
Strictly Declarative Specification of Sophisticated Points-to Analyses

Martin Bravenboer Yannis Smaragdakis

Department of Computer Science
University of Massachusetts, Amherst

Amherst, MA 01003, USA

martin.bravenboer@acm.org yannis@cs.umass.edu

Abstract
We present the Doop framework for points-to analysis of
Java programs. Doop builds on the idea of specifying pointer
analysis algorithms declaratively, using Datalog: a logic-
based language for defining (recursive) relations. We carry
the declarative approach further than past work by describ-
ing the full end-to-end analysis in Datalog and optimizing
aggressively using a novel technique specifically targeting
highly recursive Datalog programs.

As a result, Doop achieves several benefits, including full
order-of-magnitude improvements in runtime. We compare
Doop with Lhoták and Hendren’s Paddle, which defines the
state of the art for context-sensitive analyses. For the exact
same logical points-to definitions (and, consequently, identi-
cal precision) Doop is more than 15x faster than Paddle for
a 1-call-site sensitive analysis of the DaCapo benchmarks,
with lower but still substantial speedups for other important
analyses. Additionally, Doop scales to very precise analyses
that are impossible with Paddle and Whaley et al.’s bddbddb,
directly addressing open problems in past literature. Finally,
our implementation is modular and can be easily configured
to analyses with a wide range of characteristics, largely due
to its declarativeness.

Categories and Subject Descriptors F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming
Languages—Program Analysis; D.1.6 [Programming
Techniques]: Logic Programming

General Terms Algorithms, Languages, Performance

1. Introduction
Points-to (or pointer) analysis intends to answer the question
“what objects can a program variable point to?” This ques-
tion forms the basis for practically all higher-level program

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA 2009, October 25–29, 2009, Orlando, Florida, USA.
Copyright c© 2009 ACM 978-1-60558-734-9/09/10. . . $10.00

analyses. It is, thus, not surprising that a wealth of research
has been devoted to efficient and precise pointer analysis
techniques. Context-sensitive analyses are the most common
class of precise points-to analyses. Context sensitive analysis
approaches qualify the analysis facts with a context abstrac-
tion, which captures a static notion of the dynamic context
of a method. Typical contexts include abstractions of method
call-sites (for a call-site sensitive analysis—the traditional
meaning of “context-sensitive”) or receiver objects (for an
object-sensitive analysis).

In this work we present Doop: a general and versatile
points-to analysis framework that makes feasible the most
precise context-sensitive analyses reported in the literature.
Doop implements a range of algorithms, including context
insensitive, call-site sensitive, and object-sensitive analyses,
all specified modularly as variations on a common code base.
Compared to the prior state of the art, Doop often achieves
speedups of an order-of-magnitude for several important
analyses.

The main elements of our approach are the use of the Dat-
alog language for specifying the program analyses, and the
aggressive optimization of the Datalog program. The use of
Datalog for program analysis (both low-level [13,23,29] and
high-level [6,9]) is far from new. Our novel optimization ap-
proach, however, accounts for several orders of magnitude of
performance improvement: unoptimized analyses typically
run over 1000 times more slowly. Generally our optimiza-
tions fit well the approach of handling program facts as a
database, by specifically targeting the indexing scheme and
the incremental evaluation of Datalog implementations. Fur-
thermore, our approach is entirely Datalog based, encoding
declaratively the logic required both for call graph construc-
tion as well as for handling the full semantic complexity
of the Java language (e.g., static initialization, finalization,
reference objects, threads, exceptions, reflection, etc.). This
makes our pointer analysis specifications elegant, modular,
but also efficient and easy to tune. Generally, our work is a
strong data point in support of declarative languages: we ar-
gue that prohibitively much human effort is required for im-
plementing and optimizing complex mutually-recursive def-
initions at an operational level of abstraction. On the other

243

hand, declarative specifications both admit automatic opti-
mizations as well as afford the user the ability to identify
and apply straightforward manual optimizations.

