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1 Overview

Classic Research Challenge Getting precision for large pro-
gram quickly.

Recently groups from McGill [2, 20] and Stanford [34, 35]
have used binary decision diagrams (BDDs) to make precise
analyses scale to large programs. Raman [28] has a brief
overview of BDDs in this context.

New Research Challenges Incremental analyses. Incom-
plete programs. Demand-driven analyses (eg, [30]). Dy-
namic class loading (eg, [15, 24]).

Software Engineering Decision How to choose the right
points-to analysis for the software engineering problem
you’re trying to solve. What costs are worth paying?

[13] [14] [23] [10]

Liang et al. [22] found Andersen-style (inclusion) analyses
significantly more precise than Steensgaard-style (unifica-
tion).

Lhoták and Hendren [21] found object-sensitivity Milanova
et al. [25] gave the most bang for the buck for Java, vs
approaches such as [34, 35].
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Surveys Hind [12] Raman [28]

Dynamic Analysis Relatively little work done here. Gross
[10], Mock et al. [26] show 100x improvement over static
analyses, with 100x slowdown in program execution.

Context Sensitivity
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string

1.1 Complexity

Abstract from Chakaravarthy [3]:

Given a program and two variables p and q, the
goal of points-to analysis is to check if p can point
to q in some execution of the program. This well-
studied problem plays a crucial role in compiler
optimization. The problem is known to be un-
decidable when dynamic memory is allowed. But
the result is known only when variables are al-
lowed to be structures. We extend the result to
show that, the problem remains undecidable, even
when only scalar variables are allowed. Our sec-
ond result deals with a version of points-to anal-
ysis called flow-insensitive analysis, where one ig-
nores the control flow of the program and assumes
that the statements can be executed in any or-
der. The problem is known to be NP-Hard, even
when dynamic memory is not allowed and vari-
ables are scalar. We show that when the variables
are further restricted to have well-defined data
types, the problem is in P. The corresponding flow-
sensitive version, even with further restrictions,
is known to be PSPACE-Complete. Thus, our
result gives some theoretical evidence that flow-
insensitive analysis is easier than flow-sensitive
analysis. Moreover, while most variations of the
points-to analysis are known to be computation-
ally hard, our result gives a rare instance of a non-
trivial points-to problem solvable in polynomial
time.

Ramalingam [27]: Aliasing is undecidable

Landi [17]: PSPACE-complete even with no procedures or
memory allocations

Landi and Ryder [18]



Figure 1 A Brief History of Pointer Analysis [33] — focus on scalability and precision
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• Weihl [32]
1980: < 1 KLOC
first paper on pointer analysis

• Steensgaard [31]
1996: 1+ MLOC
first scalable pointer analysis

• Andersen [1]
1994: 5 KLOC

• Fähndrich et al. [7]
1998: 60 KLOC

• Heintze and Tardieu [11]
2001: 1 MLOC

• Berndl et al. [2]
2003: 500 KLOC
first to use BDDs

• Choi et al. [5]
1993: 30 KLOC
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• Fähndrich et al. [8]
2000: 200K

• Whaley and Lam [35]
2004: 600 KLOC
cloning-based BDDs

• Landi and Ryder [19]
1992: 3 KLOC

• Wilson and Lam [37]
1995: 30 KLOC

• Whaley and Rinard [36]
1999: 80 KLOC

Horwitz [16]: Even flow-insensitive problem is NP-hard

Chakaravarthy [3]: Cannot even get a good approximation
(within a constant factor) unless P=NP

1.2 Axes of Precision

less precise more precise
equivalence subset/inclusion

flow-insensitive flow-sensitive
context-insensitive context-sensitive

Consider the following example [33]:

p = malloc();
q = malloc();
fp = &p;
fp = &q;
... = *fp;

What does the points-to graph look like at the end of the
snippet? Depends on what analysis you do:

flow-insensitive,
equality-based, eg
Steensgaard [31]

p

q

heap1

heap2
fp

flow-insensitive,
subset-based, eg
Andersen [1]

fp

p

q

heap1

heap2

flow-sensitive

fp

p

q

heap1

heap2

Another example, for context-sensitivity [33]:

id (x) { return x; }
foo() {

a = malloc();
a = id(a);

}
bar() {

b = malloc();
b = id(b);

}

dotted lines are
spurious edges
added by context-
insensitivity

a heap1

heap2b
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2 Steensgaard [31] Example

Consider the following program:

1. x = &a;
2. y = &b;
3. p = &x;
4. p = &y;

2.1 Intuitive formulation [29]

Now we’ll construct the points-to graph for this program
using the Steensgaard approach as formulated by Ryder [29].

First three statements are easy:
x = &a;

x a

y = &b;

y b

x a

p = &x;

y b

p x a

Last statement takes more effort to process:
p = &y;

add edge

p

x

y

a

b

collapse x and y

x

y
b

a

p

collapse a and b

x

y

a

b
p

Resulting points-to graph over-approximates:

points-to graph

p

x

y

a

b

Why do we have to do this collapsing? It seems that the
analysis would be linear in the size of the program if we
didn’t do collapsing. The issues is statements like a=b; see
the example of Andersen’s analysis below for why these in-
troduce more complexity.

2.2 Type-based formulation [6]

First we assign each variable its own type:

• x : t1
• y : t2
• a : t3
• b : t4
• p : t5

Then we construct the initial constraints:

1. x = &a; t1 = ref(t3 × )
2. y = &b; t2 = ref(t4 × )
3. p = &x; t5 = ref(t1 × )
4. p = &y; t5 = ref(t2 × )

Now we solve/unify the constraints. First we see:

t5 = ref(t1 × ) = ref(t2 × )

So we merge t1 and t2 into t1. The world looks like this:

• x : t1
• y : t1
• a : t3
• b : t4
• p : t5
• t1 = ref(t3 × )
• t1 = ref(t4 × )
• t5 = ref(t1 × )

Next we see:

t1 = ref(t3 × ) = ref(t4 × )

So we merge t3 and t4 into t3. The world looks like this:

• x : t1
• y : t1
• a : t3
• b : t3
• p : t5
• t1 = ref(t3 × )
• t5 = ref(t1 × )

We’re done solving. The storage shape graph is:

t5 t1 t3

If we expand that to a points-to graph we get:

p

x

y

a

b
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3 Andersen [1] Example [29]

Consider the following program:

1. q = &x;
2. q = &y;
3. p = q;
3. q = &z;

First two statements are easy:

q = &x;

q x1

q = &y;

q

x1

y

2

Third statement. See all the things q points to, and make
p point to them as well. Add in dotted line, to remind us
pts(q) ⊆ pts(p).

p = q;

q

x
1

y2 p

3

3

Fourth statement. Add in q → z edge.

q = &z;

q

x

1

y2

z

4

p

3

3

But dotted line reminds us that pts(q) ⊆ pts(p). So we need
to add p → z edge as well. This is the extra work that makes
Andersen’s analysis more expensive. In a Steensgaard style
analysis we would have collapsed x and y at the second
statement, and then we wouldn’t have to worry about this
extra work (although we would lose precision).

q = &z;

q

x

1

y2

z

4 p

3

3

4

Andersen is O(n3).

Steensgaard is said to be equality-based, eg: pts(q) = pts(p).
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