
Points-To Analysis

Derek Rayside
MIT CSAIL 6.883, Prof Ernst

drayside@mit.edu
November 14, 2005

Contents

1 Overview 1

1.1 Complexity 1

1.2 Axes of Precision 2

2 Steensgaard [31] Example 3

2.1 Intuitive formulation [29] 3

2.2 Type-based formulation [6] 3

3 Andersen [1] Example [29] 4

1 Overview

Classic Research Challenge Getting precision for large pro-
gram quickly.

Recently groups from McGill [2, 20] and Stanford [34, 35]
have used binary decision diagrams (BDDs) to make precise
analyses scale to large programs. Raman [28] has a brief
overview of BDDs in this context.

New Research Challenges Incremental analyses. Incom-
plete programs. Demand-driven analyses (eg, [30]). Dy-
namic class loading (eg, [15, 24]).

Software Engineering Decision How to choose the right
points-to analysis for the software engineering problem
you’re trying to solve. What costs are worth paying?

[13] [14] [23] [10]

Liang et al. [22] found Andersen-style (inclusion) analyses
significantly more precise than Steensgaard-style (unifica-
tion).

Lhoták and Hendren [21] found object-sensitivity Milanova
et al. [25] gave the most bang for the buck for Java, vs
approaches such as [34, 35].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
6.883’05 MIT EECS 6.883 Program Analysis, Prof Ernst
Copyright held by the author. November 14, 2005.

Surveys Hind [12] Raman [28]

Dynamic Analysis Relatively little work done here. Gross
[10], Mock et al. [26] show 100x improvement over static
analyses, with 100x slowdown in program execution.

Context Sensitivity

fun
string

1.1 Complexity

Abstract from Chakaravarthy [3]:

Given a program and two variables p and q, the
goal of points-to analysis is to check if p can point
to q in some execution of the program. This well-
studied problem plays a crucial role in compiler
optimization. The problem is known to be un-
decidable when dynamic memory is allowed. But
the result is known only when variables are al-
lowed to be structures. We extend the result to
show that, the problem remains undecidable, even
when only scalar variables are allowed. Our sec-
ond result deals with a version of points-to anal-
ysis called flow-insensitive analysis, where one ig-
nores the control flow of the program and assumes
that the statements can be executed in any or-
der. The problem is known to be NP-Hard, even
when dynamic memory is not allowed and vari-
ables are scalar. We show that when the variables
are further restricted to have well-defined data
types, the problem is in P. The corresponding flow-
sensitive version, even with further restrictions,
is known to be PSPACE-Complete. Thus, our
result gives some theoretical evidence that flow-
insensitive analysis is easier than flow-sensitive
analysis. Moreover, while most variations of the
points-to analysis are known to be computation-
ally hard, our result gives a rare instance of a non-
trivial points-to problem solvable in polynomial
time.

Ramalingam [27]: Aliasing is undecidable

Landi [17]: PSPACE-complete even with no procedures or
memory allocations

Landi and Ryder [18]

Figure 1 A Brief History of Pointer Analysis [33] — focus on scalability and precision

Equality-based Subset-based Flow-sensitive

C
o
n
te

x
t-

in
se

n
si

ti
v
e

• Weihl [32]
1980: < 1 KLOC
first paper on pointer analysis

• Steensgaard [31]
1996: 1+ MLOC
first scalable pointer analysis

• Andersen [1]
1994: 5 KLOC

• Fähndrich et al. [7]
1998: 60 KLOC

• Heintze and Tardieu [11]
2001: 1 MLOC

• Berndl et al. [2]
2003: 500 KLOC
first to use BDDs

• Choi et al. [5]
1993: 30 KLOC

C
o
n
te

x
t-

se
n
si

ti
v
e

• Fähndrich et al. [8]
2000: 200K

• Whaley and Lam [35]
2004: 600 KLOC
cloning-based BDDs

• Landi and Ryder [19]
1992: 3 KLOC

• Wilson and Lam [37]
1995: 30 KLOC

• Whaley and Rinard [36]
1999: 80 KLOC

Horwitz [16]: Even flow-insensitive problem is NP-hard

Chakaravarthy [3]: Cannot even get a good approximation
(within a constant factor) unless P=NP