We evaluate Doop in comparison to Lhoták and Hen-
dren’s Paddle framework [18]. Paddle is based on Binary
Decision Diagrams (BDDs) and represents the state of the
art in context sensitive pointer analyses, in terms of both
semantic completeness (i.e., support for Java language fea-
tures) and scalability. Furthermore, Paddle is a highly flexi-
ble framework that was used to illustrate the different charac-
teristics and parameters of context-sensitivity. Doop has the
same attractive features and yields identical analysis results
(based on a logically equivalent algorithm). Our 1-call-site-
sensitive analysis of the DaCapo benchmarks applications
(and JDK 1.4) yields an average speedup of 16.3x, lower-
ing analysis times from several minutes to below a minute
in many cases. For a 1-object-sensitive analysis, Doop is
15x faster than Paddle. Such speedups are rare in the pro-
gram analysis literature, especially for completely equiva-
lent analyses. Lhoták and Hendren recently speculated [18]
“it should be feasible to implement an efficient non-BDD-
based 1-object-sensitive analysis”. We show that such an
analysis not only is feasible but also outperforms BDDs by
an order of magnitude.

Generally, our approach reveals interesting insights re-
garding the use of BDDs, compared to an explicit represen-
tation of relations, for points-to analysis. Our work raises
the question of whether the points-to analysis domain has
enough regularity for BDDs to be beneficial. Although we
have found analyses that are possible with BDDs yet we
could not perform with an explicit representation, every such
analysis seemed to suffer from vast (but very regular) im-
precision. Easy algorithmic enhancements can be applied to
reduce the unnecessary redundancy in the relations that a
points-to analysis keeps, and produce an analysis that is both
much faster without BDDs and more precise. For instance,
Doop would not scale to a 1H-object-sensitive analysis (i.e.,
1-object-sensitive with a context-sensitive heap) in the form
specified in the Paddle analysis set. Yet this is only because
a naive analysis specification results in high redundancy,
which necessitates BDDs. Two simple algorithmic enhance-
ments suffice for making the analysis feasible for Doop:
1) we perform exception analysis on-the-fly [3], computing
contexts that are reachable because of exceptional control
flow while performing the points-to analysis itself. The on-
the-fly exception analysis significantly improves both pre-
cision and performance; 2) we treat static class initializers
context-insensitively (since points-to results are equivalent
for all contexts of static class initializers), thus improving
performance while keeping identical precision.

The result of combining Doop’s optimization approach
and our algorithmic enhancements is that Doop addresses
several open problems in the points-to analysis literature.
Lhoták and Hendren estimated that “efficiently implement-

ing a 1H-object-sensitive analysis without BDDs will require
new improvements in the data structures and algorithms
used to implement points-to analyses” [18]. Doop achieves
this goal, with fairly routine data structures (plain B-trees).
Furthermore, Doop reproduces the most complex points-to
analyses of the Paddle set—a result previously considered
impossible without BDDs. Even more importantly, Doop
scales to analyses that are impossible with current BDD-
based approaches, such as a 2H-call-site-sensitive analysis.

In summary, our work makes the following contributions:

• We provide the first fully declarative specification of com-
plex, highly precise points-to analyses. Our specification
distills points-to analysis algorithms down to their essence,
instead of confusing the logical statement of an analy-
sis with implementation details. Past work on specifying
points-to analyses in Datalog has always been a hybrid be-
tween imperative code and a logical specification, omitting
essential elements from the logic. For instance, the bddb-
ddb system [28, 29] (which pioneered practical Datalog-
based points-to analysis) expresses the core of a points-to
analysis in Datalog, while important parts (such as nor-
malization and call-graph computation—except for sim-
ple, context-insensitive, analyses) are done in Java code.
In general, Doop offers the first declarative specification
of a context-sensitive points-to analysis with on-the-fly
(i.e., fully interleaved) call-graph computation. Addition-
ally, our specification of algorithms is quite sophisticated,
addressing elements of the Java language (such as native
code, finalization, and privileged actions) that were absent
from previous declarative approaches (e.g., bddbddb) and
that crucially affect precision and performance. As a result,
Doop provides an analysis that emulates and often exceeds
the rich feature set of the Paddle framework, while staying
entirely declarative.

