat-
isfiable iff there some Herbrand expansion of the form y; A - - - Ay, that is unsatisfiable,
where each ; is of the form vy {x1 — tj1, ..., %y > ti} for Herbrand terms ¢;;. The Her-
brand terms are those built from fresh variables and the function symbols occurring
in .

First-order logic has a number of other interesting metatheoretic properties. A set of
first-order sentences is satisfiable if every finite subset of it is (compactness). A count-
able set of sentences with an infinite model has a model of any infinite cardinality
(Lowenheim-Skolem theorem). The amalgamation theorem for first-order logic yields a
way of constructing an amalgamated model from two compatible models over possibly
overlapping signatures [Hodges 1997]. Meta-theorems like the Robinson joint consis-
tency theorem, the Craig interpolation theorem, and the Beth definability theorem are
corollaries of the amalgamation theorem. Church [1936] and Turing [1965] showed
that the problem of deciding validity for first-order logic sentences is undecidable. The
halting problem for Turing machines, which is easily seen to be unsolvable, can be
expressed in first-order logic.

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:15

First-Order Theories. Given a signature X, a X-theory is a set of first-order sentences I
closed under entailment, that is, for any X-formula ¢, if for all Z-structures M such that
M = o for each v € T, it is the case that M = ¢, then ¢ € T'. A first-order X-theory can
be equivalently given by a set of ¥-models M closed under isomorphism and variable
reassignment, in which case it corresponds to the set I' of first-order X-sentences that
are valid in each of the models in M. A theory I is finitely axiomatizable if the sentences
in I' are entailed by some finite subset of I'. Many theories are finitely axiomatizable,
and several of these are even equational. Theories that are not finitely axiomatizable
can still be recursively axiomatizable so that the axioms can be distinguished from non-
axioms by a program. A theory is complete if for each sentence ¢, either ¢ or —¢ is in
the theory. A theory is decidable if there is a program that can distinguish sentences in
the theory from those that are not. First-order theories can be shown to be decidable by
directly presenting a decision procedure or by interpreting the theory within another
theory that is known to be decidable. One typical way of showing decidability is by
showing that it admits quantifier elimination so that any subformula Vx.¢ or 3x.¢ with
a quantifier-free ¢ can be replaced by an equivalent quantifier-free formula ¢. The word
problem (WP) for a theory is that of checking if Vp is valid in the theory for an atom p.
The uniform word problem (UWP) for a theory is that of determining if the sentence
V(AT = p)is valid in the theory, for a finite set of atoms I' and an atom p. The clausal
validity problem (CVP) for a theory is that of determining if V(vT") is valid in the theory,
where I is a finite set of atoms and negations of atom. A solution to the CVP for a theory
would also solve the corresponding UWP, and one for the UWP for a theory would also
solve the WP.

We briefly enumerate a few interesting first-order theories.

—The theory of identity in the empty signature has no axioms and can be used to make
assertions about the minimum or maximum number of distinct elements in a model.
If a sentence ¢ with r variables is satisfiable, then it is satisfiable in a model that
contains no more than r elements. This theory therefore has the finite model property
and is hence decidable.

—The empty theory over T is essentially first-order logic without axioms. This theory
is undecidable. Any finitely axiomatizable first-order theory 7' can be expressed in
this fragment since the validity of ¢ in T is equivalent to the validity of ' - ¢ in
the empty theory, where I' is the finite set of axioms. Certain fragments of this the-
ory are decidable. For example, the validity of a sentence with 2 monadic predicates
and r variables is decidable by checking with models of size at most 2*r, but adding
even a single two-place predicate renders the fragment undecidable [Boolos and Jef-
frey 1989]. The Bernays-Schonfinkel fragment is of the form 3x1, ..., x,.Vy1, ..., ¥,
where ¢ is a quantifier-free formula. The validity of such a formula is decidable if
given a set of m distinct fresh constants cq, ..., ¢,, and a sequence vy, ..., v, of these
constants, the formula ¢{x1 — c1,...,%n = Cpn, Y1 = U1, ..., Yn > Uy} is in a decid-
able fragment. Several decidable and undecidable fragments of first-order logic are
covered by Borger et al. [1997].

—The theory of a single relation such as an equivalence or an ordering relation can be
easily given by adding axioms for properties such as reflexivity, transitivity, symmetry
or anti-symmetry as axioms, as well as those for linearity, and dense or discrete orders.
These theories are all decidable [Rabin 1978].

—Algebraic theories such as those for semigroups, groups, rings, fields, and Boolean
algebras (BA) can be axiomatized through the basic algebraic laws. The theory of al-
gebraically closed fields (ACF) is a field where every univariate polynomial of nonzero
degree has a root. The theory of real closed fields (RCF) is an ordered field where each

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:16 N. Shankar

non-negative element has a square root, and each odd degree polynomial has a root.
The theory of torsion-free groups where Vx.nx = 0 = x = 0 for any natural number
n, is an example that is not finite axiomatizable, but is recursively axiomatizable.
The first-order theories of BA, ACF and RCF are decidable, whereas that of groups
is undecidable. Even the uniform word problem for semigroups, groups, and rings is
undecidable, whereas the UWP for commutative semigroups, commutative groups,
and fields is decidable.

—Various fragments of arithmetic are common examples of first-order theories [Bock-
mayr and Weispfenning 2001]. The theory of linear arithmetic over the signature
(0,1, +), also known as Presburger arithmetic, is decidable by means of quantifier
elimination in triple-exponential time [Cooper 1972; Fischer and Rabin 1974]. The
clausal validity problem for linear arithmetic equality and inequality constraints
over integers is NP-complete, whereas it can be solved in polynomial time over the
reals and rationals. However, the theory of natural numbers, integers, and rational
numbers with multiplication (described below) is both incomplete and undecidable.
Even the fragment that is restricted to solving polynomial equalities is undecidable,
thus yields a negative answer to Hilbert’s tenth problem [Matiyasevich 1993]. How-
ever, the first-order theory of addition and multiplication over the real numbers is
decidable by means of quantifier elimination in doubly exponential time [Basu et al.
2003].

—Useful theories for various datatypes can often be captured by equational axioms.
For example, a simple theory of lists is given by the axioms:
(1) car(cons(x, y)) = «x
(2) edr(cons(x, y)) =y

—Other theories need to make use of the logical connectives, as with the theory of
non-extensional arrays below.
(1) select(update(a,i,v),i) =v
(2) i # j = select(update(a,i,v), j) = select(a, j)

The list and array theories above are missing extensionality axioms that can be used
to show that two lists or two arrays are equal if they share the same elements. For
lists, the extensionality axiom can be written as cons(x, y) = cons(u,v) = (x =uAry =
v). However, for arrays, we need to use quantification to assert that (Vi.select(a,i) =
select(b,i)) = a = b. The boundary between decidability and undecidability for the
theory of arrays is explored by Bradley et al. [2006]. The clausal validity problem for
the extensional theory of arrays is NP-complete [Downey and Sethi 1978; Stump et al.
20011].

An axiomatization of arithmetic was first formulated by Dedekind and Peano but
their presentation makes use of quantification over sets. The first-order theory of arith-
metic in the signature (0, 1, +, x) shown in Figure 7 employs the unary successor oper-
ation S and the binary operations + and x, and a binary ordering predicate <. Without
the induction axiom scheme, the system is called Robinson arithmetic and is sufficient
for demonstrating the incompleteness of arithmetic [Tarski et al. 1971].

An alternate way to define the standard first-order theory of arithmetic would be as
the set of sentences that are valid in the standard arithmetic interpretation of 0, 1, +,
and * over the natural numbers. In this interpretation, the theory contains every sen-
tence or its negation. However, the theory obtained from the axiomatization in Figure 7
does not coincide with the standard theory. This axiomatization of arithmetic is incom-
plete as demonstrated by Gédel [1967]: either the axioms are inconsistent or there are
undecidable sentences that are neither provable nor disprovable. Indeed, the problem
persists for any recursive first-order axiomatization of arithmetic, or even a recursively

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:17

(1) Sx)#0

(2) Sx)=S(y)=x=y

(3) x=0v(@yx=S8()

4) x+0=x

(5) x+S(y)=Sx+y)

6) xx0=0

(M xxS(y)=w&xy)+x

(8) An induction axiom scheme such that for each formula ¢ with vars(¢) = {x},
o{x > 0} A (Vx.¢p = ¢plx > Sx)}) = (Vx.¢)

Fig. 7. Axioms for a first-order theory of arithmetic.

enumerable one, that is, where the axioms can be listed by a program even if they cannot
be recognized by one. The set of sentences in the standard theory, assuming consistency,
is not recursively enumerable. Godel’s second incompleteness theorem demonstrates
that the consistency of the theory of arithmetic, the arithmetical statement that 0 = 1
is unprovable, is itself an undecidable sentence. The second incompleteness theorem
effectively defeats Hilbert’s programme of establishing the consistency of formalized
mathematics by finitistic methods. This was the second of his twenty-three problems
presented at the International Congress of Mathematics in 1900 [Hilbert 1902].

Barwise [1978b] is an excellent introduction to first-order logic. Hodges [1997] con-
tains a readable introduction to model theory. Proof systems for first-order logic are
covered by Kleene [1952], Szabo [1969], and Smullyan [1968].

Primitive Recursive Arithmetic (PRA) was introduced by Skolem [1967] and Good-
stein [1964] to provide a finitist foundation for mathematics. In addition to the basic
constant, successor, and projection operations, the theory allows new functions to be
defined in terms of old ones by the schemas of composition and primitive recursion. A
definition by composition has the form

fler, ..., x0) = ghi(x1, ..., %0), ..., h(x1, ..., 20)),

where the new function f is defined in terms of existing functions g, hq,...,A,. A
definition by primitive recursion has the form

f0,x1,...,%,) = blx1,...,%x,)
F(SX),x1,...,%,) = A(f(x,%1,...,%,),%,%1,...,%n)

Goodstein’s rule of Recursion-Induction [Goodstein 1964] asserts that two expres-
sions that satisfy the same primitive recursion scheme are equivalent. This rule was
independently proposed by McCarthy [1963] in the context of his theory of pure Lisp.
McCarthy’s formalization of Lisp is also the foundation for the Boyer—Moore family of
interactive theorem provers [Boyer and Moore 1979, 1988; Kaufmann et al. 2000].

Set Theory. Many concepts in mathematics such as structures, orders, and maps can
be encoded using sets. The original conception of a set as a collection of all elements sat-
isfying a property was found to be unsound. For example, Russell’s paradox introduces
the set of elements R consisting of all elements that do not belong to themselves, so
that R € R <= R ¢ R. Similarly, the Burali-Forti paradox constructs the set Q of all
ordinal numbers so that € is both an ordinal number and is larger than all the ordinal
numbers. These paradoxes drove the first-order formalization of set theory by Zermelo,
Fraenkel, and Skolem. In ZF set theory, there is one basic predicate € denoting set

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:18 N. Shankar

membership. Sets are constructed by means of pairing, union, infinity, power set, com-
prehension, and replacement. Comprehension is restricted to defining as a set, a subset
{x € Alp(x)} of a given set A satisfying a stated property ¢(x). The replacement axiom
defines as a set, the image of a set with respect to a map specified by a formula. The
axiom of regularity or foundation asserts that each set x contains an element y that
has no elements in common with x. The axiom of extensionality asserts that two sets
are equal if all their elements are in common, so that sets are completely characterized
by their members.

Set theory is used in various systems for specification and verification such as
Z [Abrial 1980; Spivey 1993], B [Abrial 1996], Z/Eves [Saaltink 1997], and Is-
abelle/ZF [Paulson 2003]. First-order logic theorem provers have been successful in
formalizing proofs in set theory [Boyer et al. 1986; Quaife 1992; Belinfante 1999] by
exploiting the finitely axiomatizable set theory due to von Neumann, Bernays, and
Godel [Mendelson 1964]. Good introductions to set theory include Skolem [1962], Hal-
mos [1960], Suppes [1972], and Kunen [1980].

Higher-Order Logic. In first-order logic, the variables range over individuals whereas
the function and predicate symbols are treated as constants. A first-order formula
such as (Vx.p(x, f(x)) = Vx.3y.p(x, y) is valid if it is true in all interpretations
of the function and predicate symbols. Higher-order logic allows quantification over
function and predicate symbols. Second-order logic admits quantification over first-
order function and predicate symbols: for example, second-order logic can assert
3f.Vx.p(x, f(x)) = Vx.3y.p(x, y). Second-order logic can be used to define the concept
of injective and surjective functions, formalize finiteness, define inductive predicates
like transitive closure and reachability, and formalize recursive datatypes like the nat-
ural numbers, lists, and trees. Third-order logic admits quantification over functions
that take first-order functions as arguments, and predicates that take first-order func-
tions and predicates as arguments. Higher-order logic includes n-th order logic for any
natural number n > 1.

Historically, typed higher-order logic was used to counter the inconsistency in Frege’s
Grundgesetze [Frege 1903] system of logic which admits a form of unrestricted compre-
hension as a way of defining sets. With this, it is easy to derive Russell’s paradox.
Zermelo [1908] avoided the contradiction by restricting the range of comprehension to
an existing set, as in {x € y | ¢}. Russell [1903, 1908] developed a hierarchical type
system with individuals, propositions, predicates over individuals, and predicates of
predicates, and so on.

Church’s simple theory of types [Church 1940] starts with two basic types of individ-
uals i and propositions o at level 0 and builds a hierarchy of functions such that if S is
a type at level n and T is a type at level n + 1, then S—T is a type at level n + 1.

T I=i|0 | T1—>T2.

The type hierarchy rules out the self-membership or self-application needed to define
the Russell set. The terms of higher-order logic are defined from the basic constants of
the type i and o using lambda-abstraction A(x : S).a and application a b.

s=x|Mx:T).s|s1 so.

Terms are typed relative to a context E of the form x; : T4, ..., x, : T},, where x; # x;,
for j # k and each T; is a type. Typing judgments have the form E F s : T for context
E, term s, and type T'. The typing rules allow E - A(x : S).a : S—T to be derived from
,x:SkFa:T,and EF (st): T to be derived from E+ s : S—T and E ¢ : S.

o] o

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:19

These typing rules are the same as the proof rules for natural deduction given by the
Curry—Howard isomorphism in Figure 14 (page 38).

There are many different ways to axiomatize higher-order logic depending on which
primitives are assumed. Andrews [1986, 1940] presents a system @, with equality
as primitive so that we have <: 0—(0—0) and =: S—(S—o0) for each type S. With
this, we can define the truth value T as = (<)(<). We revert to the infix notation for
familiar symbols so that we write T as <»=<. We can then define the everywhere-T
function over some type T as A(x : T').T. We let L abbreviate A(x : 0).x = A(x : 0).T, and
universal quantification Vp for a predicate p of type T'—o abbreviates p = A(x : T').T.
A further abuse of notation abbreviates VA(x : T').a as V(x : T').a. The negation operator
— can be defined as A(x : 0).(x = L1). The conjunction operator A can be defined as
AMx 2 0).A(y 1 0)¥V(p : 0—(0—0)).p(x)y) = p(T)T). From these primitives, it is easy to
define implication and existential quantification.

A term context is a A-term with a single occurrence of a hole {} in it.

S = M T)s? 8% s | s 80

We write a{} to represent a term context so that a{b} is the term that results from filling
the hole in a{} with b. Note that free occurrences of variables in b can become bound in
alb}.

The system @ is a Hilbert-style system with one rule of inference

cla} a=>b

c{b}

It has four axioms:

DF(gTAgL)=V(x:0).g x,for g :0—0
Qrx=y=(gxsgy),forg:Twoandx:T,y:T
B)(f=g)eVx:8).fx=gx,for f:S>T,g:5S->T

(4) (\(x : S).a) b =a{x — b}, where no free occurrences of variables in b appear bound
in a{x — b}.

The first axiom asserts that T and L are the sole elements of 0. The second axiom
is the usual congruence rule for equality. The equivalence asserted in the third axiom
can be read as a congruence rule in one direction, and an extensionality principle in
the other. The last axiom introduces the equality between a redex term (A(x : S).s ¢)
and its B-reduct s{x +— t}. Two A-terms are a-equivalent if one term can be obtained
from the other one by uniformly renaming bound variables. Thus, (A(x : S).x y) is a-
equivalent to (A(z : S).z y). Such «-equivalent terms are treated as being syntactically
interchangeable in the proof system.

Additionally, higher-order logic also has axioms asserting the existence of an infinite
set and a choice operator choose(P) such that 3x.P(x) = P(choose(P)). These axioms
correspond to the axioms of infinity and choice in set theory. Lambda-abstraction is
similar to the comprehension principle for defining new sets.

Since higher-order logic can express finiteness, it does not satisfy compactness. The
induction axiom scheme can be expressed as a single axiom, which makes it possible
to define the natural numbers and other recursive datatypes directly in second-order
logic. The u-calculus [Park 1976] which extends first-order logic with least and greatest
fixed points is also definable in higher-order logic. Many verification systems are based
on higher-order logic since it is both simple and expressive [Gordon 1985].

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:20 N. Shankar

In the above standard interpretation, even second-order logic is incomplete by Godel’s
incompleteness theorem. However, higher-order logic is complete for Henkin models
where the function type 71— T is interpreted as any set of maps from M[T1] to M [T5]
that includes as elements interpretations M[[A(x : T;).s] for any lambda-abstraction
Mx 2 Th).s of type T1— Ty [Henkin 1950, 1996].

Monadic second-order logic where the higher-order variables are restricted to
monadic predicates is decidable. Automata-theoretic techniques can be used to show
that monadic second-order logic remains decidable even with finitely many unary in-
jective (successor) operations over the base type (SnS). The weak version, WSnS, where
the monadic predicates are restricted to ranging over finite sets, is also decidable
[Rabin 1978; Elgaard et al. 1998]. There are several excellent expositions of higher-
order logic including Feferman [1978], Leivant [1994], and van Benthem and Doets
[1983].

3. SATISFIABILITY SOLVERS

Satisfiability is a core technology for many verification tasks. We briefly survey the
tools for propositional satisfiability and satisfiability modulo theories and their use in
verification.

3.1. Inference Systems

Decision procedures for satisfiability are used to determine if a given formula has a
model. If the procedure fails to find a model, it must be because the original formula
is unsatisfiable. Inference systems [Shankar and Ruess 2002; Shankar 2005; de Moura
et al. 2007] provide a unifying framework for defining such satisfiability procedures.

An inference system is a triple (¥, A, >) consisting of a set ¥ of inference states, a
mapping A from inference states to formulas, and a binary inference relation > between
inference states. For each formula ¢, there must be at least one state y such that
A(y) = ¢. There is a special unsatisfiable inference state L. The inference relation >
must be

(1) Comservative: If >, then A(y) and A(y’) must be equisatisfiable.

(2) Progressive: For any subset S of W, there is a state v € S such that there is no
¥’ € S where y>vy'.

(3) Canonizing: If ¥ € W is irreducible, that is, there is no ¥’ such that y¥>v’, then
either ¢ = L or A(y) is satisfiable.

We say that a function f is an inference operator when 1> f () if there is a ¥" such
that ¥ >vy’, and otherwise, f () = . Given an inference operator f,let f*(v) = f'(y),
for the least i such that f*1(y/) = fi(y). Since - is progressive, such an i must exist. We
can use the operation f* as a decision procedure since v is unsatisfiable iff f*(y) = L.

We present an inference system for ordered resolution in propositional logic as an
illustration. The problem is to determine the satisfiability of a set K of input clauses.
This set K also happens to be the input inference state. We assume that K does not
contain any clause that is a tautology, that is, one that contains both a literal and its
negation. It is also assumed that duplicate literals within a clause are merged. We are
also given an ordering p > q on atoms, which can be lifted to literals as —p > p > —q >
g. Clauses are maintained in decreasing order with respect to this ordering. In binary
resolution, a clause k containing £ and a clause «’ containing &, the complement of %,
are resolved to yield (x — {k}) U (¢’ — {k}), but in ordered resolution, only the maximal
literals in a clause can be resolved. The inference system for ordered resolution is shown
in Figure 8. The resolution rule Res adds the clause «; V k3 obtained by resolving the

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:21

K,kEVviy,k Vs k1 Vike € K

Res = ; .
K,k Vi, kVks, k1 Vkg K1V kg isnottautological

K
Contrad T if p, —=p € K for some p

Fig. 8. Inference system for ordered resolution.

clauses £ v k1 and & V ks to K, provided k1 V k3 is not a tautology and is not already in
K, and %k and % are the maximal literals in %2 V k1 and % V kg, respectively.

