CSE 503: Software Engineering

Autumn 2011

Lecturer: Michael Ernst



503 Software Engineering Research

* Not: how to write good software
— and get a good job at Amazon/Google/Microsoft

e Research methods and ideas in SE

— this may make you a more thoughtful developer



A menu of possible topics

Abstract interpretation
Type systems

Model checking
Analysis back-ends
Test generation
Dynamic analysis
Refactoring

Slicing

More



Abstract interpretation
(or “dataflow analysis”)

Statically (over-)estimate what the program
may do at run time

“Run” your program statically

— Choose an abstract domain; e.g., {+, 0O, - }

— Assign semantics to operators

— Start at beginning of program

— Examine possible values of variables

Similar to unfolding the computation
Used daily on aeronautics software



Type systems

Checking

Inference

Polymorphism
Non-standard type systems

— view type system as a set of constraints to
compute legal refactorings

— use type inference to recover abstractions from
optimized code



Model checking

* |n simplest terms, exhaustive testing

— Verify that every possible execution satisfies a given
property

— Very effective for hardware (inherently finite-state)
— Popular for concurrent software

 How to make this scale?
— Choose abstractions that lose just the right amount of
precision

e Counterexample-guided refinement

— Efficient encodings



Analysis back-ends

Reduce one problem to another
— Often, produce a logical formula

Reduction to SAT
— 1979: “Problem X reduces to SAT, so it is hard.”
— 2009: “Problem X reduces to SAT, so it is easy.”

SMT (satisfiability modulo theories)

— add non-logical constructs (e.g., arithmetic) to the logical
formula

Datalog (prolog-like; used in database community)
Binary Decision Diagrams (BDDs)

Boolean programs

Theorem provers



Test generation

Random

— Scaleable, and more effective than you think
Symbolic

— What i £ statements guard a line of code?

— Compute an input that satisfies them

Concolic (concrete + symbolic)

— Run tests, then try to slightly modify them to
achieve more coverage

Evaluation of testing approaches



Dynamic analysis

Testing
Model creation

— Observe executions, generalize from them
Type inference
Fault localization



Refactoring

* Refactoring changes program code without
changing its meaning

 What constraints need to be generated to
preserve the meaning?

* How to explore the space of solutions?



More

Pointer and alias analysis

Modeling and model-based development
Configuration management

Code generation and code completion

Historical analysis

— Prediction of bug-prone code



Applications

Security
Correctness
Performance

Rapid development
System analysis

Maintenance and evolution



Broader themes

Precision vs. performance

Power vs. transparency

Static vs. dynamic

Tuning analysis to the real problem



Format

* Lectures:
— 50%: classic background
— 50%: current research
— Lectures are interactive (and, few slides)

* Homework:
— Read research papers
— 1 in-class presentation

* Group project to put the ideas into practice
— Makes you a better researcher, in any field
— You choose a topic (suggestions are provided)

— Most projects lead to a publication or other research use
* Not a requirement, just a common outcome



Who cares?

Intellectually exciting and deep
Spans both “hard” and “soft” areas of
computing

Connections to programming languages,
security, systems, architecture, databases, and
many more!

Quals credit