• We introduce a novel optimization methodology, applied
entirely at the Datalog level, for producing efficient algo-
rithms directly from the logical specification of an anal-
ysis. The optimization approach employs standard pro-
gram transformations (such as variable reordering and
folding—a common logic programming optimization) yet
determines when to do so by taking into account the
“semi-naive” algorithm for incremental evaluation of Dat-
alog rules, as well as the indexes that are used for each
relation. As a result, Doop achieves order-of-magnitude
performance improvements over the closest comparable
points-to framework in the literature for common context-
sensitive analyses.

• We show that Doop scales to perform the most pre-
cise context-sensitive analyses ever evaluated in the re-
search literature. Doop not only implements the rich set
of analyses of the Paddle system but also scales to anal-
yses that are beyond reach for Paddle, such as a 2-call-
site-sensitive analysis with a context-sensitive heap, and

244

a 2-object-sensitive analysis with a (1-context) context-
sensitive heap.

• We contrast and study the performance of BDD-based
representations for points-to analysis, relative to explicit
representations. We show how performance is correlated
with key BDD metrics and extrapolate on the suitability of
BDDs for fast and precise points-to analyses.

2. Background: Datalog Points-To Analysis
The use of deductive databases and logic programming lan-
guages for program analysis has a long history (e.g., [4,23])
and has raised excitement again recently [6, 9, 13, 28, 29].
Like our work, much of the past emphasis has been on
using the Datalog language. Datalog is a logic program-
ming language originally introduced in the database do-
main. At a first approximation, one can view Datalog as ei-
ther “SQL with full recursion” or “Prolog without construc-
tors/functions”. The essence of the language is its ability to
define recursive relations. Relations (or equivalently predi-
cates) are the main Datalog data type. Computation consists
of inferring the contents of all relations from a set of in-
put relations. For instance, in our pointer analysis domain, it
is easy to represent the relevant actions of a Java program
as relations, typically stored as database tables. Consider
two such relations, AssignHeapAllocation(?var,?heap)
and Assign(?from,?to). (We follow the convention of cap-
italizing the first letter of relation names, while writing vari-
able names in lower case and prefixing them with a question-
mark.) The former relation represents all occurrences in the
program of an instruction “a = new A();” where a heap ob-
ject is allocated and assigned to a variable. That is, a pre-
processing step takes a Java program (in our implementation
this is in intermediate, bytecode, form) as input and produces
the relation contents. A static abstraction of the heap object
is captured in variable ?heap—it can be concretely repre-
sented as, e.g., a fully qualified class name and the alloca-
tion’s bytecode instruction index. Similarly, relation Assign
contains an entry for each assignment between two Java pro-
gram (reference) variables.

The mapping between the input Java program and the
input relations is straightforward and purely syntactic. After
this step, a simple pointer analysis can be expressed entirely
in Datalog as a transitive closure computation:

VarPointsTo(?var, ?heap) <-1

AssignHeapAllocation(?var, ?heap).2

VarPointsTo(?to, ?heap) <-3

Assign(?from, ?to), VarPointsTo(?from, ?heap).4

The Datalog program consists of a series of rules
that are used to establish facts about derived relations
(such as VarPointsTo, which is the points-to relation,
i.e., it links every program variable, ?var, with every
heap object abstraction, ?heap, it can point to) from a
conjunction of previously established facts. We use the

left arrow symbol (<-) to separate the inferred fact (the
head) from the previously established facts (the body).
For instance, lines 3-4 above say that if, for some val-
ues of ?from, ?to, and ?heap, Assign(?from,?to) and
VarPointsTo(?from,?heap) are both true, then it can be in-
ferred that VarPointsTo(?to,?heap) is true. Note the base
case of the computation above (lines 1-2), as well as the re-
cursion in the definition of VarPointsTo (line 3-4).