The resolution inference system can be applied to the example =p v —~q¢ vr, —pV
g, pVvr, —rtoachieve a refutation as shown below.

(Ko=)—-pVv—qvVr, =pvgq, pvr, —r
(Klz)_'qu7 KO

Res

R
(Ky=)qgvr, K; N
(Ks=)r, Ky *
1 Contrad

The correctness of the inference system is interesting since the resolution rule has
been restricted to resolving only on maximal literals. The inference system is progres-
sive since the input K, has a bounded number of atoms and every clause in K is
constructed from these atoms. For n atoms, there are at most 3" clauses that can ap-
pear in K. Since each resolution step generates at least one new clause, this bounds
the size of the derivations. The inference system is conservative since any model M of
k Vv ki and k V k9 is also a model of k1 V k. Conversely, if K’ is derived from K by a
resolution step, then K C K’, and hence any model of K’ is also a model of K. Finally,
the inference system is canonizing. Given an irreducible non-_L configuration K in the

atoms pq, ..., p, with p; < p;11 for 1 <i < n, build a series of partial interpretations
M; as follows:
(1) Let My = 0.

(2) If p;.1 is the maximal literal in a clause p; 1 vV« € K and M; } «, then let M;,; =
M;[pis1— TI
Otherwise, let Mi+1 = Mi[pi+1 = J_]

Each M; satisfies all the clauses over just the atoms p; for j < i, and hence M = M,
satisfies K. Many inference procedures can be presented and analyzed as inference
systems.

3.2. The DPLL procedure for Propositional Satisfiability

Given a propositional formula ¢, checking whether there is an M such that M = ¢ is
a basic problem that has many applications. For simplicity, the formula is first trans-
formed into CNF so that we are checking the satisfiability of a set of clauses K. One
easy solution is to enumerate and check all possible assignments of truth values to
the propositional atoms in K. We can systematically scan the space of assignments
while backtracking to try a different assignment each time a branch of the search tree
is found to contain no feasible assignments. This approach has two sources of redun-
dancy. Truth assignments to some variables are implied by those of other variables.
For example, if p is assigned L and there is a clause p v g in K, then clearly ¢ must be
assigned T and there is no need to pursue the branch where q is assigned L. A partial

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:22 N. Shankar

assignment triggers a conflict when, for example, there is a clause p v —g where p is
assigned | and q is assigned T. Typically, only a small subset of the partial assignment
is needed to trigger such a conflict. Even when the other assignments are varied during
the search, the same conflict is going to be triggered. The Davis—Putnam-Logemann—
Loveland procedure [Davis and Putnam 1960; Davis et al. 1962] introduced the basic
idea of searching for a satisfiable assignment by branching on the truth assignment to
a variable, propagating any implied truth values, and backtracking from failed assign-
ments. Building on the ideas in SATO [Zhang 1997] and GRASP [Marques-Silva and
Sakallah 1999], modern satisfiability solvers such as Chaff [Moskewicz et al. 2001],
zChaff [Zhang and Malik 2002], BerkMin [Goldberg and Novikov 2007], MiniSat [Eén
and Sorensson 2003], Siege [Ryan 2004], and PicoSAT [Biere 2008] add very efficient
Boolean constraint propagation to handle the first redundancy, and conflict-directed
backjumping to eliminate the second source of redundancy. Satisfiability solvers are
surveyed by Gomes et al. [2008] and in the Handbook of Satisfiability [Biere et al. 2009].

The DPLL inference system looks for a satisfying assignment for a set of n clauses
K over m propositional variables [Zhang and Malik 2003; Nieuwenhuis et al. 2006;
de Moura et al. 2007]. It does this by building a partial assignment M in levels [and
a set of implied conflict clauses C. A partial assignment M up to level [has the form
Moy; My;---; M;. The partial assignment M is a set of pairs k;[y;] with literal k; and
source clause y; € K UC. For 0 < i <[, each M; has the form d; : ki[y1], ..., kulynl
with decision literal d; and implied literals k j and their corresponding source clause y;.
When % occurs as an implied literal in M, let M _;, be the prefix of the partial assignment
preceding the occurrence of £ in M. We maintain the invariant that the source clause
for an implied literal 2 in M can be written as £ v y where M _;, = —y. We can view M
as a partial assignment since M (p) = T if p occurs in M, M(p) = L if =p occurs in M,
and M (p) is undefined, otherwise.

The inference state set W consists of all 4-tuples of the form (I, M, K, C) containing
the decision level /, the partial assignment M , the input clause set K that remains fixed,
and the conflict clause set C. The operation A(({, M, K, C)) returns A(MoUK UC). The
DPLL inference system consists of four basic components

(1) Propagation is used to add all the implied literals % to the partial assignment M at
the current decision level [. A literal % is implied if there is a clause £ vy in K UC
where M = —y. Propagation can also detect an inconsistency when there is a clause
y in K UC where M | —y. If this inconsistency is detected at decision level 0, then
this reflects a contradiction in K since the clauses in C are implied by those in K.

(2) Analysis is applied when propagation detects an inconsistency that is not at level 0
and it constructs a conflict clause y such that M = —y and y contains exactly one
literal at the current level /. When propagation detects an inconsistency, there is a
clause y in K U C such that M | —y. This clause can contain one or more literals
that are falsified by M at the current level /. If we have just one such literal, then y
can be taken as a conflict clause. If we have more than one such literal, then one of
these must be maximal in terms of the position of its assignment in M. We replace
y by the result of resolving y with the source clause £ v y’ for this maximal literal
k. Since M _j; = —y, we know that this resolution step only replaces £ with literals
whose negations precede % in M, so that the new clause y is still falsified by M and
has a smaller maximal literal. Since there are only a bounded number of literals
at level [, we will eventually terminate with a conflict clause that has exactly one
literal at level /.

(3) Backjumping is used to reset the partial assignment based on the conflict clause y
constructed by analysis. We know that y is of the form & v y’, where & is falsified at

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:23

step l M K|C y
select s 1 ;S K|y -
select r 2 HA K|0¢ -
propagate | 2| ;s;r,—~ql—q v —r] | K | @ -
propagate |2 |;s;r :—q,plpvql | K| ¢ -
conflict 2 38,7 1 q, p K|¢| -pvg
analyze |0] K|q -
backjump | 0 qlq] K |q _
propagate | 0 q,plp Vv —ql K |q -
propagate |0| gq,p,r[-pvr] |K|q -
conflict 0 q,p,r K|q|—-qVv-r

Fig. 9. The DPLL procedure with input {p Vvq,—-pVvq,pV—q,sV—-pVvq,-sSVpV—q,-pVr,—qV -r}

level I and y’ is falsified at some level I’ < [. Let M represent the restriction of M
to the assignments in levels at or below /'. The backjumping step replaces M with
the partial assignment M’ k[y] while adding y to the conflict clause set C.

(4) Selection is employed to pick an unassigned literal £ as the decision literal for
continuing the search at the next level when propagation has been applied to extract
all the implied literals at the current level [and no conflicts have been detected.
The partial assignment M is then replaced by M ;k. Note that when there are no
more unassigned literals, the partial assignment M is a total assignment, and since
it yields no conflict, we have M = y for each clause y in K U C.

An example of the procedure is shown in Figure 9. The given input clause set K is
{(pvqg,~pVqg,pVv—q,sV-pVvVq,—SV pV—q,—-pVr,—q V —-r} Since there are no
unit (single literal) clauses, there is no implied literal at level 0. We therefore select an
unassigned literal, in this case s as the decision literal at level 1. Again, there are no
implied literals at level 1, and we select an unassigned literal r as the decision literal
at level 2. Now, we can add the implied literals —q from the input clause —¢ v —r and
p from the input clause p v q. At this point, propagation identifies a conflict where
the partial assignment M falsifies the input clause —p Vv q. The conflict is analyzed
by replacing —p with ¢ to get the unit clause g. Since the maximal level of the empty
clause is 0, backjumping yields a partial assignment g at level 0 while adding the unit
clause g to the conflict clause set C. Propagation then yields the implied literals p
from the input clause p v —¢ and r from the input clause —p v r, which leads to the
falsification of the input clause —g Vv —r. Since this conflict occurs at level 0, we report
unsatisfiability.

Generating Proofs. The DPLL search procedure can be augmented to generate proofs
by annotating the conflict clauses with proofs corresponding to the analysis steps used
in generating them [Zhang and Malik 2003]. In the example above, the conflict g can be
annotated with the proofresolve(p, —pVvq, pVvq)toindicate that the clause is generated
by resolving —p Vv q and p v g on the atom p. The final conflict clause —g v —r can also be
analyzed to construct the proof shown below. The conflict clause g is used as an input
here, but its proof computed during analysis can be spliced into this proof.

—qQV-r -—-pvVvr
-qV—p
—q
1

pv—q

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:24 N. Shankar

Generating Interpolants. The Craig Interpolation Lemma [Craig 1957] states that if we
have two sets of first-order logic formulas I' and A such that I' U A is inconsistent,
then there is a formula ¢ in the intersection of the function and predicate symbols from
I' and A such that I' entails ¢ and A entails —¢. For sets of propositional formulas
I' and A, the interpolant ¢ is a propositional formula whose atoms appear in both I’
and A. Interpolants are useful for finding interesting program assertions including loop
invariants [McMillan 2003]. For example, we already saw with bounded model checking
that when the assertion

k-1 k
IG) A A NG, 20 A [\ —P&))
i=0 j=0

is unsatisfiable, we do not have any violations of property P in the first £ steps of the
computation. An interpolant can be constructed from this proof of unsatisfiability where
I' consists of I(xy) A N(xg,x1) A (=P (x9) v =P(x1)) and A consists of /\f:l1 N(x;, xi41) A
(\/I;:2 —P(x;)). Now I' and A only overlap on x; so that their interpolant yields an
assertion on x; that conservatively over-approximates the image of the initial state
with respect to the transition relation. The interpolant can be used as the initial state
in the next iteration of bounded model checking. We examine the construction of an
interpolant from a refutational proof based on resolution.

Let the input clause set K be partitioned into K; with atoms atoms(K1) and K¢ with
atoms atoms(K5). We show that if K is unsatisfiable, there is a formula (an interpolant)
I such that K1 = I and Ky Al = 1. Furthermore, atoms(I) C atoms(K1) Natoms(Ks).

An interpolant I can be constructed for each clause I" in the proof. The interpolant
for the proofis then just I, . Each clause I" in the proof is partitioned into I'y v I'ys with
atoms(I'y) C atoms(Ks) and atoms(I'1) Natoms(Ks) = 0.

The interpolant I has the property that K; = —=I'y = Ir and K5 + It = I's, where
—I'; is the set of negations of literals in I';.

For input clauses I' = I'; v I'y in K1, the interpolant I = I's. For input clauses I' in
K5, the interpolant is T. When resolving I'’, I'” to get T,

(1) If resolvent p is in I’} (i.e., p & atoms(Ky)), then I = I Vv It since —(p v I'}) =
Ir = Ty and ~(=p Vv IY) = I = Ty.
(2) %fresglventpis inT'}, then It = It Al since ~(I') vIy) = Ir = (pVIH)A(=pVIy) =
oV Ty,

Let «[¢] represent a clause « with its interpolant ¢. The interpolant for input sets
Ki = {a velel,—a Vv blb], —a Vv cle]l} and Ky = {=bVv —c Vv d[T],—=d[T], —e[T]}, with
shared atoms b, ¢, and e can be derived by the following resolution steps.

derive from

ale] a Velel;el[T]
ble v b] alel; —a v blb]
cle v cl alel;—a Vv clc]

—cVvdleVb] ble vbl;—=bv—cvd[T]
dlevb)Aaleve)l|—cvdlevVblcleVc]
1levb)alevolldllevd) Aleve)l,—d[T]

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:25

3.3. Satisfiability Modulo Theories

A formula is satisfiable in first-order logic if it has a model. As we already saw in
Section 2.2, a theory 7 can be defined by a specific class of models so that a sentence
is 7 -satisfiable if it has a model M in 7, or it could be defined by its presentation as
(a class of models for) a collection of axioms. Theory-based decision procedures have
been developed since the late 1970s [Nelson 1981; Shostak et al. 1982], but it is only
recently that the techniques used by the DPLL search procedure have been adapted
for this purpose. In SMT, unlike SAT, the atoms are not just Boolean variables but can
also represent equalities and applications of various predicates. For example, the set
of formulas

y=2z2, x=yVx=z, XZyVx#z

is unsatisfiable due to the interpretation of equality but its propositional skeleton p, g v
r,—q Vv —r is satisfiable with the assignment {p +— T,q — T,r — L}, where p,q,andr
represent y =z, x = y, and x = z respectively. Theory satisfiability can be reduced to
SAT by generating lemmas that capture the theory constraints. In the above example,
we can add the lemmas —p v —q vVr,—=p Vv —r vq, and —q v —r Vv p. The problem with
this eager reduction to SAT is that there are 3" candidate lemmas in n atoms and it is
prohibitively expensive to test each of them for theory validity. The lazy approach uses
SAT to generate a candidate assignment like the one above, which is then refuted by a
theory solver.

SMT solvers can deal with other theories including equality over uninterpreted func-
tions, linear arithmetic, bit-vectors, and arrays, as well as combinations of these theo-
ries. SMT solvers have been extended to handle quantified formulas through the use of
a technique called E-graph matching [Nelson 1981]. SMT solvers have a large number
of applications since many planning and programming problems can be directly rep-
resented as SMT problems. For example, SMT can be used to check the feasibility of
a symbolic program path and to generate an actual test case that exercises that path.
It can be used to capture quantitative constraints in a planning problem. SMT solvers
can be embedded within interactive proof checkers as well as assertion checkers and
refinement tools. We only provide a very brief survey of the basic ideas in SMT solv-
ing [Nieuwenhuis et al. 2006; Bradley and Manna 2007; de Moura et al. 2007; Kroning
and Strichman 2008; Barrett et al. 2009].

We first describe the theory satisfiability procedure TDPLL. Recall that the state of
the DPLL procedure is of the form (I, M, K, C) with decision level [, partial assignment
M , input clause set K, and conflict clause set C. For satisfiability modulo theories, we
add a fifth element S which is the theory state. The interaction between the DPLL
search and the theory solver is surprisingly simple even if the details of any given
implementation can be quite complicated. The interface for the theory solver consists of
the Assert, Ask, Check, and Retract operations. Whenever a literal is added to M either
by selection or propagation, then it is also added to S through the Assert operation. We
can use Ask to check if a particular literal is implied by S, in which case it is added to
the partial assignment M. Also, in this case, the theory solver may have the option of
generating a theory lemma corresponding to this implication which can be added to C.
The Check operation determines if the state S is inconsistent, in which case the theory
solver returns a conflict lemma clause of the form k1 Vv --- Vv k,,, where each k; is the
negation of a literal in the explanation for the conflict, namely, the set of input literals
asserted to S that are relevant to the conflict. In the latter case corresponding to a
theory conflict, the lemma clause is added to C and the DPLL procedure also signals a
conflict. The conflict is treated as a global conflict if it occurs at level 0, or it triggers
backjumping as in the DPLL satisfiability procedure. When literals are dropped from

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:26 N. Shankar

Step M F D C

Prop y=z {y >z} [[

Select y=z;x £y {y >z} {x # y) [/

Scan .[;c';éxzf/zy;ézvxzy] {y >z} fx#£y}|lx#zvy#zvax=y)
Prop {y — 2z} {x # y}

Conflict {y =z} {x # y}
Analyze {y — 2z} {x # y} {y#zvx=y,...}
Backjump y=z,x=y {y >z} [

Prop oxFzl] {x #2}

Assert y=z,x=y,x#z x>y, y—>z}| {x #2z}

Check y=z,x=y,x#2 x>y, y—>z}| {x #2)

Conflict

Fig. 10. Checking the satisfiabilityof y =2z, x = yvax =2z, x #y Vvx #z.

the partial assignment during backjumping, they are also retracted from the theory
state S using the Retract operation.

An example of the TDPLL search procedure is shown in Figure 10. Here, we consider
the previous example of the input clauseset y =z, x = yvax =2z, x # y vx # z. The
theory state S here consists of a union-find structure F which maintains the equality
information and a set D of the input disequalities. Initially, the partial assignment M
and the theory state (F', D) are both empty. By DPLL propagation, we add the unit
clause y = z to the partial assignment at level 0 and assert it to the theory state. Next,
at level 0, we select the literal x # y and add it to M and insert it into D. The scan step
checks all the input literals to collect the ones that are implied or refuted by the theory
state. In this case, the literal x # z is implied by the theory solver with the supporting
lemma x # z vV y # z vx = y. This new literal is added to the partial assignment and
the supporting lemma is added to C. Now, DPLL propagation generates a conflict with
the clause x = y vx = z. Analyzing this conflict yields the conflict clause y #zvx =y
which is added to C. Backjumping with this conflict clause adds the literal x = y atlevel
0 while retracting the previously asserted literal x # y. DPLL propagation applied to
the input clause x # y VvV x # z causes x # z to be added to M and D. Now, we have a
complete assignment and the theory state (F, D) is clearly inconsistent.

There are many variations on the basic algorithm described above. For example, the
eager approach adds theory lemmas to C prior to the search. The procedure for checking
the theory state for inconsistency can be applied at any point during the search or
restricted to total assignments. Indeed the checking process can be eliminated in favor
of a strong form of Assert that detects inconsistencies in the theory state as soon as
they are introduced. The theory propagation procedure implemented by querying the
theory state for implied literals can be incomplete without affecting the completeness
of the search procedure. It can sometimes be more efficient to use a fast but incomplete
theory propagation procedure. The operation of scanning the unassigned literals to find
an implied literal can either be invoked whenever the theory state is updated or in an
intermittent manner. In building an SMT solver, a great deal of experimentation goes
into optimizing these parameters to achieve robust performance across the spectrum
of benchmarks.

The correctness of the TDPLL inference system is along the same lines as the ar-
gument for DPLL. The TDPLL procedure relies on the Check procedure being sound
and complete, and the Ask, Retract, and Assert procedures being sound. SMT solvers
have been around from the late 1970s with the Nelson—-Oppen method [Nelson and
Oppen 1979; Nelson 1981] used in the Stanford Pascal Verifier and in the Simplify
prover [Detlefs et al. 2003] and Shostak’s STP [Shostak 1984; Shostak et al. 1982].

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:27

x=y,G;F;D

Del if F*(x) = F*

elete G.F.D if F*(x) (¥)

x=y,GF;D ifx =F*x)#F*(y)=y'
Merge 7G;F’;D F' = F U {sort(x' = ')
Dise x#y,GF;D
4 G Fix#y,D
G;F; ,D .

Contrad AL e ’xj Y7 it P = Fr(y)

Fig. 11. Inference system for equality and disequality.

More recent SMT solvers are built around the modern versions of the DPLL procedure.
In contrast with the lazy approach used in the earlier systems where theory solving
is invoked from within a SAT solver, the UCLID [Bryant et al. 2002] system employs
an eager combination where theory solving is used to generate theory lemmas that are
added to the original formula for checking propositional satisfiability. The lazy com-
bination of theory solving with modern DPLL solvers first appeared in LPSAT [Weld
and Wolfman 1999], the Cooperative Validity Checker (CVC) [Stump et al. 2002; Bar-
rett et al. 2002], ICS [de Moura et al. 2002], MathSAT [Audemard et al. 2002], and
Verifun [Flanagan et al. 2003]. More recent implementations include Barcelogic [Bofill
et al. 2008], CVC3 [Barrett and Tinelli 2007], MathSAT 4 [Bruttomesso et al. 2008],
Yices [Dutertre and de Moura 2006b], and Z3 [de Moura and Bjsrner 2008].

3.4. Theory Solvers

We have illustrated the TDPLL procedure with a theory solver for equality and dise-
quality based on the union—find algorithm [Galler and Fisher 1964; Tarjan 1975]. This
theory solver can itself be seen as an inference system. In this algorithm, the only
terms are variables. The inference system is shown in Figure 11. The inference state
consists of the input equalities and disequalities G, the find map F', and the set of input
disequalities D. There is a total ordering x > y. The map F is represented as a set of
equalities x = y such that x = y, and for any x = y’ in F, y is identical to y’. The
operation F'(x) returns y if there is an equality x = y in F, and x itself, otherwise. The
operation F*(x) = F"(x) for the smallest n such that F"(x) = F"*1(x). The operation
sort(x = y) returns x = y if x = y, and y = x, otherwise. It is easy to check that the
inference system for equality is conservative, progressive, and canonizing.