1.2 Axes of Precision

less precise more precise
equivalence subset/inclusion

flow-insensitive flow-sensitive
context-insensitive context-sensitive

Consider the following example [33]:

p = malloc();
q = malloc();
fp = &p;
fp = &q;
... = *fp;

What does the points-to graph look like at the end of the
snippet? Depends on what analysis you do:

flow-insensitive,
equality-based, eg
Steensgaard [31]

p

q

heap1

heap2
fp

flow-insensitive,
subset-based, eg
Andersen [1]

fp

p

q

heap1

heap2

flow-sensitive

fp

p

q

heap1

heap2

Another example, for context-sensitivity [33]:

id (x) { return x; }
foo() {

a = malloc();
a = id(a);

}
bar() {

b = malloc();
b = id(b);

}

dotted lines are
spurious edges
added by context-
insensitivity

a heap1

heap2b

2

2 Steensgaard [31] Example

Consider the following program:

1. x = &a;
2. y = &b;
3. p = &x;
4. p = &y;

2.1 Intuitive formulation [29]

Now we’ll construct the points-to graph for this program
using the Steensgaard approach as formulated by Ryder [29].

First three statements are easy:
x = &a;

x a

y = &b;

y b

x a

p = &x;

y b

p x a

Last statement takes more effort to process:
p = &y;

add edge

p

x

y

a

b

collapse x and y

x

y
b

a

p

collapse a and b

x

y

a

b
p

Resulting points-to graph over-approximates:

points-to graph

p

x

y

a

b

Why do we have to do this collapsing? It seems that the
analysis would be linear in the size of the program if we
didn’t do collapsing. The issues is statements like a=b; see
the example of Andersen’s analysis below for why these in-
troduce more complexity.

2.2 Type-based formulation [6]

First we assign each variable its own type:

• x : t1
• y : t2
• a : t3
• b : t4
• p : t5

Then we construct the initial constraints:

1. x = &a; t1 = ref(t3 ×)
2. y = &b; t2 = ref(t4 ×)
3. p = &x; t5 = ref(t1 ×)
4. p = &y; t5 = ref(t2 ×)

Now we solve/unify the constraints. First we see:

t5 = ref(t1 ×) = ref(t2 ×)

So we merge t1 and t2 into t1. The world looks like this:

• x : t1
• y : t1
• a : t3
• b : t4
• p : t5
• t1 = ref(t3 ×)
• t1 = ref(t4 ×)
• t5 = ref(t1 ×)

Next we see:

t1 = ref(t3 ×) = ref(t4 ×)

So we merge t3 and t4 into t3. The world looks like this:

• x : t1
• y : t1
• a : t3
• b : t3
• p : t5
• t1 = ref(t3 ×)
• t5 = ref(t1 ×)

We’re done solving. The storage shape graph is:

t5 t1 t3

If we expand that to a points-to graph we get:

p

x

y

a

b

3

3 Andersen [1] Example [29]

Consider the following program:

1. q = &x;
2. q = &y;
3. p = q;
3. q = &z;

First two statements are easy:

q = &x;

q x1

q = &y;

q

x1

y

2

Third statement. See all the things q points to, and make
p point to them as well. Add in dotted line, to remind us
pts(q) ⊆ pts(p).

p = q;

q

x
1

y2 p

3

3

Fourth statement. Add in q → z edge.

q = &z;

q

x

1

y2

z

4

p

3

3

But dotted line reminds us that pts(q) ⊆ pts(p). So we need
to add p → z edge as well. This is the extra work that makes
Andersen’s analysis more expensive. In a Steensgaard style
analysis we would have collapsed x and y at the second
statement, and then we wouldn’t have to worry about this
extra work (although we would lose precision).

q = &z;

q

x

1

y2

z

4 p

3

3

4

Andersen is O(n3).