The declarativeness of Datalog makes it attractive for
specifying complex program analysis algorithms. Particu-
larly important is the ability to specify recursive definitions,
as program analysis is fundamentally an amalgam of mu-
tually recursive tasks. For instance, in order to do accurate
reachability analysis (i.e., answer the question “is method
m1 reachable from method m2?”) we need to have points-to
information, so that the target objects of a virtual method
call are known. But in order to do points-to analysis, we
need to have reachability information, to know which vari-
able assignment actions are truly possible. A mutually re-
cursive definition of a reachability and points-to analysis is
easy to specify in Datalog, and is part of the Doop frame-
work. The elegance of the approach is evident when con-
trasted with common implementations of points-to analyses.
Even conceptually clean program analysis algorithms that
rely on mutually recursive definitions often get transformed
into complex imperative code for implementation purposes
(e.g., compare the straightforward logic with the complex
algorithmic specification in Reference [26]).

Datalog evaluation is typically bottom-up, meaning that
known facts are propagated using the rules until a maximal
set of derived facts is reached. This is also the link to the
data processing intended domain of Datalog: evaluation of
a rule can be thought of as a sequence of relational algebra
joins and projections. For instance, the evaluation of lines
3-4 in our above example can be thought of as: Take the
join of relation Assign with relation VarPointsTo over the
first column of both (because of common field ?from) and
project the join result on fields ?to and ?heap. The result
of the projection is added to relation VarPointsTo (skipping
duplicates) and forms the value of VarPointsTo for the next
iteration step. Application of all rules iterates to fixpoint.
Note that this means that the evaluation of a Datalog pro-
gram comprises two distinct kinds of looping/iteration ac-
tivities: the relational algebra joins and projections, and the
explicit recursion of the program. The former kind of loop-
ing is highly efficient through traditional database optimiza-
tions (e.g., for join order, group-fetching of data from disk,
locality of reference, etc.).

We use a commercial Datalog engine, developed by our
industrial partner, LogicBlox Inc. (The engine is freely avail-
able for research use through us and we have already granted
access to a handful of early adopters.) This version of Data-
log allows “stratified negation”, i.e., negated clauses, as long
as the negation is not part of a recursive cycle. It also allows

245

specifying that some relations are functions, i.e., the vari-
able space is partitioned into domain and range variables,
and there is only one range value for each unique combina-
tion of values in domain variables. We will see these features
in action in our algorithm specification, next.

3. Doop Pointer Analysis Specifications
Our Doop framework is a versatile Datalog implementation
of a range of pointer analyses. Doop is available online at
http://doop.program-analysis.org. Doop strives for full
Java language support and follows closely the approach of
Paddle—the most complete analysis in prior literature—in
dealing with various Java language features. We next discuss
in more detail the features and precision of the framework.

3.1 Overview and Preliminaries

Doop distills points-to analysis algorithms to a purely declar-
ative specification. An advantage of a declarative specifica-
tion is that it dissociates the logic of the analysis (i.e., the
precision of the end result as well as intermediate results)
from the implementation decisions used to perform the anal-
ysis efficiently. The resulting specification is a Datalog pro-
gram, and is, therefore, executable. Nevertheless, the pro-
gram may not be efficient as originally specified. The goal of
our optimization methodology (described in Section 4) is to
produce equivalent Datalog programs that are more efficient.
For the rest of this section, however, we are only concerned
with the logical specification of the analyses.