How do we implement the interface operations for Assert, Ask, Check, and Retract?
The Assert procedure adds an equality or a disequality to the state (F, D). The Ask
procedure checks the truth value of an equality x = y against (F, D) by checking
if F*(x) = F*(y) in which case the equality x = y is implied. To determine if x #
y is implied, we check if there is some disequality x’ # y’ in D such that F*(x) =
F*(x') and F*(y) = F*(y’). As an option, we require the Ask operation to generate an
economical explanation of the implication which can be added as a lemma. Generating
such explanations requires a version of union-find where each edge in the find structure
corresponds to an input [Nieuwenhuis and Oliveras 2005]. The Check operation applies
the Contrad rule to see if there is an invalid disequality in D. As with Ask, generating
an explanation for the contradiction requires a proof-carrying version of union-find.
Retraction is an easy operation since a disequality can be deleted from D, and for an
equality, the corresponding sorted equality can be deleted from F'.

Congruence Closure. A theory solver for equality over arbitrary terms can be defined
using congruence closure [Kozen 1977; Shostak 1978; Nelson and Oppen 1977; Bach-
mair et al. 2003; Nieuwenhuis and Oliveras 2005]. In this procedure, the E-graph data

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:28 N. Shankar

structure used in the union-find algorithm contains nodes for each subterm in the term
universe. For each node corresponding to a term the form f(aq, ..., a,), we have a data
structure that maintains the signature of the term, namely f(F*(ay),..., F*(ay,)). The
E-graph is maintained in congruence closed form so that whenever two nodes have the
same signature, their equivalence classes are merged. Whenever there is a disequality
s # t in D such that F*(s) = F*(¢), the theory solver signals an inconsistency. The
Assert command is defined to add an equality or disequality to the E-graph and close it
under congruence. The Ask command merely checks if an equality s = ¢ is implied by
the E-graph or refuted by some disequality in D of the form s’ # ¢', where F*(s) = F*(s')
and F*(t) = F*(¢'). Retraction is as in the union-find inference system.

Linear Arithmetic. There is a wide range of theory solvers for constraint solving with
various fragments of linear arithmetic equalities and inequalities. One simple frag-
ment deals only with interval constraints on variables. An inference system for such
a fragment can be defined to maintain the tightest interval for each variable. If some
variable has an empty interval, then we have a contradiction.

Difference constraints have the form x — y < c or x — y < ¢, for some constant c.
Strict inequalities x — y < ¢ can be replaced by the non-strict form x — y < ¢ — ¢
by introducing a positive infinitesimal ¢. Algorithms for processing such constraints
include the Bellman—Ford procedure [Wang et al. 2005; Cotton and Maler 2006] and
the Floyd—Warshall procedure [Dutertre and de Moura 2006b]. One important twist
in the case of SMT solving is that the algorithms must be incremental so that new
constraints can be added on-the-fly, and easily retractable so that constraints can be
efficiently deleted from the theory solver state in the reverse order in which they were
asserted. For difference constraints over integers, the constant ¢ in the constraint must
be an integer and we can use 1 instead of the infinitesimal € to replace x — y < ¢ by
x — y < c — 1. The solution, if it exists, must assign integer values to the variables, so
that the same algorithms can be applied to both the real and the integer fragment. B

In the more general case, we have linear arithmetic constraints of the form Ax <,
where A is a matrix over the rationals and b is a vector of rational constants. Fourier’s
method [Fourier 1826; Dantzig and Curtis 1973; Williams 1976], also known as the
Fourier—Motzkin method, can be used to eliminate a variable, say x1, from a set of
m inequalities of the form a;1x1 + -+ + a;px, < b;, for 1 < i < m by transforming
each such inequality into x1 < (—aje/ai1)x1 + -+ + (—ain/a;1)x, + b; for a;7 > 0, and
x1 > (ajo/—a;1)x1+- - -+(a;n/ —a;1)x, +(=b;) for a;; < 0. Then, for any pair of inequalities
of the form x; < U and x; > L, we add the inequality L < U which does not contain
x1. Once all such inequalities have been added, all the inequalities involving x; can
be deleted. The new inequalities can be transformed to the form Ax < b for further
variable elimination until we have either a satisfiable or an unsatisfiable set of numeric
inequalities. The Omega test [Pugh 1992; Berezin et al. 2003] extends Fourier’s method
to mixed constraints with both integer and real variables.

Each elimination step of Fourier’s method produces up to (m/2)? inequalities from
m inequalities so that the method is quite expensive in practice. Inference procedures
based on the simplex procedure for linear programming have proved effective for the
linear arithmetic fragment [Nelson 1981; Detlefs et al. 2003; Vanderbei 2001; Ruess
and Shankar 2004]. These procedures demonstrate the infeasibility of Ax < b by find-
ing a vector y > 0 such that y7Ax = 1 and y75 = 0, where y7 is the transpose
of y. Linear arithmetic equalities s = ¢ can be reduced to the equivalent conjunction
s—t <0At—s <0.The general form simplex has been particularly effective for the
full linear arithmetic fragment [Dutertre and de Moura 2006a]. Here, input inequali-
ties of the form s < ¢, or s > ¢; are converted into tableau entries of the form x, = s

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:29

with a freshly chosen variable x; corresponding to each canonical polynomial s in the
input. We thus have a tableau of the form ¥ = Ay, where the variables in x are the
basis variables and the variables in y are disjoint from those in x and constitute the
non-basis variables. The algorithm then maintains the upper and lower bounds U (x)
and L(x) for each variable x in the tableau. Whenever s < ¢, is added and ¢, < U (xs),
we update U (x;) as ¢, and similarly for L(x;) with respect to the introduction of s > ¢;
with L(xs) < ¢;. The algorithm also maintains an assignment g for the non-basis vari-
ables from which the assignment for the basis variables is computed. Whenever a basis
variable has a computed assignment that violates its bounds, pivoting is used to ex-
change basis and non-basis variables so as to find a new assignment 8’ that does satisfy
the bounds. An inconsistency is determined when there is no suitable pivot candidate
for a basis variable whose assignment violates its bounds. The main advantage of this
general form algorithm is that retraction has very little cost since we can retain the
existing assignment to the variables. The explanation for an inconsistency can be easily
constructed from the simplex tableau.

For the case of linear arithmetic constraints with both integer and real variables,
the above procedure must be supplemented with heuristic methods since complete
procedures can be quite expensive. Strict input inequalities s < ¢ that contain all
integer variables can be replaced by s < [¢ — 1] during pre-processing. For a tableau
entry of the form x = a1x1 + - - - + a,x,, where the variables all range over the integers
and the coefficients are also integers, we can use the GCD test to check that the interval
for x contains a multiple of the greatest common divisor of the coefficients. For example,
if we have x = 3y — 3z with U(x) = 2 and L(x) = 1, we know that the constraints are
not feasible. If the coefficients a; are non-integer rationals, then the tableau entry can
be normalized so that we have bx = ajx1+- - -+a,x,, where a; = a;/b and we can replace
bx by x’ while noting that x” must be divisible by b. The branch-and-bound method is
invoked whenever an integer variable x has a non-integer assignment S(x) to check if
the constraints are feasible when conjoined with either of x < [c] or x > [c].

Nonlinear Arithmetic. The Grébner basis algorithm [Buchberger 1976] can be used to
solve the uniform word problem for algebraically closed fields, that is, fields where
every univariate polynomial of non-zero degree has a root. The algorithm solves ideal
membership over polynomial rings. Given a set of polynomials I1, the ideal generated
by IT is the smallest set I with [T € I and 0 € I that is closed under addition and
multiplication with any polynomial. Given a set of polynomials and an ordering on
the variables, the monomials can be ordered lexicographically so that, for example,
ifx = y > 2z, then x2yz > x?y > xy?z > xyz?2 > xy. This ordering can be lifted
lexicographically to polynomials. One polynomial aM + P can be reduced by another
polynomial bN + @ for pure (i.e., with coefficient equal to 1) monomials M and N
with N > @, nonzero coefficients a and b, and polynomials P and @, if M = M'N for
some monomial M’. The reduction replaces the polynomial aM + P by —aM'Q + bP.
Similarly, the superposition of two polynomials aM + P and bN + @ with M - P and
N > @ adds the polynomialaM’'@ —bN'P, where M’ and N’ are the least polynomials
such that MM’ = NN'. Superposition must not be applied to a pair of polynomials where
one polynomial can be reduced by the other. The set obtained by starting with IT and
repeatedly applying reduction and superposition yields a set of mutually irreducible
polynomials B which is the Grobner basis. A polynomial p is a member of the ideal
generated by IT if it is reducible to 0 by the polynomials in B.

To show that (A_; p; = 0) = p = 0 over algebraically closed fields, we start with the
set IT of the original set of polynomials augmented with py —1 for some fresh variable y,
and apply reduction and superposition to closure while deleting trivial polynomials of
the form 0, to obtain the Grobner basis B of [1. By Hilbert’s Weak Nullstellensatz [Basu

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:30 N. Shankar

et al. 2003], the ideal contains 1 iff IT has no solution. Therefore, if B contains 1, then IT
has no solution. Either /\; p; = 0 has no solution, and trivially (A; p; =0) = p =0, or

there is a solution X . If p{x — X} # 0, then there is some assignment Y to y such that
py{x — X,y — Y} =1, and hence X is also a solution for py — 1 = 0, and hence 1
cannot be contained in B. Hence, (A\; p; = 0) = p = 0. Conversely, if X,Y is a solution
for py — 1, then clearly p{x — X} # 0 and again, 1 is not in the ideal generated by II,
nor in the corresponding basis B.

The Grobner basis algorithm does not apply to ordered fields like the real numbers.
The first-order theory of reals, that is, the set of first-order sentences true in the reals,
is indistinguishable from the theory of real closed fields, i.e., ordered fields where non-
negative elements have square roots and polynomials of odd degree have roots. Tarski
[1948] gave a decision procedure for the first-order theory of real-closed fields which
has been improved by Cohen [1969] and Hormander [1983], and by Collins [1975].
Tiwari [2005] has developed a semi-decision procedure for the universal fragment of
real closed fields combining the simplex algorithm and Groébner basis computations.
Parrilo [2003] gives an alternative approach. Consider first the problem of showing that
a polynomial p is positive semi-definite (PSD), that is, Vx.p > 0 holds for ¥ = vars(p).
If p can be expressed as a sum of squares (SOS) X 1qlz, then it is clearly positive
semi-definite. Such SOS decompositions can be found quite effectively in practice using
semidefinite programming (SDP), a convex optimization technique. Although useful,
this approach is not complete even for proving a single polynomial is PSD: there are
PSD polynomials that are not expressible as a sum of squares of polynomials. However,
the approach can be generalized to the clausal validity problem over real closed fields by
using similar SDP-based methods to generate Positivstellensatz certificates. Harrison
[2007] has incorporated this method into HOL Light by generating proofs for clausal
validity based on the certificates.

Arrays. The clausal validity problem for the extensional theory of arrays (see page 17)
can be solved by lazily instantiating the axioms [Dutertre and de Moura 2006b]. For
example, whenever a # b is asserted, a fresh Skolem constant % is generated along with
the lemma select(a, k) # select(b,k) v a = b. Whenever the array term update(a, i, v)
appears in the E-graph, we add the lemma select(update(a,i,v),i) = v. Addition-
ally, if term b is in the same equivalence class as a or update(a,i,v) , then for any
term select(b, j) in the E-graph, we add the lemma i = j Vv select(update(a,i,v), j) =
select(a, j).

Bit Vectors. The theory of bit-vectors deals with fixed-width bit-vectors and the bit-
wise logical operations, various left and right shift operators, as well as signed and
unsigned arithmetic operations. If an n-bit bit-vector b is (b,_1, ..., by), then the un-
signed interpretation uval (b) is 2" 1b,_1 +- - - + 2%y and the signed (two’s complement)
interpretation is uval ((b,_s, . .., bo))—b,_12"1. A simple approach to a bit-vector solver
is to bit-blast the expression by replacing each bit-vector term b by n bits (b,_1, ..., bo)
and translating all the operations into the bit representations. This can be expensive
and should be done only as needed. Bit-vector problems that require only equality
reasoning can be handled efficiently within the E-graph itself.

Combining Theory Solvers. In applying SMT solvers to problems in verification,
one typically finds verification problems that span multiple theories including ar-
rays, arithmetic, uninterpreted function symbols, and bit-vectors. The Nelson—Oppen
method [Nelson and Oppen 1979; Nelson 1981; Oppen 1980] is a general approach for
combining multiple theory solvers as long as the theories involved are over disjoint
signatures. A cube ¢ over a combined signature X; U Zg, where X1 N Iy = #, is sat-
isfiable in the union of theories if it has a model M whose projection to signature %;

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:31

is a structure in theory i, for i = 1, 2. The first step is to purify the formula into an
equisatisfiable conjunction ¢; A ¢2, where each ¢; is a cube entirely in the signature
3;. Purification is done in stages by replacing a pure subterm s of ¢ in theory i by a
fresh variable x while conjoining x = s to the formula. Eventually, we have a cube of
the form ¢’ A A\]_; x; = s;, where each literal in the cube ¢’ is a pure formula in one of
the theories and each equality x; = s; is also pure. This conjunction can then be easily
partitioned into ¢ A ¢o.

We could now apply the individual theory solvers to check if each ¢; is satisfiable in
theory i, but this does not guarantee satisfiability in the union of the theories since the
individual models might not be the projections of a single model. To ensure that the
models are compatible, we guess an arrangement A of the shared variables in vars(¢;)N
vars(¢e). An arrangement is a conjunction of equalities and disequalities between these
variables corresponding to some partition of the variables into equivalence classes so
that we have x = y for any two variables x and y in the same equivalence class and
x # y for any two variables x and y in distinct equivalence classes. We can then check
that there is some arrangement A among the finitely many arrangements, such that
¢; N A is satisfiable in theory i for i = 1,2. If there is such an arrangement, then
it guarantees that the original formula ¢ is satisfiable in the union of the theories
provided the theories in question are stably infinite: if a formula has a model, it has
a countably infinite one. Without this proviso, we might still have an incompatibility
since the finite cardinalities of the two models might not match. The two countable
models M, and My that agree on an arrangement can be amalgamated into a single
model M for ¢1 A ¢2 by defining a bijection 2 between M and M, such that |M| = | M|,
M(f) = My(f)for f € £1, and M(g)ay, ..., an) = h(Ms(g)h ay), ..., h Hay))) for
g € Y9, and M(x) = M1(x) = h(My(x)) for each shared variable x. Conversely, if the
formula ¢1 A ¢ is satisfiable, then this model yields an arrangement A such that each
¢; A A is satisfiable in theory i.

For example, the literal

select(update(a, 2i + 1, select(a, 3i — 1)),i + 3) # select(a,i + 3)

can be purified to ¢; of the form select(update(a, x, select(a, y)), z) # select(a, z) and ¢
of the formx =2i + 1Ay =3i — 1Az =i+ 3. The shared variables are x, y, and z,
and it can be checked that there is no arrangement A where ¢; A A is satisfiable in the
theory of arrays and ¢2 A A is satisfiable in the theory of integer linear arithmetic.

E-Graph Matching. While there is no complete method for handling first-order quan-
tification, there are some useful heuristic approaches for instantiating quantifiers in
order to derive unsatisfiability within the context of an SMT solver. The E-graph match-
ing method [Nelson 1981; Detlefs et al. 2003] developed in the Stanford Pascal Verifier
is one such approach. The E-graph contains vertices corresponding to terms. A quanti-
fied formula ¢ can be Skolemized so that it is of the form ¢; A - - - A ¢, Wwhere each ¢; is
of the form Vx;.k;, and «; is just a clause.

E-graph matching [Nelson 1981] tries to find a ground instance of the clause «; that
can be added to the set of clauses in SMT procedure. There are usually infinitely many
instances so we need to be selective about adding only those instances that are relevant
to the search. However, if we only search for syntactic matches, then many useful
instantiations could be overlooked. For example, when matching a rule of the form
f(gx)) = g(f(x)), the E-graph term universe might not contain terms of the form
f(g(a)) or g(f(a)), but it might contain terms of the form f(a), where a and some
other term g(b) are in the same equivalence class. E-graph matching is able to find
such a match so that the instance f(g(b)) = g(f (b)) is added to the set of clauses in

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:32 N. Shankar

the SMT procedure. E-graph matching can be controlled by identifying ¢riggers, which
are sets of terms in the clause covering all the free variables that must be matched
before the corresponding instance is added. E-graph matching is an incomplete method
for quantifier instantiation compared to those in the next section, but it is effective
in conjunction with an SMT solver since instantiation is restricted to terms that are
represented in the E-graph.

4. PROOF SEARCH IN FIRST-ORDER LOGIC

The early approaches to proof search [Gilmore 1960; Prawitz 1960] in the late 1950s
were based on the Herbrand theorem. It was observed by Prawitz [1960], and also
by Herbrand [1930] himself, that the Herbrand instantiation could be constructed
by equation solving. This is done by picking a bound %2 on the Herbrand expan-
sion and % sets ¥4, ..., ¥, of mutually disjoint variables, and converting the formula
V(X — Y1} A---AVU{E — ¥,) to disjunctive normal form I'; v - - - v I',. For the formula to
be unsatisfiable, each disjunct I';, 1 <i < w must contain an atom p(sy, ..., s,) and its
negation —p(ty, ..., t,) generating a constraint of the form p(s1,...,s,) = p(t1, ...,).
The constraints collected from each disjunct must be solved simultaneously over Her-
brand terms. Such equations are solved by unification which constructs a single sub-
stitution for the equations s; = ¢4, ..., s, = t,, such that s;o is syntactically identical to
tioforl<i<w. .

For example, the claim Vx.3y.p(x) A =p(y) is unsatisfiable. Here, v is just p(x) A
—p(f(x)), where the Herbrand expansion p(z) A =p(f(z)) A p(f(2)) A p(f(f(2))) with
k = 2 is propositionally unsatisfiable. This expansion could have been obtained by
unification from p(x1) A =p(f(x1)) A p(xe) A =p(f(x2)).

Robinson’s resolution method [Robinson 1965] simplified the application of the Her-
brand theorem by

(1) Placing ¢ in clausal form Vkj A --- A Vk,,,, where the Vk; indicates that the free
variables in each clause «; are universally quantified.

(2) Introducing a resolution inference rule that generates the clause V(x Vv «’)0 from
k vk and =k’ v k', where 0 is the most general unifier of k and k’. For 6 to be a
unifier of £ and &', the substituted forms £6 and £’0 must be syntactically identical.
For 6 to be the most general unifier of £ and %', it must be the case that for any
other unifier 6’, there is a substitution o such that ' = 6 oo. In other words, for any
substitution x > ¢’ in 6’, either x — ¢t in 6 and ¢’ = ¢o, or there is no substitution for
xin 6 and ¢’ = xo. The clauses k& v k and =k’ v " are assumed to have no variables
in common. Note that this extends the propositional binary resolution rule to the
first-order case by using unification.

(3) Adding a factoring rule to derive (k& v «)0 from & v k' Vv «, where 6 is the most general
unifier of £ and %&’. Otherwise, if we resolve P(x) v P(x’) with =P (y) v —=P(y’), we
get P(x’) v —=P(y’) and we would never be able to construct a refutation.

Resolution inferences are repeated until the empty clause is generated. The above
example p(x)A—p(f(x)) generates two clauses p(x) and —p(f (y)) which can be resolved
to yield the empty clause. Since validity in first-order logic is undecidable, resolution can
only be a semi-decision procedure. When the input clause set is in fact unsatisfiable,
the procedure will eventually terminate with the empty clause. However, when the
input is satisfiable, the procedure might not terminate. By the Herbrand theorem, we
know that if the formula is unsatisfiable, then some Herbrand expansion of the input
clause set is propositionally unsatisfiable. The corresponding propositional resolution
refutation can be easily simulated by the first-order resolution procedure above as long

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:33

x=yVvLx=zVK,T

Right

g y=zVLVK,x=yvLx=zVK,T

Left x=yvLux#zVvK,T
y#zVLVK,x=yvLx#zVK,T

x#xVvL,T

EqR: — L t;

ares L,x#xVvL,T nonempty

Factor x=yvx=zVL,T
x=zVy#zvLx=yvx=zVL,T

r
Contrad x;élx,

Fig. 12. Inference system for superposition.

as the rules are applied fairly, that is, each applicable instance of the resolution or
factoring rule is eventually applied.