Steensgaard is said to be equality-based, eg: pts(q) = pts(p).

Acknowledgements

Thanks to Greg Dennis and Rob Seater for discussions.
Thanks to John Whaley for sending me his slides [33].
Thanks to Michael Ernst for sending me to Dagstuhl where
I saw Barbara Ryder’s talk [29].

References

[1] Lars O. Andersen. Program Analysis and Special-
ization of the C Programming Language. PhD thesis,
DIKU, University of Copenhagen, 1994.

[2] Marc Berndl, Ondřej Lhoták, Feng Qian, Lau-
rie Hendren, and Navindra Umanee. Points-
to analysis using BDDs. In Rajiv Gupta, editor,
Proc.PLDI, pages 103–114, June 2003.

[3] Venkatesan T. Chakaravarthy. New results on the
computability and complexity of points-to analysis. In
Greg Morrisett, editor, 30thPOPL, pages 115–125,
New Orleans, Louisiana, January 2003.

[4] Craig Chambers, editor. Proc.PLDI, June 2004.
ISBN 1-58113-807-5.

[5] Jong-Deok Choi, Michael G. Burke, and Paul R.
Carini. Efficient flow-sensitive interprocedural compu-
tation of pointer-induced aliases and side effects. In
20thPOPL, pages 232–245, Charleston, SC, January
1993.

[6] Amer Diwan. CSCI 5535: Homework 4, 1999.
http://www-plan.cs.colorado.edu/diwan/5535-
99/hw4-soln.pdf.

[7] Manuel Fähndrich, Jeffrey S. Foster, Zhen-
dong Su, and Alexander Aiken. Partial online
cycle elimination in inclusion constraint graphs. In
Proc.PLDI, pages 85–96, Montreal, Canada, May 1998.

[8] Manuel Fähndrich, Jakob Rehof, and Manuvir
Das. Scalable context-sensitive flow analysis using in-
stantiation constraints. In Proc.PLDI, pages 253–263,
Vancouver, British Columbia, Canada, June 2000.

[9] John Field and Gregor Snelting, editors.
Proc.ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis for Software Tools and Engineering
(PASTE), Snowbird, UT, June 2001.

[10] Axel Gross. Evaluation of dynamic points-to analysis,
2004. http://www.complang.tuwien.ac.at/franz/
sem-arbeiten/04w/semWS04 gross 0026934.pdf.

[11] Nevin Heintze and Olivier Tardieu. Ultra-fast
aliasing analysis using CLA: A million lines of C code
in a second. In Mary Lou Soffa, editor, Proc.PLDI,
Snowbird, UT, June 2001.

[12] Michael Hind. Pointer analysis: haven’t we solved
this problem yet? In Field and Snelting [9], pages 54–
61.

[13] Michael Hind and Anthony Pioli. Assessing the
effects of flow-sensitivity on pointer alias analyses. In
Proc.International Static Analysis Symposium (SAS),
pages 57–81, 1998.

4

[14] ———. Evaluating the effectiveness of pointer alias
analyses. Science of Computer Programming, 39(1):
31–55, 2001.

[15] Martin Hirzel, Amer Diwan, and Michael Hind.
Pointer analysis in the presence of dynamic class load-
ing. In Martin Odersky, editor, Proc.18thECOOP,
volume 3344 of LNCS, pages 96–122, Oslo, Norway,
June 2004. Springer-Verlag. ISBN 3-540-23988-X.

[16] Susan Horwitz. Precise flow-insensitive may-alias
analysis is np-hard. Transactions on Programming Lan-
guages and Systems, 19(1):1–6, 1997. ISSN 0164-0925.

[17] William Landi. Undecidability of static analysis.
ACM Letters on Programming Languages and Systems,
1(4):323–337, 1992.