This separation of specification from implementation is
already done informally, as a classification, in the points-
to analysis literature. Several different published algorithms
occupy the same point in the design space (e.g., they are all
1-object-sensitive analyses) but differ in properties such as
their average runtime or asymptotic complexity, often be-
cause of different choices of indexing and storage data struc-
tures. Hence, the effort to specify an analysis in Doop con-
sists of, first, producing a logical specification and, then, de-
riving an efficient algorithm for that specification. The two
steps are not entirely independent, because it is sometimes
hard to tell which decisions are part of the “specification”
of an analysis and which are part of the “implementation”.
For example, treating the static initializers of Java classes
context-insensitively (even for a context-sensitive analysis)
does not affect the end result of an analysis, but has a ma-
jor impact on its runtime. However, expressing this deci-
sion affects the specification: the two Datalog programs are
not equivalent. (What makes these specifications equivalent
is extra knowledge about the input relations, i.e., a restric-
tion of the input domain that only the algorithm designer
knows.) In this paper, we call optimizations the transforma-
tions that produce an equivalent Datalog program (i.e., all
relations have the same contents for all inputs), and call log-
ical enhancements or algorithmic enhancements the trans-
formations that logically change the original specification.

3.2 Doop Contents

Doop supports a general pointer analysis trunk and several
different analysis variations. The main variants we have ex-
plored are a context-insensitive analysis, as well as context
sensitive analyses with 1- and 2-object, as well as 1- and
2-call-site contexts, with or without a context-sensitive heap
(a.k.a. heap cloning) with different heap context depths. This
variability is not directly supported in Datalog: for instance,
for a context-sensitive analysis, the relation VarPointsTo
needs extra arguments representing the context (be it a call-
site context, or an object context) of the variable. Similarly,
for analyses utilizing a context-sensitive heap, the abstrac-
tion of the heap object needs to be qualified by extra vari-
ables for its context. (In such analyses, an abstract object
consists of the allocation site and the context of the method
that contains that allocation site.) These differences are su-
perficial, however. We have abstracted away from them by
creating a small extension of Datalog that allows tuples of
variables in place of a single variable. The extension is im-
plemented as a macro and hides the configuration of the
particular analysis, to the extent possible. The plain-Datalog
code for each analysis is then generated by instantiating the
macros. The total size of the analysis logic in Doop is less
than 2500 lines of code (approximately 180 Datalog pro-
gram rules) and another some 1000 lines of relation declara-
tions (i.e., specifications of the database schema), comments,
and minor support code. These metrics include all pointer
analysis variants, but commonalities are factored out using
our variable-tuple mechanism. The plain-Datalog size of a
single analysis variant after macro-expansion is in the or-
der of 500-1000 lines, or 120-150 Datalog rules. In the code
examples of this paper, unless stated otherwise, we will ig-
nore variations and concentrate on the standard 1-call-site-
sensitive analysis for concreteness.

The analysis logic in Doop can be viewed as an elabora-
tion of the simple Datalog example shown earlier. Consider
the full-fledged analogues of the two basic rules from Sec-
tion 2.

VarPointsTo(?ctx, ?var, ?heap) <-1

AssignHeapAllocation(?var, ?heap, ?inmethod),2

CallGraphEdge(_, _, ?ctx, ?inmethod).3

4

VarPointsTo(?toCtx, ?to, ?heap) <-5

Assign(?fromCtx, ?from, ?toCtx, ?to, ?type),6

VarPointsTo(?fromCtx, ?from, ?heap),7

HeapAllocation:Type[?heap] = ?heaptype,8

AssignCompatible(?type, ?heaptype).9

(We use some extensions and notational conventions in the
code. First, some of our relations are functions, and the func-
tional notation “Relation[?domainvar] = ?val” is used in-
stead of the relational notation, “Relation(?domainvar,
?val)”. Semantically the two are equivalent, but the execu-
tion engine enforces the functional constraint and produces
an error if a computation causes a function to have multiple

246

range values for the same domain value. Second, the colon
(:) in relation names is just a regular character with no se-
mantic significance—we use common prefixes ending with a
colon as a lexical convention for grouping related predicates.
Finally, “ ” stands for “any value”, in the standard logic pro-
gramming convention.)

The full rules differ from their simplified versions in sev-
eral ways. First, all relations have extra arguments for the
context of Java variables: wherever the original relations had
a Datalog variable that corresponded to a Java program vari-
able (e.g., ?from, ?to) the full relations have first a Data-
log variable corresponding to a context, and then one corre-
sponding to the Java variable. Second, for an allocation to
flow to a variable in a given context, the allocation site has
to be reachable in the given context, from any other method
and context (line 3). Finally, variable assignments take into
account the type system (through AssignCompatible, on line
9) so that a variable is never considered to point to an object
abstraction if its type prohibits it.