The basic resolution system described above has many variants and refine-
ments [Bachmair and Ganzinger 2001]. Subsumption is an incomplete syntactic check
for whether one clause is implied by another, in which case the former clause is deleted
for efficiency. The unification algorithm can be enhanced to incorporate theory reason-
ing [Stickel 1985]. Associative-commutative unification [Baader and Snyder 2001] and
higher-order unification [Dowek 2001] are two such examples.

The resolution rule can itself also be enriched to handle equality (using demodula-
tion, paramodulation, and superposition) [Nieuwenhuis and Rubio 2001] and inequal-
ity [Stickel 1985; Manna et al. 1991]. Most modern proof search systems use superpo-
sition [Bachmair et al. 1992; Nieuwenhuis and Rubio 1992], which applies to clauses
that contain equality and disequality literals. Non-equality literals of the form p and
—p can be rewritten to p = T and p # T, respectively. We briefly introduce an inference
system for the simplest form of superposition where the atoms are of the form x = y.
We assume an ordering > on variables. Equalities are kept ordered so that if x = y,
x > y. Ordering is lifted to literals sothat x = y > x' = y’ (and x # y > x' # y’) iff
x>x'orx=x"andy > y,and x # y = x = y’ for any y, y’. Literals of the form
x # x are deleted from input clauses. Clauses are maintained in decreasing order, and
tautologies containing 2 and & or x = x are deleted from the input. For example, given
the order x = y > z,theset {y =z,x = y vx = z,x # y Vx # z} contains three
ordered clauses.

The superposition inference system for the pure equality fragment is shown in
Figure 12. In each inference step, we either derive a contradiction or add a new clause.

The following derivation shows how a contradiction can be derived from the above
clause set by applying the inference rules in Figure 12.

y=2, x=yVx=z, XF#ZyVx#z
x=zVy#z,...
X#zVYyH#z,...
zZ2F#zVYy #z, .
EqRes
YFEZ
z2#z, ...
L

Factor

Left
Left

Contrad

The above rules can be extended to the ground case where we have ground terms
instead of variables so that x, y, and z are actually terms r, s, and ¢, and in the Right

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:34 N. Shankar

rule, r = s v L is resolved with ¢[r] = ¢’ v K to yield the new clause t[s] = ¢’ v K.
The other rules are similarly generalized to ground terms from variables. The calcu-
lus can also be lifted to the non-ground case by using unification instead of syntactic
equality [Nieuwenhuis and Rubio 2001].

Theorem provers based on resolution include Otter [McCune 1990], E [Schulz 2002],
Snark [Stickel et al. 2000], SPASS [Weidenbach et al. 2002], Vampire [Riazanov and
Voronkov 2002], and Prover9 [McCune 2007]. The annual CASC competition (CADE
ATP System Competition) [Sutcliffe and Suttner 2006] evaluates the performance of
theorem proving systems in various categories of first-order logic with and without
equality.

5. INTERACTIVE PROOF CHECKERS

In the previous sections, we have seen different ways in which proof and model con-
struction can be automated. Even with such automation, proof construction remains
a difficult challenge that calls on human insight and guidance, and a great deal of
experimentation. A lot of the time and effort in constructing proofs is devoted to debug-
ging incorrect definitions, conjectures, and putative proofs. Regardless of the level of
automation provided by a theorem proving tool, interactivity is needed for delving into
the details of an attempted proof. Interactive proof checking has its origins in the work
of McCarthy [1962] and de Bruijn’s Automath project [de Bruijn 1970, 1980; Nederpelt
et al. 1994]. The technology for interactive proof checking was further developed by
Bledsoe [Bledsoe and Bruell 1974], Milner [Milner 1972], Weyhrauch [Weyhrauch and
Thomas 1974], and Boyer and Moore [1975]. We briefly survey a few of the systems that
are actively used in major verification projects including ACL2 [Kaufmann et al. 2000],
Coq [Bertot and Castéran 2004], HOL [Gordon and Melham 1993], Isabelle [Paulson
1994], Nuprl [Constable et al. 1986], and PVS [Owre et al. 1995].

5.1. Maude: A Fast Rewrite Engine

Maude [Clavel et al. 1999] and ELAN [Borovansky et al. 2002] are fast and versatile
rewrite engines that can be used for building other semantics-based tools. While the
rewrite engines are automatic, interaction is used to develop a formal specification
consisting of a series of declarations and definitions. Maude is a successor of the OBJ3
system [Goguen et al. 1987] and is based on rewriting logic where different rewriting
steps applied to the same term need not be confluent. Maude’s rewriting framework is
based on membership equational logic which extends first-order conditional equational
logic with subsorts and membership assertions of the form ¢ : s for term ¢ and sort s.
Each sort is required to be a subsort of a parent kind. The signature, equations ! =r,
conditional equations [= r, if b, and rewrite rules [= r are given in a module.
Maude also allows terms to be treated as equivalent modulo a theory E with respect
to rewriting. Thus, a term [’ will be rewritten by a rewrite rule [— r if there is a
substitution o such that E + o(l) = [’. This allows the language to capture states as
terms and state transitions as rewriting steps.

The Maude rewriter employs term-indexing techniques to achieve high speeds of
rewriting. By the use of rewriting logic, Maude can be used to define and explore the com-
putational state and operational semantics of a wide range of models of computation.
Maude has several interesting applications in metaprogramming [Clavel et al. 1999],
program analysis tools [Meseguer and Rosu 2005], symbolic systems biology [Eker et al.
2003], and the analysis of cryptographic protocols [Escobar et al. 2007].

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:35

5.2. ACL2: Recursion and Induction

ACL2 [Kaufmann and Moore 1996; Kaufmann et al. 2000] is the most recent in a line
of inductive theorem provers initiated by Boyer and Moore [1979, 1988] in 1973. These
provers are built on a computational logic formalizing pure Lisp given by McCarthy
[1963]. The ACL2 logic is based on an applicative fragment of the widely used program-
ming language Common Lisp [Steele Jr. 1990]. The theorem prover is itself written in
this fragment. It can be used interactively to construct a formal development consist-
ing of datatypes, axioms, definitions, and lemmas. The definitions can be compiled and
executed as Common Lisp functions. When a recursive definition is presented to ACL2,
the prover attempts to establish the termination of the recursion scheme. It does this
by constructing a measure or a size function on the arguments that decreases with
each recursive call according to a well-founded ordering, that is, an ordering without
any infinite descending chains. The prover retains an induction scheme, based on the
termination ordering, for use in induction proofs, and also infers a small amount of
useful type information about the definition for future use.

The ACL2 interactive prover can be used to attempt to prove conjectures. When given
a conjecture, the prover tries to prove the theorem using a cascade of simplifications, a
recursive waterfall, involving equality and propositional reasoning, case analysis, and
rewriting with definitions and lemmas. Each step can generate zero or more subgoals,
each of which is processed from the top of the waterfall. When there are no remaining
subgoals, the proof has succeeded. When a conjecture does not succumb to simplifi-
cation, the prover attempts a proof by induction. The termination arguments for the
recursive definitions that appear in the conjecture are used to construct an induction
scheme. The subcases of the induction proof are subject to the recursive waterfall. Any
unproven subgoals are generalized so that a nested induction can be applied to them.

We give a brief example of ACL2 at work. The theories of numbers and lists is built
into ACL2. Lists are defined by the constructors NIL and CONS, where the latter con-
structor has accessors CAR and CDR, and a corresponding recognizer CONSP. The operation
(ENDP X) is defined as (NOT (CONSP X)). Boolean reasoning is internalized so that the
truth value T is represented by the symbol T and L is represented by the symbol NIL.
A formula ¢ with free variables x1, ..., x, is valid if no ground instance of it is equal to
NIL.

The recursive definition of TRUE-LISTP describes a predicate that holds only when the
argument X is a list that is terminated by NIL. The Common Lisp equality predicate EQ
is used to compare X to the symbol NIL.

(DEFUN TRUE-LISTP (X)
(IF (CONSP X)
(TRUE-LISTP (CDR X))
(EQ X NIL)))

The operation of reversing a list can be defined as below. It can be shown to terminate
by the well-founded ordering on the size of X. In general, termination measures can be
given using a representation of the ordinals below ¢(, the least ordinal « such that
a = o“. These ordinals and their corresponding ordering can be defined in primitive
recursive arithmetic and can describe nontrivial nested lexicographic orderings.

(DEFUN REV (X)
(IF (ENDP X)
NIL
(APPEND (REV (CDR X)) (LIST (CAR X)))))

The definition can be evaluated at the prompt so that we can check that (REV ’ (3 4
5)) evaluates to the list (5 4 3), and (REV (REV ’(3 4 5))) is (3 4 5). If we now try

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:36 N. Shankar

to prove the conjecture REV_OF_REV below, the proof attempt fails.

(DEFTHM REV_OF_REV
(EQUAL (REV (REV X)) X))

Since REV is a recursive function, ACL2 attempts a proof by induction which even-
tually yields a subgoal of the form (IMPLIES (NOT (CONSP X)) (NOT X)), which fails
because it is possible for X to be a non-CONSP without being equal to NIL. This claim
obviously only holds if X is constrained to satisfying the TRUE-LISTP predicate. If we
now fix the statement of the conjecture, ACL2 is able to prove this automatically.

(DEFTHM REV_QOF_REV
(IMPLIES (TRUE-LISTP X)
(EQUAL (REV (REV X)) X)))

In attempting the proof by induction, ACL2 is able to conjecture that the main induc-
tion subgoal requires the lemma below, which it is able to prove directly by induction.

(EQUAL (REV (APPEND RV (LIST X1)))
(CONS X1 (REV RV)))

Large sequences of definitions and theorems can be developed in this manner and
packaged into files containing definitions and theorems, called books. ACL2 has been
used in an impressive list of verifications in logic [Shankar 1994], number theory [Russi-
noff 1988], hardware [Hunt, Jr. 1989], system verification [Bevier et al. 1989] including
several involving commercial systems. These include the verification of floating-point
hardware at AMD [Russinoff 1999] and various processor and systems verification
efforts at Rockwell-Collins [Greve et al. 2003]. Bundy [2001] describes the various ap-
proaches to automating inductive proofs.

5.3. The LCF Family of Tactical Proof Systems

LCF is actually an acronym for Scott’s Logic for Computable Functions [Scott 1993]
but the name is more closely associated with a class of extensible proof checkers pio-
neered by Gordon et al. [1979]. The programming language ML [Gordon et al. 1977]
was developed to serve as the metalanguage for defining proof checkers in the LCF
style. The key idea is to introduce a datatype thm of theorems. The constructors of this
datatype are the inference rules that map thm list to thm. Tactics written in ML are
used to convert goals to subgoals so that 7(G) = {S1, ..., S,} with a validation v such
that v(S1,...,S,) = G. A proof can be constructed backwards by applying tactics to
goals and subgoals or forwards from axioms by building validations using inference
rules.

Harrison [2001] presents a simple LCF-style implementation of a proof system for
equational logic displayed in Figure 5 (page 13). First, the thm datatype is introduced
with the signature Birkhoff.

module type Birkhoff =

sig type thm

val axiom : formula -> thm

val inst : (string, term) func -> thm -> thm
val refl : term -> thm

val sym : thm -> thm

val trans : thm -> thm -> thm

val cong : string -> thm list -> thm

val dest_thm : thm -> formula list * formula
end;;

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:37

module Proven : Birkhoff =
struct
type thm = formula list * formula
let axiom p =
match p with
Atom("=",[s;t]) -> ([pl,p)
| _ -> failwith "axiom: not an equation"
let inst i (asm,p) = (asm,formsubst i p)
let refl t = ([],Atom("=",[t;t]))
let sym (asm,Atom("=",[s;t])) =
(asm,Atom("=", [t;s]))
let trans (asml,Atom("=",[s;t]))
(asm2,Atom("=",[t’;ul)) =
if t’ = t then (union asml asm2,Atom("=",[s;ul))
else failwith "trans: theorems don’t match up"
let cong f ths =
let asms,eqs =
unzip(map (fun (asm,Atom("=",[s;t]))
-> asm, (s,t)) ths) in
let 1s,rs = unzip eqs in
(unions asms,Atom("=", [Fn(f,1s);Fn(f,rs)]))
let dest_thm th = th
end;;

Fig. 13. An LCF-style proof system for equational logic.

A structure of this signature can then be defined to implement the datatype thm
as a subset of sequents of the form I' - ¢ that are constructed using the inference
rules implemented in Figure 13. The constructor Fn applies a function symbol to a
list of arguments, and the constructor Atom applies the equality symbol to a list of two
arguments. A sequent I' F ¢ is represented as a pair consisting of the list of assumptions
[and the equality ¢. As an example of an inference rule, the congruence rule cong takes
a list of theorems of the form I'y ~ sy = #1,...,, = s, = ¢, and returns the sequent
UiTi = f(s1,...,8) = ft1, ..., tn).

By composing the constructors for the thm datatype, we can construct derived in-
ference rules in terms of functions that take a list of elements of type thm to a thm.
It is also possible to build proofs backwards from goal sequents to subgoal sequents
through the application of a tactic to the goal as described above. Tactics can be defined
in the metalanguage ML. The application of a tactic to a goal can generate zero or more
subgoals, or terminate with an exception. The application of a tactic could generate
an inappropriate validation in which case the proof would eventually fail. Tactics can
be composed using tacticals such as those for sequencing, alternation, and repetition.
Tacticals can also be defined in the metalanguage ML. The LCF approach thus facili-
tates the construction of interactive proof checkers that can be extended with derived
inference rules while preserving soundness relative to a small kernel.

Many proof checkers are based on the LCF approach, including HOL [Gordon
and Melham 1993], HOL Light [Harrison 1996], Coq [Bertot and Castéran 2004],
Isabelle [Paulson 1994], LEGO [Luo and Pollack 1992], and Nuprl [Constable et al.
1986]. We examine some of these systems in greater detail below.

5.3.1. HOL and Its Variants. Automated reasoning in higher-order logic was actively
investigated by Andrews in his TPS system [Andrews et al. 1988]. The use of higher-
order logic in interactive proof checking was initiated by Hanna and Daeche [1986] and
Gordon [1985] to address hardware description and verification. Currently, the most
popular higher-order logic proof checkers are HOL4 [Slind and Norrish 2008], HOL
Light [Harrison 1996], and Isabelle’HOL [Nipkow et al. 2002]. These proof checkers
are widely used in formalizing mathematics and program semantics, and in verifying

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:38 N. Shankar

FrFu:¢pr ThHt:¢p1= do Cx g1t
X1:P1,.. . X s X i C'Etu: gy I'EAx 1)t : 1 = P2

Fig. 14. Proof terms for natural deduction.

'Fu:dr A e 'Fu:dr A g NkFtu:d o Fug: o
I Ffstw): ¢1 I Fsndw) : ¢o I, To - (u,v): 91 Ao

Fig. 15. Proof terms for conjunction.

hardware, distributed algorithms, cryptographic protocols, and floating point algo-
rithms. Recently, Hales [2002, 2009] has initiated the Flyspeck project to verify his
computer-based proof of Kepler’s conjecture about the optimality of the cannonball
packing of congruent spheres. The verification of the proof involves Coq, HOL Light,
and Isabelle/HOL.

The HOL Light system, for example, is based on a very small kernel with types for
Booleans and individuals, inference rules for equality (reflexivity, symmetry, transi-
tivity, congruence, B-reduction, extensionality, and equivalence), and axioms for in-
finity and choice. In addition, there is a definition principle for defining new con-
stants. New types can be introduced axiomatically provided they are shown to be
interpretable in the existing type system. The higher-order logic admits paramet-
ric polymorphism through the use of type variables. The resulting kernel runs to
about 500 lines of OCaml code. HOL Light has been used extensively for the verifi-
cation of floating point hardware algorithms [Harrison 2006] and for formalizing sev-
eral interesting proofs from various branches of mathematics [Hales 2007] (see also
http://www.cs.ru.nl/ " freek/100/hol.html).

5.3.2. Nuprl and Coq: Proofs in Constructive Type Theories. Both Nuprl [Constable et al.
1986] and Coq [Coquand and Huet 1988; Bertot and Castéran 2004] are based on the
Curry-Howard isomorphism [Howard 1980] between propositions and types. The impli-
cational fragment of intuitionistic logic offers a simple illustration of this isomorphism.
The natural deduction sequent I' - ¢ represented by the judgment x; : y4,...,x, :
vn =t 1 ¢ and asserts that ¢ is a proof term for ¢ from the hypothetical proof terms
(variables) x1, ..., x, corresponding to the assumptions I' = y4, ..., y,,. Here, the context
X1:Y1,...,%, . ¥, contains exactly one declaration x; : y; for each variable x;. The in-
troduction rule for implication builds a proof term using lambda-abstraction, whereas
the elimination rule uses function application corresponding to the use of the modus
ponens rule of inference. Thus, complete proofs are represented by well-typed closed
terms of the typed lambda calculus, and the propositions proved by these proofs corre-
spond to the types for these terms. A proposition is provable if the corresponding type
is inhabited by a term.

If the above proof rules (see Figures 14—-16) are viewed as the type rules of a simply
typed lambda calculus, then the formula ¢; = ¢9 corresponds to a type A;— Ay. The
simply typed lambda calculus can be extended in several directions. One extension
is to add conjunction ¢; A ¢ with the introduction and elimination rules shown in
Figure 15. The conjunction ¢; A ¢e then corresponds to the product type A x B. Similarly,
intuitionistic disjunction can be presented with rules that correspond to the typing rules
for the disjoint union A + B over types A and B.

One can extend the proof/type rules in the direction of first-order logic by introduc-
ing dependent types. Dependent product types are represented as (V(x : A).B(x)) and
characterize those functions that map elements a of type A to elements of type B(a).
Dependent sum types are represented as (3(x : A).B(x)), and capture pairs of elements

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:39

FFu:¢r ThHE:(Vx:d1)d9) Fox:p1 Lo
C'Ftu: gofx — u} Iz gp)t) : (Vx : dp).02)
FFu:@x:¢1.¢9) CEuw:@3x:¢r.¢9) FCHt:¢p1 Thu:golx — ¢t}
I+ fst(u) : ¢1 I Fsnd(u) : ¢pof{x — fst(u)} CH@E,w):3x : ¢1.99

Fig. 16. Proof terms for quantification.

(a, b) such that a is an element of type A and b is an element of type B(a). The type rules
for implication and conjunction can be modified as shown in Figure 16. In particular,
the function type A— B is just (V(x : A).B), where B does not contain a free occurrence
of x, and similarly A x B isjust (3(x : A).B), where B does not contain a free occurrence
of x.

The typed lambda calculus can be extended along a different dimension to allow type
abstraction. Dependent typing allows types to be parameterized by terms, whereas
polymorphism allows both types and terms parameterized by types. Let * represent
the kind of types so that ' - (V(x : A).B) : x follows from I' - A : % and I',x :
A F B : x. Then the type of the polymorphic identity function (A(« : *).(A(x : «).x)) is
(V(a : *%).a—«a). Polymorphism can also be used introduce representations for inductive
types like natural numbers and lists. We can also define the other logical connectives
using type quantification.

A—B = (¥V(x : A).B), x not free in B
A+ B = (VC:%).(A-C)—(B—=(C)—=C)
(3(A :%).B) = (V(C : %).¥V(x : A).B—C)—~(C)

There is one further dimension along which the expressiveness of the calculus can be
increased. While the introduction of the kind * yielded types of the form V(A : x).A— A,
we still do not have lambda-abstraction with respect to type variables. For example, we
cannot construct A(A : x).A— A. For this purpose, the notation O is introduced to rep-
resent the class of well-formed kinds so that the typing judgment A(A : %) A—A : x—x*
holds, where x—x : 0. These three dimensions of term-parametric types (dependent typ-
ing), type-parametric terms (polymorphism), and type-parametric types (type construc-
tors) form the three dimensions of Barendregt’s cube [1992] of typed lambda-calculi that
satisfy strong normalization: all reduction sequences terminate. The Calculus of Con-
structions [Coquand and Huet 1988] is the most expressive of these calculi. It is based
on a typed lambda calculus that integrates both dependent typing and polymorphism,
while admitting type abstraction in constructing types. In this calculus, the polymor-
phic dependently typed lambda calculus is augmented with rules for O such that - * : O
holdsand '+ (V(x : @).8) : Oif T Fa:O0and ' x : o = B : O. If two types A and B, when
fully g-reduced, are identical modulo the renaming of bound variables, then any term
of type A also has type B. We then obtain a type system shown in Figure 17 that is the
foundation for the Coq proof checker [The Coq Development Team 2009]. The system
also includes a mechanism for directly defining inductive types [Paulin-Mohring 1993].