[18] William Landi and Barbara G. Ryder. Pointer-
induced aliasing: A problem classification. In
18thPOPL, pages 83–103, Orlando, FL, January 1991.

[19] ———. A safe approximate algorithm for interproce-
dural pointer aliasing. In Proc.PLDI, pages 235–248,
San Francisco, CA, June 1992.

[20] Ondřej Lhoták and Laurie Hendren. Jedd: A
BDD-based relational extension of Java. In Chambers
[4]. ISBN 1-58113-807-5.

[21] ———. Context-sensitive points-to analysis: is it worth
it? Technical Report 2005-2, McGill University, Sable
Research Group, October 2005.

[22] Donglin Liang, Maikel Pennings, and Mary Jean
Harrold. Extending and evaluating flow-insensitive
and context-insensitive points-to analyses for Java. In
Field and Snelting [9], pages 73–79.

[23] ———. Evaluating the impact of context-sensitivity on
andersen’s algorithm for Java programs. In Michael
Ernst and Thomas Jensen, editors, Proc.6thACM
SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering (PASTE), Lisbon,
Portugal, September 2005.

[24] Benjamin Livshits, John Whaley, and Monica S.
Lam. Reflection analysis for java. In Proceedings of
Programming Languages and Systems: Third Asian
Symposium, APLAS 2005, Tsukuba, Japan, November
2005.

[25] Ana Milanova, Atanas Rountev, and Barbara G.
Ryder. Parameterized object sensitivity for points-to
analysis for Java. ACM Transactions on Software En-
gineering and Methodology, 14(1):1–41, January 2005.

[26] Markus Mock, Manuvir Das, Craig Chambers,
and Susan J. Eggers. Dynamic points-to sets: A
comparison with static analyses and potential applica-
tions in program understanding and optimization. In
Field and Snelting [9].

[27] G. Ramalingam. The undecidability of aliasing.
Transactions on Programming Languages and Systems,
16(5):1467–1471, 1994. ISSN 0164-0925.

[28] Vishwanath Raman. Pointer analysis – a survey.
CS203 UC Santa Cruz, 2004. http://www.soe.ucsc.
edu/∼vishwa/publications/Pointers.pdf.

[29] Barbara Ryder. Analysis of object-oriented pro-
gramming langauges. Dagstuhl, 2003. http://www.
cs.rutgers.edu/∼ryder/OOAnalRefacDagstuhl.pdf.

[30] Manu Sridharan, Denis Gopan, Lexin Shan, and
Rastislav Bod́ık. Demand-driven points-to anal-
ysis for Java. In Richard P. Gabriel, editor,
Proc.20thOOPSLA, pages 59–76, San Diego, CA, Oc-
tober 2005. ISBN 1-59593-031-0.

[31] Bjarne Steensgaard. Points-to analysis in almost

linear time. In 23rdPOPL, St. Petersburg Beach,
Florida, January 1996. ISBN 0-89791-769-3.

[32] William E. Weihl. Interprocedural data flow analy-
sis in the presence of pointers, procedure variables and
label variables. In 7thPOPL, pages 83–94, Las Vegas,
NV, January 1980.

[33] John Whaley. Program analysis using BDDs. Talk
at MIT, March 2005.

[34] ———. Program Analysis using Binary Decision Dia-
grams. PhD thesis, Stanford University, July 2005.

[35] John Whaley and Monica Lam. Cloning-based
context-sensitive pointer alias analysis using binary de-
cision diagrams. In Chambers [4]. ISBN 1-58113-807-5.

[36] John Whaley and Martin Rinard. Compositional
pointer and escape analysis for Java programs. In
Linda Northrop, editor, Proc.14thOOPSLA, Denver,
CO, November 1999.

[37] Robert P. Wilson and Monica S. Lam. Efficient
context-sensitive pointer analysis for C programs. In
Proc.PLDI, pages 1–12, La Jolla, CA, June 1995.

5