The Coq system has been used in several significant proof checking exercises includ-
ing a complete proof of the four color theorem [Gonthier 2008], Godel’s first incom-
pleteness theorem [O’Connor 2005], the correctness of a compiler for a subset of the
C language [Leroy 2007], and the correctness of various inference procedures [Théry
1998].

The logic of the Nuprl proof checker is based on Martin-Lo6f’s intuitionistic type
theory [Martin-Lof 1980]. Nuprl employs Curry’s version of the typed lambda cal-
culus where the variables in the terms are not restricted to specific types, but type

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:40 N. Shankar

B0
'EA:x N« :0O
MLx:AFx:A Mx:kkx:x
MLx:AFB:x* Mx:Akk:0O
' (Y(x:A).B):x* F'EMx:A.x):O
NLx:ArFB:x T,x:AFs:B MLx:ArFk:O ,x:AFB:«k
' (x:A).s): (V(x:A).B) ' (x:A).B): (V(x :A).x)
F'ks:(V(x:A).B) TkHt:A F'ks:(Vx:A)x) THt:A
I'tst:Bl{x +— t} I'bEst:k{x—t}
FFs:A I'B:x A= B FHA:« F+«:0 k=g K
's:B r-A:«

Fig. 17. The calculus of constructions.

inference is used to derive the types. Propositions in this type system are built from ba-
sic types such as int and void (the empty type) using dependent products (V(x € A).B(x)
corresponding to universal quantification, and dependent sums (I(x € A).B(x) corre-
sponding to existential quantification. Other type constructors include the subset type
{x : A | B} which contains elements a of type A such that the type B(a) is inhabited,
and the quotient type A//E, where E is an equivalence relation on A. The type atom
of character strings and the type A 1ist of lists over A are also included in the type
system. For any type A and terms a and b of type A, the expression a = b € A is also
a type. There is also a primitive type a < b for a and b of type int. Finally, there is a
cumulative hierarchy of type universes Uy, ..., U,, ..., where each U, is a term of type
U;,1 and every term of type U; is also of type U;,; for i > 0. Nuprl has been used in
optimizing the protocol stack for a high-performance group communication system [Liu
et al. 1999].

5.4. Logical Frameworks: Isabelle, A-Prolog, and Twelf

A logical framework is a way of defining a wide range of object logics while sharing the
implementation of basic operations like substitution. When representing the syntax
of object logics, there is a choice between first-order abstract syntax using Lisp-style
s-expressions or higher-order abstract syntax [Harper et al. 1987; Pfenning 2001] that
employs lambda abstraction at the metalogical level as a way of capturing substitu-
tion at the object level. Logical frameworks such as A-Prolog [Miller and Nadathur
1986; Nadathur and Miller 1990], Isabelle [Paulson 1994], and Twelf [Pfenning and
Schiirmann 1999] employ higher-order abstract syntax. Logics are represented in a
small subset of higher-order intuitionistic logic similar to the Horn fragment used in
logic programming. This way, if ® is the type of formulas in the object language, then
A, V, and = in the object logic can be represented by constructors and, or, and implies
with the type ®— ®— &, and — by not with the type ®— ®. Interestingly, however, uni-
versal and existential quantification can be represented by higher-order constructors
forall and exists of type i— @, where i is the type of individuals in the higher-order
metalogic.

The next step is to represent proofs. One approach is to represent a proof predicate
proof(mw, ¢) to represent the assertion that 7 is a proof of ¢. Then, we can represent the
proof rules as logic programs so that the natural deduction rules for implication are as
follows.

proof(imp_i(P1), implies(A, B))
:= (VP.proof(P, A) = proof(P1(P), B)).

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:41

proof(imp_e(P1, P2, A), B)
:- proof(P1, implies(A, B)), proof(P2, A).

Note that the antecedent of the introduction rule uses universal quantification and
implication. The logic programming fragment used here is therefore more expressive
than the Horn clause fragment used by Prolog. The introduction and elimination rules
for universal quantification can also be transcribed as logic programming clauses.

proof(forall i(P), forall(A)) :- (V(c :i).proof(P(c), Alc))).
proof(forall e(P,t), A(¢)) :- proof(P,forall(A)).

The Isabelle logical framework [Paulson 1994] uses intuitionistic higher-order logic
with implication, universal quantification, and equality with a resolution strategy for
constructing object-level proofs by means of theorem proving at the meta-level. Many
different object logics have been formalized in Isabelle, but ZF set theory and higher-
order logic (HOL) are the ones that are most developed. Isabelle has a number of generic
interfaces for defining simplifiers and other inference tools, including a tableau-based
proof search engine for first-order logic. Isar [Wenzel 1999] is a declarative style of
proof presentation and verification for Isabelle inspired by the Mizar proof checking
system [Rudnicki 1992]. Isabelle/HOL has been used for verifying a number of cryp-
tographic protocols [Paulson 1998]. It is also used within the Flyspeck project [Hales
2002; Hales et al. 2009], the Verisoft project for the pervasive verification of a dis-
tributed real-time system [Knapp and Paul 2007], and the ongoing verification of the
sel4 microkernel [Elkaduwe et al. 2008].

The A-Prolog [Nadathur and Miller 1990] logical framework uses hereditary Harrop
formulas to define a logic programming engine. The Teyjus logic programming frame-
work [Nadathur and Mitchell 1999]implements this form of higher-order logic program-
ming. The Twelflogical framework [Pfenning and Schiirmann 1999] employs dependent
typing and a propositions as judgments interpretation of intuitionistic logic.

5.5. PVS: Integrating Type Systems and Decision Procedures

The Prototype Verification System (PVS) [Owre et al. 1995] occupies the middle ground
between a highly automated theorem prover like ACL2 and an interactive checker for
formal proofs in the LCF style. In particular, PVS exploits the synergy between an
expressive specification language and an interactive proof checker that can be used
to develop proof scripts that integrate several automated tools. The PVS specification
language is based on higher-order logic enhanced with predicate subtypes (similar to
the subset type from Nuprl), dependent types, structural subtypes (where a record can
have more fields than its supertype), inductive and coinductive datatypes, parametric
theories, and theory interpretations. The PVS proof checker builds on a range of de-
cision procedures including SAT and SMT procedures [Shostak et al. 1982; Dutertre
and de Moura 2006b], binary decision diagrams, symbolic model checking [Rajan et al.
1995], predicate abstraction [Saidi and Graf 1997; Saidi and Shankar 1999], and de-
cision procedures for monadic second-order logic and Presburger arithmetic (MONA)
[Elgaard et al. 1998]. Even with automation and scripting, interaction is still needed
in PVS to direct the induction, case analysis, definition expansion, and quantifier in-
stantiation steps needed to build readable proofs.

A significant subset of the PVS language is executable as a functional language. The
code generated from this subset includes optimizations for in-place updates. The PVS
framework is open so that new inference tools can be plugged into the system. PVS has

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:42 N. Shankar

been used as a back-end inference framework in a number of tools including TLV [Pnueli
and Shahar 1996], Why [Fillidtre and Marché 2007], LOOP [van den Berg and Jacobs
2001], Bandera [Corbett et al. 2000], PVS-Maple [Adams et al. 2001], TAME [Archer
and Heitmeyer 1996], and InVeSt [Bensalem et al. 1998]. PVS has also been applied in
a number of significant verification exercises covering distributed algorithms [Miner
et al. 2004], hardware verification [Ruef} et al. 1996], air-traffic control [Carreno and
Muiioz 2000], and computer security [Millen and Ruel3 2000].

6. LOOKING AHEAD

Logic is a fertile semantic foundation for writing specifications, building models, and
capturing program semantics. It has been used this way in verification for a very long
time, but recent advances in the level of automation have made it possible to apply
these techniques in a scalable way to realistic software. These automated tools include
satisfiability procedures, rewriting engines, proof search procedures, and interactive
proof checkers. Individual tools will of course continue to gain in power and expres-
siveness. They will also find novel applications in verification as well as in areas like
artificial intelligence and computer-aided design. The major advances will be in the
integration of heterogeneous deductive capabilities, including

(1) Semantic interoperability between different inference procedures and logics through
a semantic tool bus. Many interesting analyses require cooperation between satisfi-
ability procedures, static analysis tools, model checkers, rewriters, and proof search
engines for the purpose of generating and checking abstractions, assertions, and
termination ranking functions.

(2) Better integration of constraint solving, matching, and unification [Baader and
Snyder 2001]. There has already been a lot of work in adding associative-
commutative operations and higher-order unification [Dowek 2001], but there is
a rich set of theories such as arithmetic, encryption, arrays, and partial orders,
where unification enhanced with constraint solving can be very effective.

(3) Satisfiability under quantification. This is another area where there is plenty of
scope for dramatic improvements. Quantified Boolean Formulas (QBF) augment
propositional formulas with Boolean quantification. QBF satisfiability procedures
are being actively developed for a variety of applications. Proof search procedures
for quantified formulas that exploit SMT solvers can be significantly more effective
than pure first-order proof search [Stickel 1985; Ganzinger and Korovin 2006].

(4) Integrating deduction, abstraction, static analysis, and model checking. The compan-
ion survey by Jhala and Majumdar [2009] covers the key ideas in software model
checking, analysis, and verification. Recent systems like Spec# [Barnett et al. 2005],
BLAST [Henzinger et al. 2003], TVLA [Bogudlov et al. 2007], Bohne [Wies et al.
2006], and Dash/Yogi [Beckman et al. 2008] incorporate diverse tools for analysis
and deduction.

(5) Experimental evaluation and benchmarking. Competitions such as CASC [Sutcliffe
and Suttner 2006], SAT [Simon et al. 2005], and SMT-COMP [Barrett et al. 2005]
have led to the accumulation of a useful body of benchmarks for optimizing the
performance of inference procedures. A lot of the recent progress in inference pro-
cedures can be attributed to these competitions and the standardized benchmarks.

(6) Fine-grained classification of feasibility. Many useful fragments of logic have sat-
isfiability problems that are either infeasible or undecidable, yet there are many
instances where this does not pose an insurmountable obstacle to practical use.
There is clearly a lot of work that needs to be done in characterizing the class of

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:43

problems that are feasibly solvable along with techniques that are effective in prac-
tice.

(7) Synthesis. The synthesis of formulas satisfying certain constraints including inter-
polants, invariants, abstractions, interfaces, protocols, ranking functions, winning
strategies, and ruler-and-compass constructions.

7. CONCLUSIONS

Software verification is a challenging problem because it relates three complex con-
cepts: software, properties, and proofs. Automated deduction is an important tool for
stating and verifying properties of software, supporting stepwise program refinement,
generating test cases, and building evidence supporting formal claims for software cor-
rectness. Recent years have seen exciting progress in the automation and efficiency of
theorem provers as well as in novel applications of automated deduction techniques.
While automated deduction is a highly developed discipline with a sophisticated range
of tools and techniques, there is a coherence to the core ideas that we have presented
here. This is illustrated, for example, in the way that the DPLL satisfiability procedure
generates proofs based on resolution. Automated deduction could fruitfully interact
with other disciplines like philosophy, biology, economics, knowledge representation,
databases, programming languages, and linguistics. Vannevar Bush, in his prescient
1945 article As We May Think, predicted that

Logic can become enormously difficult, and it would undoubtedly be well to produce more assurance in
its use. ... We may some day click off arguments on a machine with the same assurance that we now enter
sales on a cash register.

This prediction, like his other ones, may yet prove accurate, but for software verification,
automated deduction is already a critical technology.

ACKNOWLEDGMENTS

Tony Hoare and Jayadev Misra suggested the idea for this survey article and shepherded it through many re-
visions with copious feedback, advice, and encouragement. Bruno Dutertre, Jean-Christophe Filliatre, John
Harrison, David Naumann, Sam Owre, John Rushby, Andreas Podelski, Alexandre Rademaker, Mark-Oliver
Stehr, and Ashish Tiwari carefully read through earlier drafts and suggested many improvements. Bill Mc-
Cune and Matt Kaufmann responded with clarifications on specific points. The article has been significantly
improved by the detailed, authoritative, and deeply knowledgeable comments from the anonymous referees.

REFERENCES

ABpULLA, P. A., CerANs, K., JoNssoN, B., anp Tsay, Y.-K. 1996. General decidability theorems for infinite-
state systems. In Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science. IEEE
Computer Society Press, Los Alamitos, CA, 313-321.

ABRAMSKY, S., GaBBay, D. M., AND MaiBaum, T. S. E., Eps. 1992a. Handbook of Logic in Computer Science;
Volume 1 Background: Mathematical Structures. Oxford Science Publications, Oxford, UK.

ABRAMSKY, S., GaBBay, D. M., AND MamBaum, T. S. E., Eps. 1992b. Handbook of Logic in Computer Science;
Volume 2 Background: Computational Structures. Oxford Science Publications, Oxford, UK.

ABRIAL, J.-R. 1980. The Specification Language Z: Syntax and Semantics. Programming Research Group,
Oxford University, Oxford, UK.

ABRIAL, J.-R. 1996. The B-Book: Assigning Programs to Meanings. Cambridge University Press, Cam-
bridge, MA.

Apams, A., DunstaN, M., GorTLIEBSEN, H., KELsEY, T., MarTIN, U., AND OWRE, S. 2001. Computer algebra
meets automated theorem proving: Integrating Maple and PVS. In Proceedings of the Theorem Proving
in Higher Order Logics, TPHOLs 2001, R. J. Boulton and P. B. Jackson, Eds. Lecture Notes in Computer
Science, vol. 2152. Springer-Verlag, Berlin, Germany, 27-42.

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:44 N. Shankar

Awmra, N., Dy, X., KueHLMANN, A., KursHAN, R. P., anD McMmran, K. L. 2005. An analysis of SAT-based
model checking techniques in an industrial environment. In Prceedings of the Correct Hardware Design
and Verification Methods: 13th IFIP WG 10.5 Advanced Research Working Conference, CHARME 2005,
D. Borrione and W. Paul, Eds. Lecture Notes in Computer Science, vol. 3725. Springer-Verlag, Berlin,
Germany, 254-268.

AnDRrEWS, P. B. 1986. An Introduction to Logic and Type Theory: To Truth through Proof. Academic Press,
New York, NY.

Anprews, P. B., Issar, S., NesmitH, D., anp PrenniNng, F. 1988. The TPS theorem proving sys-
tem. In 9th International Conference on Automated Deduction (CADE), E. Lusk and R. Over-
beek, Eds. Lecture Notes in Computer Science, vol. 310. Springer-Verlag, Berlin, Germany, 760-
761.

ArcHER, M. aAND HEITMEYER, C. 1996. TAME: A specialized specification and verification system for timed
automata. In Work In Progress (WIP) Proceedings of the 17th IEEE Real-Time Systems Symposium
(RTSS’96), IEEE Computer Society Press, Los Alamitos, CA. (The WIP Proceedings is available at http:
//www.cs.bu.edu/pub/ieee-rts/rtss96/wip/proceedings.)

AUDEMARD, G., BErToLI, P., CiMATTI, A., KORNILOWICZ, A., AND SEBASTIANI, R. 2002. A SAT based approach
for solving formulas over Boolean and linear mathematical propositions. In CADE. Lecture Notes in
Computer Science, vol. 2392. Springer-Verlag, Berlin, Germany, 195-210.

BaaDgr, F. anD Niprkow, T. 1998. Term Rewriting and All That. Cambridge University Press, Cambridge,
MA.

BaADER, F. anD SnyDER, W. 2001. Unification theory. Handbook of Automated Reasoning. Elsevier Science,
Amsterdam, The Netherlands, 445-533.

BacHMAIR, L. AND GANZINGER, H. 2001. Resolution theorem proving. Handbook of Automated Reasoning.
Elsevier Science, Amsterdam, The Netherlands, 19-99.

BacHMATR, L., GANZINGER, H., LyncH, C., AND SNYDER, W. 1992. Basic paramodulation and superposition. In
CADE, D. Kapur, Ed. Lecture Notes in Computer Science, vol. 607. Springer-Verlag, Berlin, Germany,
462-476.

BacHMAIR, L., Tiwari, A., AND VIGNERON, L. 2003. Abstract congruence closure. J. Automat. Reason. 31, 2,
129-168.

Bairw, T., MAJUMDAR, R., MILLSTEIN, T., AND RaJaMANT, S. 2001. Automatic predicate abstraction of C programs.
In Proceedings of the SIGPLAN 01 Conference on Programming Language Design and Implementation,
2001. ACM, New York, 203—-313.

Barenprecet, H. P. 1992, Lambda calculi with types. In Handbook of Logic in Computer Science, vol. 2.
Oxford University Press, Oxford, UK, Chapter 2, 117-309.

Barnert, M., DELINE, R., FAanpricH, M., LEmo, K. R. M., Scaurte, W., aND VENTER, H. 2005. The Spec#
programming system: Challenges and directions. In Verified Software: Theories, Tools, Experiments,
Proceedings of the 1st IFIP TC 2/WG 2.3 Conference. Lecture Notes in Computer Science, vol. 4171.
Springer-Verlag, Berlin, Germany, 144—-152.

BARRETT, C., DE MOURA, L., AND StuMP, A. 2005. SMT-COMP: Satisfiability modulo theories competition. In
Proceedings of the Symposium on Computer-Aided Verification, CAV °2005, Lecture Notes in Computer
Science, vol. 3576. Springer-Verlag, Berlin, Germany, 20-23.

BarretT, C. aND TiNeLLI, C. 2007. CVC3. In Proceedings of the 19th International Conference on Computer
Aided Verification, CAV 2007. Lecture Notes in Computer Science, vol. 4590. Springer-Verlag, Berlin,
Germany, 298-302.

BARReTT, C., TINELLI, C., SEBASTIANI, R., AND SEsHIA, S. 2009. Satisfiability modulo theories. See Biere et al.
[2009].

BARreTT, C. W., DILL, D. L., AND STUMP, A. 2002. Checking satisfiability of first-order formulas by incremental
translation to SAT. In Proceedings of the Symposium on Computer-Aided Verification, CAV "02. Lecture
Notes in Computer Science. Springer-Verlag, Berlin, Germany.

Barwisg, J., En. 1978a. In Handbook of Mathematical Logic. Studies in Logic and the Foundations of
Mathematics, vol. 90. North-Holland, Amsterdam, Holland.

Barwisge, J. 1978b. Anintroduction to first-order logic. In Handbook of Mathematical Logic. North-Holland,
Amsterdam, The Netherlands, Chapter A1, 5-46.

Basy, S, Porrack, R., anp Roy, M.-F. 2003. Algorithms in Real Algebraic Geometry. Springer-Verlag, Berlin,
Germany.

Brckman, N., Nori, A. V., Rajamant, S. K., anp Smvmons, R. J. 2008. Proofs from tests. In Proceedings of
the ACM | SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2008. ACM,
New York, 3—-14.

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:45

BeLINFANTE, J. G. F. 1999. Computer proofs in Godel’s class theory with equational definitions for composite
and cross. J. Autom. Reason. 22, 2, 311-339.

BENSALEM, S., LAKHNECH, Y., AND OWRE, S. 1998. InVeSt: A tool for the verification of invariants. In Proceed-
ings of the International Conference on Computer-Aided Verification, CAV ’98. Lecture Notes in Computer
Science, vol. 1427. Springer-Verlag, Berlin, Germany, 505-510.

BEeREZIN, S., GaNESH, V., aND Diir, D. L. 2003. An online proof-producing decision procedure for mixed-
integer linear arithmetic. In Proceedings of the 9th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS 2003. Lecture Notes in Computer Science, vol. 2619.
Springer-Verlag, Berlin, Germany, 521-536.

BerroT, Y. AND CaSTERAN, P. 2004. Interactive Theorem Proving and Program Development. Springer. Coq
home page: http://coq.inria.fr/.

Bevier, W. R., Hunt, JR., W. A., MOORE, J. S., AND YounG, W. D. 1989. An approach to systems verification.
J. Automat. Reason. 5, 4 (Dec.), 411-428.

BIERE, A. 2008. PicoSAT essentials. J. SAT 4, 2-4, 75-97.

Bierg, A., CMATTI, A., CLARKE, E., Fusita, M., aND Zuy, Y. 1999. Symbolic model checking using SAT pro-
cedures instead of BDDs. In Proceedings of the ACM Design Automation Conference (DAC’99). ACM,
New York.

BiERE, A., HEULE, M., vaN MAAREN, H., AND WaLsH, T., Eps. 2009. Handbook of Satisfiability. I0S Press.

BrackBurn, P, bE RUke, M., AND VENEMA, Y. 2002. Modal Logic. Cambridge University Press, Cambridge,
MA.

Brepsor, W. W. anp BrueLL, P. 1974. A man-machine theorem-proving system. Artif. Intel. 5, 51-72.

BockMAYR, A. AND WEISPFENNING, V. 2001. Solving numerical constraints. In Handbook of Automated Rea-
soning. Elsevier Science, Amsterdam, The Netherlands, 751-742.

BoriLL, M., NIEUWENHUIS, R., OLIVERAS, A., RoDRIGUEZ-CARBONELL, E., AND RuBio, A. 2008. The Barcelogic
SMT solver. In Proceedings of the 20th International Conference on Computer Aided Verification, CAV
2008. Lecture Notes in Computer Science, vol. 5123. Springer-Verlag, Berlin, Germany, 294—298.

Bocuprov, 1., LEv-Ami, T., Reps, T. W., anp Sactv, M. 2007. Revamping TVLA: Making parametric shape
analysis competitive. In Proceedings of the 19th International Conference on Computer-Aided Verifi-
cation, CAV. Lecture Notes in Computer Science, vol. 4590. Springer-Verlag, Berlin, Germany, 221—
225.

Booros, G. S. anND JEFFREY, R. C. 1989. Computability and Logic, third ed. Cambridge University Press,
Cambridge, UK.

BORGER, E., GRADEL, E., AND GUREVICH, Y. 1997. The Classical Decision Problem. Perspectives in Mathe-
matical Logic. Springer-Verlag, Berlin, Germany.

Borovansky, P., KiRcHNER, C., KIRCHNER, H., AND MorEAy, P.-E. 2002. ELAN from a rewriting logic point of
view. Theor. Comput. Sci. 285, 2, 155-185.

Bover, R. S., Erspas, B., anp Levitt, K. N. 1975. SELECT—A formal system for testing and debugging
programs by symbolic execution. ACM SIGPLAN Notices 10, 6 (June), 234—-245.

Bovegr, R. S., Lusk, E. L., McCung, W., OVERBEEK, R. A., StickeL, M. E., anp Wos, L. 1986. Set theory in
first-order logic: Clauses for Godel’s axioms. JJ. Automat. Reason. 2, 3 (Sept.), 287-327.

Bovegr, R. S. anD Moorg, J. S. 1975. Proving theorems about Lisp functions. J. ACM 22, 1 (Jan.), 129-144.

BovYER, R. S. AND MoORE, J. S. 1979. A Computational Logic. Academic Press, New York.

Bovegr, R. S. anD Mooreg, J. S. 1988. A Computational Logic Handbook. Academic Press, New York.

BraDLEY, A. R. AND MaANNA, Z. 2007. The Calculus of Computation: Decision Procedures with Applications
to Verification. Springer-Verlag, Berlin, Germany.

BraDLEY, A. R., MANNA, Z., AND StpMa, H. B. 2006. What's decidable about arrays? In Proceedings of the 7th
International Conference on Verification, Model Checking, and Abstract Interpretation, VMCAI. Lecture
Notes in Computer Science, vol. 3855. Springer-Verlag, Berlin, Germany, 427-442.

BrurromEsso, R., CiMaTTI, A., FRANZEN, A., GRIGGIO, A., AND SEBASTIANI, R. 2008. The MathSAT 4 SMT solver.
In Proceedings of the 20th International Conference on Computer Aided Verification, CAV 2008. Lecture
Notes in Computer Science, vol. 5123. Springer-Verlag, Berlin, Germany, 299-303.

Bryant, R. 1992. Symbolic Boolean manipulation with ordered binary decision diagrams. ACM Comput.
Surv. 24, 3 (Sept.), 293-318.

BryanT, R. E., Lanirg, S. K., AND SEsHIA, S. A. 2002. Modeling and verifying systems using a logic of counter
arithmetic with lambda expressions and uninterpreted functions. In Proceedings of the Symposium on
Computer-Aided Verification, CAV °2002. Lecture Notes in Computer Science, vol. 2404. Springer-Verlag,
Berlin, Germany.

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:46 N. Shankar

BucHBERGER, B. 1976. A theoretical basis for the reduction of polynomials to canonical forms. ACM SIGSAM
Bulletin 10, 3, 19-29.

Burran, T., GerBer, R., anp PucH, W. 1997. Symbolic model checking of infinite state systems using
Presburger arithmetic. In Proceedings of the International Conference on Computer-Aided Verification,
CAV’97. Lecture Notes in Computer Science, vol. 1254. Springer-Verlag, Berlin, Germany, 400—411.

Bunbpy, A. 2001. The automation of proof by mathematical induction. In Handbook of Automated Reason-
ing, vol. I. Elsevier Science, Amsterdam, The Netherlands, Chapter 13, 845-911.

Burch, J. R., CLARkE, E. M., McMiLLaN, K. L., Dirt, D. L., aNpD Hwang, L. J. 1992. Symbolic model checking:
1020 states and beyond. Inf Comput. 98, 2 (June), 142—170.

Burnris, S. N. AND SANKAPPANAVAR, H. P. 1981. A course in universal algebra. Graduate Texts in Mathematics,
vol. 78. Springer-Verlag, Berlin, Germany. (Revised edition online at
http://thoralf.uwaterloo.ca/htdocs/ualg.html).

CARRENO, V. AND MuRoz, C. 2000. Formal analysis of parallel landing scenarios. In Proceedings of the 19th
AIAA/IEEE Digital Avionics Systems Conference.

CuurcH, A. 1936. An unsolvable problem of elementary number theory. Am. J. Math. 58, 345-363.
(Reprinted in Davis [1965]).

Caurch, A. 1940. A formulation of the simple theory of types. J. Symb. Logic 5, 56—68.

CLARKE, E. M., GRUMBERG, O., JHA, S., Lu, Y., anD VEITH, H. 2003. Counterexample-guided abstraction re-
finement for symbolic model checking. J. ACM 50, 5, 752—-794.

CLARKE, E. M., GRUMBERG, O., AND PELED, D. 1999. Model Checking. MIT Press, Cambridge, MA.

CLARKE, L. A. 1976. A system to generate test data and symbolically execute programs. IEEE Trans. Softw.
Eng. 2, 3 (Sept.), 215-222.

CraveL, M., DurAN, F., EkER, S., LiNcoLN, P., MaRTi-OLIET, N., MESEGUER, J., AND QUESADA, J. F. 1999. The
Maude system. In Proceedings of the 10th International Conference on Rewriting Techniques and Ap-
plications (RTA-99). Lecture Notes in Computer Science, vol. 1631, Springer-Verlag, Berlin, Germany,
240-243.

CraveL, M., DugrAN, F., EKER, S., MESEGUER, J., AND STEHR, M.-O. 1999. Maude as a formal meta-tool. In
Proceedings of the World Congress on Formal Methods (FM’99). Lecture Notes in Computer Science, vol.
1709. Springer-Verlag, Berlin, Germany, 1684—1703.

CoHEN, P. J. 1969. Decision procedures for real and p-adic fields. Communi. Pure Appl. Math. 22, 2, 131-
151.

CoLLins, G. 1975. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In
Proceedings of the 2nd GI Conference on Automata Theory and Formal Languages. Lecture Notes in
Computer Science, vol. 33. Springer-Verlag, Berlin, Germany, 134-183.

CONSTABLE, R. L., ALLEN, S. F., BRomLEY, H. M., CLEAVELAND, W. R., CREMER, J. F., HARPER, R. W., Howg, D. J.,
KnoBrock, T. B., MENDLER, N. P., PANaANGADEN, P., Sasaki, J. T., anp Smith, S. F. 1986. Implementing
Mathematics with the Nuprl Proof Development System. Prentice-Hall, Englewood Cliffs, NJ. Nuprl
home page: http://www.cs.cornell.edu/Info/Projects/NuPRL/.

Coox, S. A. 1971. The complexity of theorem proving procedures. In Proceedings of the 3rd ACM Sympo-
sium on Theory of Computing. ACM, New York, 151-158.

CoopPER, D. C. 1972. Theorem proving in arithmetic without multiplication. In Machine Intelligence 7.
Edinburgh University Press, Edinburgh, UK, 91-99.

Coquanp, T. anD HUET, G. 1988. The calculus of constructions. Inf. Comput 76, 2/3, 95—-120.

CORBETT, J., DWYER, M., HATCLIFF, J., Pasareany, C., RoBBY, LAUBACH, S., AND ZHENG, H. 2000. Bandera: Ex-
tracting finite-state models from Java source code. In Proceedings of the 22nd International Conference
on Software Engineering. IEEE Computer Society Press, Los Alamitos, CA, 439-448.

CorToN, S. AND MALER, O. 2006. Fast and flexible difference constraint propagation for DPLL(T). In SAT.
Lecture Notes in Computer Science, vol. 4121. Springer-Verlag, Berlin, Germany, 170-183.

Cousor, P. anp Cousort, R. 1977. Abstract interpretation: A unified lattice model for static analysis of pro-
grams by construction or approximation of fixpoints. In Proceedings of the 4th ACM Symposium on
Principles of Programming Languages. Association for Computing Machinery, Los Angeles, CA, 238—
252.

Craig, W. 1957. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory.
Journal of Symbolic Logic 22, 3, 269-285.

D’AcostiNo, M., GaBay, D. M., HANLE, R., AND PoseGaa, J., Eps. 1999. Handbook of Tableau Methods. Kluwer
Academic Publishers, Dordrecht.

Daren, D. V. 1983. Logic and Structure. Springer-Verlag, Berlin, Germany.

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:47

Dantzic, G. aND Curtis, B. 1973. Fourier-Motzkin elimination and its dual. J. Combinat. Theory 14, 288—
297.

DaruiNgTON, J. 1981. An experimental program transformation and synthesis system. Artif. Intell. 16, 1,
1-46.

Davis, M., Ed. 1965. The Undecidable. Raven Press, Hewlett, NY.

Davis, M., LoGEMANN, G., AND LoviErLanD, D. 1962. A machine program for theorem proving. Commun.
ACM 5,7 (July), 394-397. (Reprinted in Siekmann and Wrightson [1983], pages 267-270, 1983.)

Davis, M. anp Putnam, H. 1960. A computing procedure for quantification theory. J ACM 7, 3, 201-215.

DE BruwN, N. G. 1970. The mathematical language AUTOMATH, its usage and some of its extensions.
In Symposium on Automatic Demonstration. Lecture Notes in Mathematics, vol. 125. Springer-Verlag,
Berlin, Germany, 29-61.

DE Bruwn, N. G. 1980. A survey of the project Automath. In To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism. Academic Press, Orlando, FL, 589-606.

DE MoURA, L., DUTERTRE, B., AND SHANKAR, N. 2007. A tutorial on satisfiability modulo theories. In Proceed-
ings of the 19th International Conference on Computer Aided Verification, CAV 2007. Lecture Notes in
Computer Science, vol. 4590. Springer-Verlag, Berlin, Germany, 20-36.

DE MoURa, L., RUES, H., AND SoreA, M. 2002. Lazy theorem proving for bounded model checking over infinite
domains. In Proceedings of the 18th International Conference on Automated Deduction (CADE). Lecture
Notes in Computer Science, vol. 2392. Springer-Verlag, Berlin, Germany, 438-455.

DE MouURA, L. M. AND BJgRNER, N. 2008. Z3: An efficient SMT solver. In Proceedings of the 14th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2008. Lecture
Notes in Computer Science, vol. 4963. Springer-Verlag, Berlin, Germany, 337-340.

DEerzanno, G. anp Poprrski, A. 2001. Constraint-based deductive model checking. Softw. Tools Tech.
Trans. 3, 3, 250-270.

DEeTLEFS, D., NELSON, G., AND SAXE, J. B. 2003. Simplify: A theorem prover for program checking. Tech. Rep.
HPL-2003-148, HP Labs.

DEerLEFS, D. L., LEmvo, K. R. M., NELsSoN, G., AND Saxg, J. B. 1998. Extended static checking. Tech. Rep. 159,
COMPAQ Systems Research Center.

Dowek, G. 2001. Higher-order unification and matching. In Handbook of Automated Reasoning, vol. II.
Elsevier Science, Amsterdam, The Netherlands, Chapter 16, 1009-1062.

Downey, P. J. anDp SetHI, R, 1978. Assignment commands with array references. J. ACM 25, 4, 652—666.

D’Siiva, V., KROENING, D., AND WEISSENBACHER, G. 2008. A survey of automated techniques for formal soft-
ware verification. IEEE Trans. CAD of Integrated Circ. Syst. 27,7, 1165-1178.

DUTERTRE, B. AND DE MoURA, L. 2006a. A fast linear-arithmetic solver for DPLL(T). In Proceedings of the
18 International Conference on Computer-Aided Verification, CAV ’2006. Lecture Notes in Computer
Science, vol. 4144. Springer-Verlag, Berlin, Germany, 81-94.

DUTERTRE, B. AND DE MOURA, L. 2006b. The Yices SMT solver. http://yices.csl.sri.com/.

EsBBiNGHAUS, H.-D., FLuMm, J., AND THOMAS, W. 1984. Mathematical Logic. Undergraduate Texts in Mathe-
matics. Springer-Verlag, Berlin, Germany.

EfN, N. aND SorenssoN, N. 2003. An extensible SAT-solver. In Proceedings of the 6th International Con-
ference on Theory and Applications of Satisfiability Testing. Lecture Notes in Artificial Intelligence,
Springer-Verlag, Berlin, Germany.

ExER, S., LADEROUTE, K., LiINcOLN, P., SRiraM, M. G., aND TarcorT, C. L. 2003. Representing and simulating
protein functional domains in signal transduction using maude. In Proceedings of the 1st International
Workshop on Computational Methods in Systems Biology, CMSB 2003. Lecture Notes in Computer Sci-
ence, vol. 2602. Springer-Verlag, Berlin, Germany, 164—-165.

Ergaarp, J., KLARLUND, N., AND MOLLER, A. 1998. Mona 1.x: New techniques for WS1S and WS2S. In Proceed-
ings of the International Conference on Computer-Aided Verification, CAV ’98. Lecture Notes in Computer
Science, vol. 1427. Springer-Verlag, Berlin, Germany, 516-520.

Eikapuwe, D., KiEIN, G., AND ErpHINSTONE, K. 2008. Verified protection model of the sel.4 microkernel.
In Proceedings of the 2nd International Conference on Verified Software: Theories, Tools, Experiments,
VSTTE 2008. Lecture Notes in Computer Science, vol. 5295. Springer-Verlag, Berlin, Germany, 99—
114.

Evspas, B., GREEN, M., Moricont, M., AND SHosTAK, R. 1979. A JOVIAL verifier. Tech. rep., Computer Science
Laboratory, SRI International. Jan.

Ewspas, B., LEvirt, K. N., WALDINGER, R. J., AND WaksMAN, A. 1972. An assessment of techniques for proving
program correctness. ACM Comput. Surv. 4, 2, 97-147.

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:48 N. Shankar

Emerson, E. A. 1990. Temporal and modal logic. In Handbook of Theoretical Computer Science. vol. B:
Formal Models and Semantics. Elsevier and MIT Press, Amsterdam, The Netherlands, and Cambridge,
MA, Chapter 16, 995-1072.

ExperTON, H. B. 1972. A Mathematical Introduction to Logic. Academic Press, New York, NY.

EscoBar, S., MEapows, C., AND MESEGUER, J. 2007. Equational cryptographic reasoning in the Maude-NRL
protocol analyzer. Electr. Notes Theor. Comput. Sci. 171, 4, 23-36.

FerErMAN, S. 1978. Theories of finite type related to mathematical practice. In Handbook of Mathematical
Logic. North-Holland, Amsterdam, The Netherlands, Chapter D4, 913-972.

FerErMAN, S. 2006. Tarski’s influence on computer science. Logi. Meth. Comput. Sci. 2, 3:6, 1-13.

FILLIATRE, J.-C. AND MARcHE, C. 2007. The Why/Krakatoa/Caduceus platform for deductive program ver-
ification. In CAV. Lecture Notes in Computer Science, vol. 4590. Springer-Verlag, Berlin, Germany,
173-177.

FiscHER, M. J. AND RaBIN, M. O. 1974. Super-exponential complexity of presburger arithmetic. In Complexity
of Computation. American Mathematical Society, Providence, RI, 27—41.

Frrring, M. 1990. First-Order Logic and Automated Theorem Proving. Springer-Verlag, Berlin, Germany.

Franacan, C., JosHr, R., Ou, X., aND SaxE, J. B. 2003. Theorem proving using lazy proof explication. In
Proceedings of the 15th International Conference on Computer-Aided Verification (CAV 2003). Lecture
Notes in Computer Science, vol. 2725. Springer-Verlag, Berlin, Germany, 355-367.

Frovp, R. W. 1967. Assigning meanings to programs. In Mathematical Aspects of Computer Science, Amer-
ican Mathematical Society. Providence, RI, 19-32.

FOURIER, J. B. J. 1826. Solution d'une question particuliére du calcul des inégalités. Nouveau Bulletin des
Sciences par la Société philomathique de Paris, 99-100.

FreGE, G. 1893-1903. Grundgesetze der Arithmetik, Begriffsschriftlich abgeleitet. Verlag Hermann Pohle,
Jena.

GaBBay, D. M. AND GUENTHNER, F., Eps. 1983. Handbook of Philosophical Logic—Volume I: Elements of Clas-
sical Logic. Synthese Library, vol. 164. D. Reidel Publishing Company, Dordrecht, Holland.

GaBBay, D. M. AND GUENTHNER, F., Eps. 1984. Handbook of Philosophical Logic—Volume II: Extensions of
Classical Logic. Synthese Library, vol. 165. D. Reidel Publishing Company, Dordrecht, Holland.

GaBBay, D. M. AND GUENTHNER, F., Eps. 1985. Handbook of Philosophical Logic—Volume III: Alternatives to
Classical Logic. Synthese Library, vol. 166. D. Reidel Publishing Company, Dordrecht, Holland.

GALLER, B. A. anD FisHEr, M. J. 1964. An improved equivalence algorithm. Commun. ACM 7, 5, 301-
303.

GANZINGER, H. AND KoroviN, K. 2006. Theory instantiation. In Proceedings of the 13th International Confer-
ence on Logic for Programming Artificial Intelligence and Reasoning (LPAR). Lecture Notes in Computer
Science, vol. 4246. Springer-Verlag, Berlin, Germany, 497-511.

GERHART, S. L., Musser, D. R., THOomMPsoN, D. H., Baker, D. A., Bares, R. L., Erickson, R. W., LoNDON,
R. L., Tavior, D. G., anD WiLg, D. S. 1980. An overview of Affirm: A specification and verifica-
tion system. In Information Processing ‘80, IFIP, North-Holland, Amsterdam, The Netherlands, 343—
347.

GiLMoRE, P. C. 1960. A proof method for quantification theory: Its justification and realization. IBM J.
Research Develop. 4, 28-35. (Reprinted in Siekmann and Wrightson [1983], pages 151-161.)

GIRARD, J.-Y., LAFONT, Y., AND TAYLOR, P. 1989. Proofs and Types. Cambridge Tracts in Theoretical Computer
Science, Cambridge University Press, Cambridge, MA.

GoDpEFROID, P., KLARLUND, N., AND SEN, K. 2005. DART: Directed automated random testing. In Proceedings
of the Conference on Programming Language Design and Implementation: PLDI. ACM, New York, 213—
223.

GopEL, K. 1930. Uber die vollstindigkeit des logikkalkiils. Ph.D. dissertation, University of Vienna.
(Translated by Stefan Bauer-Mengelberg and reprinted in van Heijenoort [1967, pages 582-591].)

GOpEL, K. 1967. On formally undecidable propositions of principia mathematica and related systems.
(First published 1930 and 1931.)

GOGUEN, J., KIRCHNER, C., MEGRELIS, A., MESEGUER, J., AND WINKLER, T. 1987. An introduction to OBJ3. In
Proceedings of the 1st International Workshop on Conditional Term Rewriting Systems. Lecture Notes
in Computer Science, vol. 308. Springer-Verlag, Berlin, Germany, 258-263.

GOLDBERG, E. AND Novikov, Y. 2007. Berkmin: A fast and robust sat-solver. Disc. Appl. Math. 155,12, 1549—
1561.

GoLpBLATT, R. 1992. Logics of Time and Computation, second ed. CSLI. Lecture Notes, vol. 7. Center for
the Study of Language and Information, Stanford, CA.

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:49

Gowmes, C. P., Kaurz, H., SABHARWAL, A., AND SELMAN, B. 2008. Satisfiability solvers. In Handbook of Knowl-
edge Representation. Foundations of Artificial Intelligence, vol. 3. Elsevier, Amsterdam, The Netherlands,
89-134.

GoNnTHIER, G. 2008. Formal proof: The four-color theorem. Notices Amer. Math. Soc. 55, 11 (Dec.), 1382—
1394.

GoobsTEIN, R. L. 1964. Recursive Number Theory. North-Holland, Amsterdam, The Netherlands.

Gorpon, M. 1985. Why higher-order logic is a good formalism for specifying and verifying hardware.
Tech. Rep. 77 University of Cambridge. Computer Laboratory, Cambridge UK. 153-177. (Reprinted
in Yoeli [1990].)

GorpoN, M. 1985. HOL: A machine oriented formulation of higher order logic. Tech. Rep. 68, University
of Cambridge Computer Laboratory, Cambridge, England. July.

GoORrDON, M., MILNER, R., MogRis, L., NEWEY, M., AND WaDpsworTH, C. 1977. A metalanguage for interactive
proof in LCF. Tech. Rep. CSR-16-77, Department of Computer Science, University of Edinburgh, Edin-
burgh, UK.

GorpoN, M., MILNER, R., AND WapnswortH, C. 1979. Edinburgh LCF: A Mechanized Logic of Computation.
Lecture Notes in Computer Science, vol. 78. Springer-Verlag, Berlin, Germany.

Gorpon, M. J. C. 1989. Mechanizing programming logics in higher-order logic. In Current Trends in Hard-
ware Verification and Theorem Proving. Springer-Verlag, Berlin, Germany, 387—439.

Gorpon, M. J. C. anp MeLHAM, T. F., Ens. 1993. Introduction to HOL: A Theorem Proving Environment for
Higher-Order Logic. Cambridge University Press, Cambridge, UK. HOL home page:
http://www.cl.cam.ac.uk/Research/HVG/HOL/.

GREVE, D., WiLDING, M., AND VAN FLEET, W. 2003. A separation kernel formal security policy. In Proceedings
of the 4th International Workshop on the ACL2 Theorem Prover. Boulder, CO. Available at
http://www.cs.utexas.edu/users/moore/acl2/workshop-2003/\#presentations.

GRIES, D. AND SCHNEIDER, F. B. 1993. A Logical Approach to Discrete Math. Texts and Monographs in Com-
puter Science. Springer-Verlag, Berlin, Germany.

GRUMBERG, O., Ep. 1997. Proceedings of the International Conference on Computer-Aided Verification,
CAV’97. Lecture Notes in Computer Science, vol. 1254. Springer-Verlag, Berlin, Germany.

Gurwant, S. aND Tiwari, A. 2006. Assertion checking over combined abstraction of linear arithmetic and
uninterpreted functions. In Proceedings of the European Symposium on Programming, ESOP 2006.
Lecture Notes in Computer Science, vol. 3924. Springer-Verlag, Berlin, Germany, 279-293.

Hawes, T. C. 2002. A computer verification of the Kepler conjecture. In Proceedings of the International
Congress of Mathematicians. Higher Education Press, Beijing, China, 795-804.

Haces, T.C. 2007. The Jordan curve theorem, formally and informally. AMM: The American Mathematical
Monthly 114.

Haves, T. C., HARrISON, dJ., McLAuGHLIN, S., N1pkow, T., OBUA, S., AND ZUMKELLER, R. 2009. A revision of the
proof of the Kepler conjecture. Disc. Comput. Geom.
http://www.springerlink.com/content/552kw4u6330952jk/fulltext.pdf.

Harmos, P. R. 1960. Naive Set Theory. The University Series in Undergraduate Mathematics. Van Nos-
trand Reinhold Company, New York, NY.

HALPERN, J. Y., HARPER, R., IMMERMAN, N., Kovarris, P. G., Varpi, M., AND Viany, V. 2001. On the unusual
effectiveness of logic in computer science. Bull. Symb. Logic 7, 2, 213-236.

Hawmon, G., bE Moura, L., AND RusHBy, J. 2004. Generating efficient test sets with a model checker. In
Proceedings of the 2nd International Conference on Software Engineering and Formal Methods (SEFM).
IEEE Computer Society, Press, Los Alamitos, CA, 261-270.

Hawmon, G., DE Moura, L., aND RusaBY, J. 2005. Automated test generation with SAL. Technical note, Com-
puter Science Laboratory, SRI International, Menlo Park, CA. Sept. Available at
http://www.csl.sri.com/users/rushby/abstracts/sal-atg.

Hanna, F. K. anDp Daeche, N. 1986. Specification and verification of digital systems using higher-order
predicate logic. IEE Proceedings 133 Part E, 5 (Sept.), 242—-254.

HANTLER, S. L. AND King, J. C. 1976. An introduction to proving the correctness of programs. ACM Comput.
Surv. 8, 3 (Sept.), 331-353.

HARPER, R., HonsELL, F., AND ProtkiN, G. D. 1987. A framework for defining logics. In Proceedings of the
IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press, Los Alamitos, CA.
Harrison, J. 1996. HOL Light: A tutorial introduction. In Proceedings of the Formal Methods in Computer-
Aided Design (FMCAD °96), M. Srivas and A. Camilleri, Eds. Lecture Notes in Computer Science,

vol. 1166. Springer-Verlag, Berlin, Germany, 265-269. HOL Light home page:
http://www.cl.cam.ac.uk/~jrh13/hol-light/index.html.

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:50 N. Shankar

Harrison, J. 2001. The LCF approach to theorem proving. Available from
http://www.cl.cam.ac.uk/~jrh13/slides/manchester-12sep01/slides.pdf.

Harrison, J. 2006. Floating-point verification using theorem proving. In Formal Methods for Hardware
Verification, 6th International School on Formal Methods for the Design of Computer, Communication,
and Software Systems, SFM 2006. Lecture Notes in Computer Science, vol. 3965. Springer-Verlag, Berlin,
Germany, 211-242.

Harrison, J. 2007. Verifying nonlinear real formulas via sums of squares. In Proceedings of the 20th In-
ternational Conference on Theorem Proving in Higher Order Logics, TPHOLs 2007. Lecture Notes in
Computer Science, vol. 4732. Springer-Verlag, Berlin, Germany, 102-118.

Hagrrison, J. 2009. Handbook of Practical Logic and Automated Reasoning. Cambridge University Press,
Cambridge, MA.

Henkin, L. 1949. The completeness of first-order functional calculus. J. Symb. Logic 14, 3, 159-166.

Henkmv, L. 1950. Completeness in the theory of types. J. Symb. Logic 15, 2 (June), 81-91.

HenkiN, L. 1996. The discovery of my completeness proofs. BSL: Bull. Symb. Logic 2, 2, 127-158.

HenziNger, T. A., JHALA, R., MAJUMDAR, R., AND SUTRE, G. 2003. Software verification with BLAST. In Pro-
ceedings of the 10th International Workshop on Model Checking of Software (SPIN). Lecture Notes
in Computer Science, vol. 2648. Springer-Verlag, Berlin, Germany, 235-239. (BLAST home page:
http://embedded.eecs.berkeley.edu/blast/.)

HEeRBRAND, J. 1930. Recherches sur la théorie de la démonstration. Ph.D. dissertation, Université de Paris,
Paris, France. (English translation published in van Heijenoort [1967] and Herbrand [1971].)

HerBrAND, J. 1971. Logical Writings. Harvard University Press.

Hierons, R. M., Bogpanov, K., BowkN, J. P., CLEAVELAND, R., DERRICK, J., DicK, J., GHEORGHE, M., HARMAN, M.,
Kaproor, K., Krausk, P., LUTTGEN, G., SMoNs, A. J. H., VILKoMIR, S., WoopwaRrD, M. R., AND ZEDAN, H. 2009.
Using formal specifications to support testing. ACM Comput. Surv. 41, 2, 1-76.

Hmpert, D. 1902. Mathematical problems. Lecture delivered before the International Congress of Mathe-
maticians at Paris in 1900. Bull. Amer. Math. Soc. 8, 437-479.

Hoarg, C. A. R. 2003. The verifying compiler: A grand challenge for computing research. J ACM 50, 1,
63-69.

Hoarg, C. A. R. anD Misra, J. 2008. Verified software: Theories, tools, experiments vision of a grand chal-
lenge project. In Verified Software: Theories, Tools, Experiments. Lecture Notes in Computer Science,
vol. 4171. Springer-Verlag, Berlin, Germany.

Hobpges, W. 1997. A Shorter Model Theory. Cambridge University Press, Cambridge, MA.

HorvaNDER, L. 1983. The Analysis of Linear Partial Differential Operators II: Differential Operators
with Constant Coefficients. Grundlehren der math. Wissenschaften, vol. 257. Springer-Verlag, Berlin,
Germany.

Howarp, W. 1980. The formulas-as-types notion of construction. To H.B. Curry: Essays on Combinatory
Logic, Lambda-Calculus and Formalism. Academic Press, New York, 479-490.

Hu, A. J. anp Varpr, M. Y., Eps. 1998. Proceedings of the International Conference Computer-Aided
Verification, CAV ’98. Lecture Notes in Computer Science, vol. 1427. Springer-Verlag, Berlin,
Germany.

Hunt, Jr., W. A, 1989. Microprocessor design verification. J. Automat. Reason. 5, 4 (Dec.), 429-460.

Huta, M. R. A. anD Ryan, M. D. 2000. Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge University Press, Cambridge, UK.

JAcksoN, D. 2006. Software Abstractions: Logic, Language, and Analysis. MIT Press, Cambridge, UK.

JACKSON, P. AND SHERIDAN, D. 2004. Clause form conversions for Boolean circuits. In SAT (Selected Papers).
Lecture Notes in Computer Science, vol. 3542. Springer-Verlag, Berlin, Germany, 183—198.

JHALA, R. AND MAJUMDAR, R. 2009. Software model checking. ACM Comput. Surv. 41, 4, Article 21 (Septem-
ber 2009), 57 pages. DOI 10.1145/1592434.1592438 http://doi.acm.org/10.1145/1592434.1592438.

Jones, C. B. 1990. Systematic Software Development Using VDM, second ed. Prentice-Hall International
Series in Computer Science. Prentice-Hall, Hemel Hempstead, UK.

JonEs, C. B. 1992. The search for tractable ways of reasoning about programs. Tech. Rep. UMCS-92-4-4,
Department of Computer Science, University of Manchester, Manchester, UK. Mar.

Kaurmann, M., ManoLios, P., AND MooORE, J. S. 2000. Computer-Aided Reasoning: An Approach. Advances
in Formal Methods, vol. 3. Kluwer.

KaurmaNN, M. AND MOORE, J. S. 1996. ACLZ2: An industrial strength version of NQTHM. In COMPASS °96
(Proceedings of the Eleventh Annual Conference on Computer Assurance). IEEE Washington Section,
Gaithersburg, MD, 23-34.

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:51

Kautz, H. AND SELMAN, B. 1996. Planning as satisfiability. In Proceedings of the 10th European Conference
on Artificial Intelligence. Wiley, New York, 359-363.

KemMERER, R. 1980. FDM—A specification and verification methodology. Tech. Rep. SP-4088, System De-
velopment Corporation.

KesTEN, Y. AND PNUELL, A, 1998. Modularization and abstraction: The keys to practical formal verification.
In Proceedings of the Symposium on Mathematical Foundations of Computer Science. 54-T1.

King, J. C. 1969. A program verifier. Ph.D. dissertation, Carnegie Mellon University, Pittsburgh, PA.

King, J. C. 1976. Symbolic execution and program testing. Comm. ACM 19, 7, 385-394.

King, J. C. anp Froyp, R. W. 1970. An interpretation oriented theorem prover over integers. In STOC’70:
Proceedings of the 2nd Annual ACM Symposium on Theory of Computing. ACM, New York, 169-179.

KLEENE, S. C. 1952. Introduction to Metamathematics. North-Holland, Amsterdam, The Netherlands.

Kieeng, S. C. 1967. Mathematical Logic. Wiley, New York.

Knarp, S. anp Paur, W. 2007. Pervasive verification of distributed real-time systems. In Software System

Reliability and Security. 10S Press, NATO Security Through Science Series. Sub-Series D: Information
and Communication Security, vol. 9. 239-297.

Kozen, D. 1977. Complexity of finitely presented algebras. In Conference Record of the 9th Annual ACM
Symposium on Theory of Computing. ACM, New York, 164-177.

KroeNING, D., CLARKE, E., aND Yoray, K. 2003. Behavioral consistency of C and Verilog programs using
bounded model checking. In Proceedings of DAC 2003. ACM, New York, 368-371.

KrONING, D. AND STRICHMAN, O. 2008. Decision Procedures: An Algorithmic Point of View. Springer-Verlag,
Berlin, Germany.

Kunen, K. 1980. Set Theory: An Introduction to Independence Proofs. Studies in Logic and the Foundations
of Mathematics, vol. 102. North-Holland, Amsterdam, The Netherlands.

Levant, D. 1994. Higher order logic. In Handbook of Logic in Artificial Intelligence and Logic Program-
ming, Volume 2: Deduction Methodologies, Clarendon Press, Oxford, UK, 229-321.

LEroy, X. 2007. Formal verification of an optimizing compiler. In MEMOCODE. IEEE, Computer Society
Press, Los Alamitos, CA, 25.

Levin, L. 1973. Universal search problems. Problemy Peredachi Informatsii 9, 3, 265—266. (English trans-
lation in Trakhtenbrot, B. A.: A survey of Russian approaches to Perebor (brute-force search) algorithms.
Ann. Hist. Comput. 6 (1984), pages. 384-400.)

Ly, X., KrEITZ, C., vAN RENESSE, R., HICKEY, J., HAYDEN, M., BIRMAN, K. P., AND CoNSTABLE, R. L. 1999. Building
reliable, high-performance communication systems from components. In Proceedings of the 17th Annual
ACM Symposium on Operating Systems Principles (SOSP). ACM, New York, 80-92.

Luckaam, D. C., GERMAN, S. M., voNn HENkE, F. W., Karp, R. A., MiNE, P. W., OppeEN, D. C., Porak, W., AND
ScuiRrLis, W. L. 1979. Stanford Pascal Verifier user manual. CSD Report STAN-CS-79-731, Stanford
University, Stanford, CA. Mar.

Luo, Z. anDp Porrack, R. 1992. The LEGO proof development system: A user’s manual. Tech. Rep. ECS-
LFCS-92-211, University of Edinburgh, Edinburgh, UK.

MANNA, Z., STICKEL, M., AND WALDINGER, R. 1991. Monotonicity properties in automated deduction. In Ar-
tificial Intelligence and Mathematical Theorem of Computation: Papers in Honor of John McCarthy,
Academic Press, Orlando, FL, 261-280.

MAaNNA, Z. AND WALDINGER, R. A deductive approach to program synthesis. ACM Trans. Prog. Lang. Sys. 2, 1.

Manotrios, P. anD VRoon, D. 2007. Efficient circuit to CNF conversion. In Proceedings of the 10th Inter-
national Conference in Theory and Applications of Satisfiability Testing—SAT 2007. Lecture Notes in
Computer Science, vol. 4501. Springer. 4-9.

MARQUES-SIIVA, J. AND SARALLAH, K. 1999. GRASP: A search algorithm for propositional satisfiability. IEEE
Trans. Comput. 48, 5 (May), 506-521.

MARTIN-LOF, P. 1980. Intuitionistic Type Theory. Bibliopolis, Napoli, Italy.

MarrvasevicH, Y. V. 1993. Hilbert’s Tenth Problem. MIT Press, Cambridge, MA.

McCarThy, J. 1962. Computer programs for checking mathematical proofs. In Recursive Function Theory,
Proceedings of a Symposium in Pure Mathematics. vol. V. American Mathematical Society, Providence,
RI, 219-227.

McCarTHy, J. 1963. A basis for a mathematical theory of computation. In Computer Programming and
Formal Systems, North-Holland, Amsterdam, The Netherlands.

McCung, W. 1997. Solution of the robbins problem. J. Automat. Reason. 19, 3 (Dec.), 263-276.

McCung, W. W. 1990. OTTER 2.0 users guide. Tech. Rep. ANL-90/9, Mathematics and Computer Science
Division, Argonne National Laboratory, Argonne, IL. Mar.

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:52 N. Shankar

McCung, W. W. 2007. The Prover9 reference manual.
http://www.cs.wnm.edu/\simmccune/prover9/manual-examples.html.

McMiran, K. L. 1993. Symbolic Model Checking. Kluwer Academic Publishers, Boston, MA.

McMiLran, K. L. 2003. Interpolation and SAT-based model checking. In Proceedings of the 15th Interna-
tional Conference on Computer Aided Verification, CAV 2003. Lecture Notes in Computer Science, vol.
2725. Springer-Verlag, Berlin, Germany, 1-13.

MenpELsoN, E. 1964. Introduction to Mathematical Logic. The University Series in Undergraduate Math-
ematics. D. Van Nostrand Company, New York, NY.

MESEGUER, J. 1989. Generallogics. In Proceedings of the Logic Colloquium '87. North Holland, Amsterdam,
The Netherlands, 275-329.

MESEGUER, J. AND Rosu, G. 2005. Computational logical frameworks and generic program analysis tech-
nologies. In Proceedings of the 1st IFIP TC 2/WG 2.3 Verified Software: Theories, Tools, Experiments,
VSTTE 2005. Lecture Notes in Computer Science, vol. 4171. Springer-Verlag, Berlin, Germany, 256-267.

MEvYER, B. AND Woobcock, J., Eps. 2008. In Proceedings of the 1st IFIP TC 2/ WG 2.3 Verified Software:
Theories, Tools, Experiments, VSTTE 2005. Lecture Notes in Computer Science, vol. 4171. Springer-
Verlag, Berlin, Germany.

MiLLEN, J. aND RUEB, H. 2000. Protocol-independent secrecy. In Proceedings of the Symposium on Security
and Privacy. IEEE Computer Society Press, Los Alamitos, CA, 110-119.

MiLLER, D. AND NaDATHUR, G. 1986. Higher-order logic programming. In Proceedings of the IEEE Sympo-
sium on Logic Programming. IEEE Computer Society Press, Los Alamitos, CA.

MiNER, R. 1972. Logic for computable functions: Description of a machine implementation. Tech. Rep.
CS-TR-72-288, Stanford University, Stanford, CA.

MINER, P. S., GESER, A., PIKE, L., AND MaADDALON, J. 2004. A unified fault-tolerance protocol. In Proceedings
of the Joint International Conferences on Formal Modelling and Analysis of Timed Systems, FORMATS
2004 and Formal Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT 2004, Y. Lakhnech
and S. Yovine, Eds. Lecture Notes in Computer Science, vol. 3253. Springer-Verlag, Berlin, Germany,
167-182.

Mints, G. 1992. A Short Introduction to Modal Logic. CSLI Lecture Notes, vol. 30. Center for the Study of
Language and Information, Stanford, CA.

Moskewicz, M. W., Mapican, C. F., ZHao, Y., ZHANG, L., anp MaLik, S. 2001. Chaff: Engineering an efficient
SAT solver. In Proceedings of the Design Automation Conference. ACM, New York, 530-535.

NADATHUR, G. AND MILLER, D. 1990. Higher-order Horn clauses. J ACM 37, 4, 777-814.

NADATHUR, G. AND MiTcHELL, D. J. 1999. System description: Teyjus—A compiler and abstract machine
based implementation of AProlog. In Proceedings of the 16th Conference on Automated Deduction (CADE).
Lecture Notes in Artificial Intelligence, vol. 1632. Springer-Verlag, Berlin, Germany, 287-291.

Naur, P. 1966. Proof of algorithms by general snapshots. BIT 6, 310-316.

NeDERPELT, R. P., GEUVERS, J. H., AND DE VRUER, R. C. 1994. Selected Papers on Automath. North-Holland,
Amsterdam, The Netherlands.

NewLson, G. 1981. Techniques for program verification. Tech. Rep. CSL-81-10, Xerox Palo Alto Research
Center, Palo Alto, CA.

NEeLson, G. anp OppEN, D. 1977. Fast decision algorithms based on congruence closure. Tech. Rep. STAN-
CS-77-646, Computer Science Department, Stanford University, Stanford, CA.

NEeLson, G. anp OppeN, D. C. 1979. Simplification by cooperating decision procedures. ACM Trans. Program.
Lang. Syst. 1, 2, 245-257.

NieuvweNHUIS, R. AND OLIVERAS, A. 2005. Proof-producing congruence closure. In Proceedings of the 16th In-
ternational Conference on Term Rewriting and Applications, RTA05. Lecture Notes in Computer Science,
vol. 3467. Springer-Verlag, Berlin, Germany, 453—468.

Nievwennuis, R., Ouiveras, A., anp TiNeLL, C. 2006. Solving SAT and SAT Modulo Theories: From an
abstract Davis—Putnam-Logemann—Loveland procedure to DPLI(T). J ACM 53, 6, 937-977.

NieuwenHUIS, R. AND RUBIO, A. 1992, Basic superposition is complete. In ESOP. Lecture Notes in Computer
Science, vol. 582. Springer-Verlag, Berlin, Germany, 371-389.

Nieuwennuis, R. aND Rusio, A. 2001. Paramodulation-based theorem proving. In Handbook of Automated
Reasoning. Elsevier Science, Amsterdam, The Netherlands, 371-443.

Nirkow, T., PauLson, L. C., AND WENzEL, M. 2002. Isabelle/ HOL: A Proof Assistant for Higher-Order Logic.
Springer-Verlag, Berlin, Germany. (Isabelle home page: http://isabelle.in.tum.de/.)

O’ConNoOR, R. 2005. Essential incompleteness of arithmetic verified by Coq. CoRR abs/cs/0505034. infor-
mal publication.

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:53

OnLBAcH, H., NoNNENGART, A., DE RUKE, M., AND GaBBAY, D. 2001. Encoding two-valued nonclassical logics
in classical logic. In Handbook of Automated Reasoning. Elsevier Science, Amsterdam, The Netherlands,
1403-1486.

OppeN, D. C. 1980. Complexity, convexity and combinations of theories. Theoret. Comput. Sci. 12,291-302.

OWRE, S., RUSHBY, J., SHANKAR, N., AND voN HENKE, F. 1995. Formal verification for fault-tolerant architec-
tures: Prolegomena to the design of PVS. IEEE Trans. Softw. Engineering 21, 2 (Feb.), 107-125. PVS
home page: http://pvs.csl.sri.com.

Parg, D. 1976. Finiteness is mu-ineffable. Theoret. Comput. Sci. 3, 173-181.

ParriLo, P. A. 2003. Semidefinite programming relaxations for semialgebraic problems. Math. Pro-
gram 96, 2, 293-320.

PauLiN-MonRING, C. 1993. Inductive definitions in the system Coq: Rules and properties. In Proceedings
of the International Conference on Typed Lambda Calculi and Applications. Lecture Notes in Computer
Science, vol. 664. Springer-Verlag, Berlin, Germany, 328-345.

Paurson, L. 1998. The inductive approach to verifying cryptographic protocols. J. Comput. Secur. 6, 1,
85-128.

Paurson, L. C. 1994. Isabelle: A Generic Theorem Prover. Lecture Notes in Computer Science, vol. 828.
Springer-Verlag, Berlin, Germany.

(Isabelle home page: http://www.cl.cam.ac.uk/research/hvg/Isabelle/.)

Paurson, L. C. 2003. The relative consistency of the axiom of choice mechanized using Isabelle/ZF. LMS
J. Comput. Math. 6, 198—248.

PrenniNg, F. 2001. Logical frameworks. In Handbook of Automated Reasoning, vol. II. Elsevier Science,
Amsterdam, The Netherlands, Chapter 17, 1063—1147.

PrEnNING, F. anD ScrORMANN, C. 1999. Twelf—A meta-logical framework for deductive systems (system
description). In Proceedings of the 16th International Conference on Automated Deduction (CADE-16).
Lecture Notes in Artificial Intelligence, vol. 1632. Springer-Verlag, Berlin, Germany, 202—206.

PNUELL, A. AND SHAHAR, E. 1996. A platform for combining deductive with algorithmic verification. In Pro-
ceedings of the 8th International Computer Aided Verification Conference. Lecture Notes in Computer
Science, Springer-Verlag, Berlin, Germany. 184-195.

Prawitz, D. 1960. Animproved proof procedure. Theoria 26, 102—-139. (Reprinted in Siekmann and Wright-
son [1983], pages 162—201, 1983.)

Pucu, W. 1992. A practical algorithm for exact array dependence analysis. Commun. ACM 35, 8,102-114.

QUATFE, A. 1992. Automated deduction in von Neumann-Bernays-Godel set theory. J. Automat. Reason. 8,1
(Feb.), 91-147.

RaBin, M. O. 1978. Decidable theories. In Handbook of Mathematical Logic. Studies in Logic and the
Foundations of Mathematics, vol. 90. North-Holland, Amsterdam, The Netherlands, Chapter C8, 595—
629.

Rajan, S., SHANKAR, N., AND Srivas, M. 1995. An integration of model-checking with automated proof check-
ing. In Proceedings of the Symposium on Computer-Aided Verification (CAV) 1995. Lecture Notes in
Computer Science, vol. 939. Springer-Verlag, Berlin, Germany, 84-97.

Riazanov, A. AND VoroNkov, A. 2002. The design and implementation of VAMPIRE. AI Communications:
Special issue on CASC 15, 2 (Sept.), 91-110.

RoBinson, A. AND VoroNKov, A., Eps. 2001. Handbook of Automated Reasoning. Elsevier Science, Amster-
dam, The Netherlands.

RoBimnson, J. A, 1965. A machine-oriented logic based on the resolution principle. /. ACM 12, 1, 23-41.

Roemvson, L., LEvitt, K. N., AND SIVERBERG, B. A. 1979. The HDM Handbook. Computer Science Laboratory,
SRI International, Menlo Park, CA. Three Volumes.

Rupnickr, P. 1992. An overview of the MIZAR project. In Proceedings of the 1992 Workshop on Types for
Proofs and Programs. Bastad, Sweden, 311-330. (The complete proccedings are available at
http://www.cs.chalmers.se/pub/cs-reports/baastad.92/; this particular paper is also available sep-
arately at http://web.cs.ualberta.ca/ piotr/Mizar/MizarOverview.ps.)

Ruess, H. AND SHANKAR, N. 2004. Solving linear arithmetic constraints. Tech. Rep. CSL-SRI-04-01, SRI
International, Computer Science Laboratory, 333 Ravenswood Ave, Menlo Park, CA, 94025. January.
(Revised, August 2004.)

RueB, H., SHANKAR, N., aND Srivas, M. K. 1996. Modular verification of SRT division. In Proceedings of the
Symposium on Computer-Aided Verification, CAV °96. Lecture Notes in Computer Science, vol. 1102.
Springer-Verlag, Berlin, Germany, 123-134.

RusseLL, B. 1903. The Principles of Mathematics. Cambridge University Press, Cambridge, MA.

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:54 N. Shankar

RusserL, B. 1908. Mathematical logic based on the theory of types. Amer. J. Math. 30, 222-262.

Russmvorr, D. M. 1988. A mechanical proof of quadratic reciprocity. J. Automat. Reason. 8, 1, 3-21.

Russivorr, D. M. 1999. A mechanically checked proof of correctness of the AMD K5 floating point square
root microcode. Form. Meth. Syst. Des. 14, 1 (Jan.), 75-125.

Rvan, L. 2004. Efficient algorithms for clause-learning SAT solvers. M.S. thesis, Simon Fraser University.

Saarring, M. 1997. The Z/EVES system. In ZUM ’97: The Z Formal Specification Notation; 10th Interna-
tional Conference of Z Users. Lecture Notes in Computer Science, vol. 1212. Springer-Verlag, Berlin,
Germany, 72—-85.

Saipi, H. anDp Grar, S. 1997. Construction of abstract state graphs with PVS. In Proceedings of the Inter-
national Conference on Computer-Aided Verification, CAV’97. Lecture Notes in Computer Science, vol.
1254. Springer-Verlag, Berlin, Germany, 72—-83.

Saipr, H. AND SHANKAR, N. 1999. Abstract and model check while you prove. In Proceedings of the Inter-
national Conference on Computer-Aided Verification, CAV °99. Lecture Notes in Computer Science, vol.
1633. Springer-Verlag, Berlin, Germany, 443—-454.

Scuurz, S. 2002. E—A brainiac theorem prover. J. AI Communi. 15, 2/3, 111-126.

Scort,D.S. 1993. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoret. Comput. Sci. 121,1&2,
411-440. (Typed notes circulated in 1969.)

SHANKAR, N. 1994, Metamathematics, Machines, and Gidel’s Proof. Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, Cambridge, UK.

Suankar, N. 2005. Inference systems for logical algorithms. In FSTTCS 2005: Proceedings of the Sym-
posium on Foundations of Software Technology and Theoretical Computer Science. Lecture Notes in
Computer Science, vol. 3821. Springer-Verlag, Berlin, Germany, 60-78.

SHANKAR, N. aAND RUEB, H. 2002. Combining Shostak theories. In International Conference on Rewriting
Techniques and Applications (RTA 02). Lecture Notes in Computer Science, vol. 2378. Springer-Verlag,
Berlin, Germany, 1-18.

SHEERAN, M., SINGH, S., AND STALMARCK, G. 2000. Checking safety properties using induction and a SAT-
solver. In Proceedings of the Formal Methods in Computer-Aided Design (FMCAD 2000). Lecture Notes
in Computer Science, vol. 1954. Springer-Verlag, Berlin, Germany, 108—-125.

SHOENFIELD, J. R. 1967. Mathematical Logic. Addison-Wesley, Reading, MA.

SHosTAK, R. E. 1978. An algorithm for reasoning about equality. Commun. ACM 21, 7 (July), 583-585.

SHosTAK, R. E. 1984. Deciding combinations of theories. J ACM 31, 1 (Jan.), 1-12.

Suostag, R. E., Scawartz, R., AND MELLIAR-SMITH, P. M. 1982. STP: A mechanized logic for specification
and verification. In Proceedings of the 6th International Conference on Automated Deduction (CADE).
Lecture Notes in Computer Science, vol. 138. Springer-Verlag, Berlin, Germany.

SIEKMANN, J. AND WRIGHTSON, G., Eps. 1983. Automation of Reasoning: Classical Papers on Computational
Logic, Volumes 1 & 2. Springer-Verlag, Berlin, Germany.

SmvoN, L., BERrE, D. L., AND HirscH, E. A. 2005. The SAT2002 competition. Ann. Math. Artif. Intell 43, 1,
307-342.

SkorLeEM, T. 1967. The foundations of elementary arithmetic established by means of the recursive mode of
thought, without the use of apparent variables ranging over infinite domains. In From Frege to Gédel:
A Sourcebook of Mathematical Logic, 1879-1931. Harvard University Press, Cambridge, MA, 302—-333.
(First published 1923.)

Skorem, T. A. 1962. Abstract Set Theory. Number 8 in Notre Dame Mathematical Lectures. University of
Notre Dame Press, Notre Dame, IN.

SrinD, K. aND NorrisH, M. 2008. A brief overview of HOL4. In Proceedings of the 21st International Con-
ference on Theorem Proving in Higher Order Logics, TPHOLs 2008. Lecture Notes in Computer Science,
vol. 5170. Springer-Verlag, Berlin, Germany, 28-32.

SwmitH, D. R. 1990. KIDS: A semiautomatic program development system. IEEE Transactions on Software
Engineering 16, 9 (September), 1024-1043.

Smrth, M. K., Goop, D. I., anp D1 Vito, B. L. 1988. Using the Gypsy methodology. Tech. Rep. 1, Computa-
tional Logic Inc. Jan.

Smurryan, R.M. 1968. First-Order Logic. Springer-Verlag, Berlin, Germany. (Republished by Courier Dover
Publications, 1995.)

SpivEY, J. M., En. 1993. The Z Notation: A Reference Manual, second ed. Prentice-Hall International Series
in Computer Science. Prentice-Hall, Hemel Hempstead, UK.

STEELE JR., G. L. 1990. Common Lisp: The Language, second ed. Digital Press, Bedford, MA.

StickeL, M. E. 1985. Automated deduction by theory resolution. JJ. Automat. Reason. 1, 4 (Dec.), 333-355.

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

Automated Deduction for Verification 20:55

StickeL, M. E., WALDINGER, R. J., AND CHAUDHRI, V. K. 2000. A guide to SNARK. Tech. Note, SRI International
Artificial Intelligence Center.

Stump, A., BarrerT, C. W., anp Dirr, D. L. 2002. CVC: A cooperating validity checker. In Proceedings of the
International Conference on Computer-Aided Verification, CAV’02. Lecture Notes in Computer Science,
vol. 2404. Springer-Verlag, Berlin, Germany.

Stump, A., BARRETT, C. W., DiLL, D. L., AND LEVITT, J. R. 2001. A decision procedure for an extensional theory
of arrays. In LICS. 29-37.

Suppes, P. 1972. Axiomatic Set Theory. Dover Publications, Inc., New York, NY.

SuTcLIFFE, G. AND SUTTNER, C. B. 2006. The state of CASC. AI Commun. 19, 1, 35-48.

SzaBo, M. E.,Ed. 1969. The Collected Papers of Gerhard Gentzen. North-Holland, Amsterdam, The Nether-
lands.

Tarian, R. E. 1975. Efficiency of a good but not linear set union algorithm. J. ACM 22, 2, 215-225.

Tarski, A. 1948. A Decision Method for Elementary Algebra and Geometry. University of California Press.

Tarskr, A., MostowskKr, A., aND RoBinson, R. M. 1971. Undecidable Theories. North-Holland, Amsterdam,
The Netherlands.

THE CoQ DeEvELOPMENT TEAM. 2009. The Coq proof assistant reference manual version 8.2. Tech. rep.,
INRIA. Feb.

THERY, L. 1998. A certified version of Buchberger’s algorithm. In Proceedings of 15th International Confer-
ence on Automated Deduction (CADE). Lecture Notes in Artificial Intelligence, vol. 1421. Springer-Verlag,
Berlin, Germany, 349-364.

Tiwari, A. 2005. An algebraic approach for the unsatisfiability of nonlinear constraints. In Proceedings of
the 14th Annual Conference on Computer Science Logic, CSL 2005. Lecture Notes in Computer Science,
vol. 3634. Springer-Verlag, Berlin, Germany, 248-262.

TorrAK, E. AND Jackson, D. 2007. Kodkod: A relational model finder. In Proceedings of the 13th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2007. Lecture
Notes in Computer Science, vol. 4424. Springer-Verlag, Berlin, Germany, 632—647.

TROELSTRA, A. AND VAN DALEN, D. 1988. Constructivity in Mathematics. North-Holland, Amsterdam, The
Netherlands.

TserTiN, G. 1968. On the complexity of derivation in propositional calculus. In Studies in Constructive
Mathematics and Mathematical Logic, Part 11. Otdel, Leningrad, Russia, 115-125. (Reprinted in Siek-
mann and Wrightson [1983].)

TuriNg, A. M. 1965. On computable numbers, with an application to the Entscheidungsproblem. In The
Undecidable. Raven Press, Hewlett, NY, 116-154. First published 1937.

VAN BENTHEM, J. AND DoETs, K. 1983. Higher-order logic. In Handbook of Philosophical Logic, Volume I:
Elements of Classical Logic, Synthese Library, vol. 164. D. Reidel Publishing Co., Dordrecht, Chapter
1.4, 275-329.

VAN DEN BERG, dJ. aND Jacoss, B. 2001. The roor compiler for Java and JML. In Proceedings of the 7th
International Conference on Tools and Algorithms for the Construction and Analysis of Systems: TACAS
2001, T. Margaria and W. Yi, Eds. Lecture Notes in Computer Science, vol. 2031. Springer-Verlag, Berlin,
Germany, 299-312.

VAN HEUENOORT, J., Ep. 1967. From Frege to Gédel: A Sourcebook of Mathematical Logic, 1879-1931. Har-
vard University Press, Cambridge, MA.

VAN LEEUWEN, J., Ep. 1990. In Handbook of Theoretical Computer Science. vol. B: Formal Models and Se-
mantics. Elsevier and MIT Press, Amsterdam, The Netherlands, and Cambridge, MA.

VanperBeL, R. 2001. Linear Programming: Foundations and Extensions. Kluwer’s International Series.

Wang, C., Ivancié, F., Ganar, M., aNpD Gupta, A. 2005. Deciding separation logic formulae by SAT and in-
cremental negative cycle elimination. In Proceedings of International Conference on Logic for Artificial
Intelligence and Reasoning (LPAR). Number 3835 in Lecture Notes in Artificial Intelligence, vol. 3835.
Springer-Verlag, Berlin, Germany, 322-336.

WEemENBAacH, C., Branwm, U., HiLLENBRAND, T., KEEN, E., THEOBALT, C., AND ToPic, D. 2002. SPASS version 2.0.
In Proceedings of the 18th International Conference on Automated Deduction—CADE-18. Lecture Notes
in Computer Science, vol. 2392. Springer-Verlag, Berlin, Germany, 275-279.

WELD, D. AND WoLFMAN, S. 1999. The LPSAT system and its application to resource planning. In Proceedings
16th International Joint Conference on Artificial Intelligence (IJCAI).

WeENzEL, M. 1999. Isar—A generic interpretative approach to readable formal proof documents. In
Proceedings of the 12th International Conference on Theorem Proving in Higher Order Logics,
TPHOLs’99. Lecture Notes in Computer Science, vol. 1690. Springer-Verlag, Berlin, Germany, 167—
184.

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

20:56 N. Shankar

WeyHRAUCH, R. W. 1980. Prolegomena to a theory of mechanized formal reasoning. Artif. Intell. 13, 1 and
2 (Apr.), 133-170.

WeyvHRAUCH, R. W. aND THOMAS, A. J. 1974. FOL: A proof checker for first order logic. Tech. rep. AIM-235.
Computer Science Department, Artificial Intelligence Laboratory, Stanford Univ., Stanford, CA.

WiEs, T., Kuncak, V., Zeg, K., PobeLskr, A., AND Rinarp, M. C. 2006. On verifying complex properties using
symbolic shape analysis. CoRR abs/cs/0609104. informal publication.

WirLiams, H. P. 1976. Fourier-Motzkin elimination extension to integer programming problems. JJ. Comb.
Theory, Ser. A 21,1, 118-123.

YoEeLr, M., Ep. 1990. Formal Verification of Hardware Design. IEEE Computer Society Press, Los Alamitos,
CA.

ZerMELO, E. 1908. Untersuchungen tiber die Grundlagen der Mengenlehre 1. Mathematische Annalen 59,
261-281. (Translation by van Heijenoort in From Frege to Gidel.)

Zuang, H. 1997 . SATO: An efficient propositional prover. In Proceedings of the Conference on Automated
Deduction. Springer-Verlag, Berlin, Germany, 272-275.

ZuANG, L. anD MaLik, S. 2002. The quest for efficient boolean satisfiability solvers. In Proceedings of the
19th International Conference on Automated Deduction CADE-19, Springer-Verlag, Berlin, Germany.

ZuanG, L. anp MaLIK, S. 2003. Validating SAT solvers using an independent resolution-based checker:
Practical implementations and other applications. In Proceedings of the 2003 Design, Automation and

Test in Europe Conference and Exposition (DATE 2003). IEEE Computer Society Press, Los Alamitos,
CA, 10880-10885.

Received February 2009; revised April 2009; accepted June 2009

ACM Computing Surveys, Vol. 41, No. 4, Article 20, Publication date: October 2009.