Some more rules complete the definition of VarPointsTo.
The full analysis takes into account method calling, assign-
ment to fields, arrays, and more.

Importantly, the entire analysis is specified in Datalog,
including call graph construction. That is, the interdepen-
dency between call graph construction (i.e., which methods
are reachable in a given context) and points-to analysis is ex-
pressed as plain Datalog mutual recursion. This allows call
graph discovery on-the-fly, which Lhoták and Hendren [18]
find to be an important asset for precision. Previous pointer
analysis algorithms in Datalog (mainly Whaley et al.’s bddb-
ddb and its client analyses [21, 28, 29]) did not support on-
the-fly call-graph discovery, except for very simple, context-
insensitive, analyses.1

For a concrete instance of the mutual recursion, we can
look at one of the rules defining the CallGraphEdge rela-
tion (which is used to compute VarPointsTo and itself uses
VarPointsTo). The rule computes call graph edges due to
virtual method invocations and is shown in Figure 1. The
definition of CallGraphEdge also uses an auxiliary defini-
tion, shown in Figure 2, of a virtual method lookup relation.

Combined, this is the declarative specification of fully on-
the-fly call graph discovery, which is more precise than a
pre-computed call graph, as in bddbddb.

3.3 Support for Java Language Features

Doop offers full support for Java language semantics, en-
tirely in Datalog, without other peripheral analyses. We

1 Specifically, the bddbddb work [13, 29] computes the call-graph on-the-
fly with a context-insensitive analysis, and then uses it as input to context-
sensitive analyses. Thus, the added precision of the context-sensitive points-
to analysis is not available to the call-graph computation, which, in turn,
reduces the precision of the points-to analysis. This limitation is not inci-
dental. Since context-sensitivity in bddbddb is handled through a cloning
approach [29], a pre-computed call-graph is necessary: cloning techniques
are based on copying methods for each of their calling contexts.

CallGraphEdge(?callerCtx, ?call, ?calleeCtx, ?callee) <-

VirtualMethodCall:Base[?call] = ?base,

VirtualMethodCall:SimpleName[?call] = ?name,

VirtualMethodCall:Descriptor[?call] = ?descriptor,

VarPointsTo(?callerCtx, ?base, ?heap),

HeapAllocation:Type[?heap] = ?heaptype,

MethodLookup[?name, ?descriptor, ?heaptype] = ?callee,

?calleeCtx = ?call.

Figure 1. Computing (context-sensitive) call graph edges
from a call-site to a method, both under specific contexts.
A call graph edge exists if there exists a virtual method call,
?call, whose receiver object is referenced through variable
?base, which points to a heap object, ?heap, whose type
contains a method, ?callee, compatible with the virtual call.
The context of ?callee for this call is just the call-site,
?call, since the code is for a 1-call-site-sensitive analysis.

MethodLookup[?name, ?descriptor, ?type] = ?method <-

MethodImpl[?name, ?descriptor, ?type] = ?method.

MethodLookup[?name, ?descriptor, ?type] = ?method <-

DirectSuperclass[?type] = ?supertype,

MethodLookup[?name, ?descriptor, ?supertype] = ?method,

not exists MethodImpl[?name, ?descriptor, ?type].

MethodImpl[?name, ?descriptor, ?type] = ?method <-

MethodDecl[?name, ?descriptor, ?type] = ?method,

not MethodModifier("abstract", ?method).

Figure 2. The definition of relation MethodLookup, used in
Figure 1. Looking up a method with a specific name (?name),
return type, and parameter types (?descriptor) in a given
type (?type) is done by either finding a non-abstract method
declaration within ?type, or repeating the lookup for the
direct superclass of ?type if no such declaration exists. (The
syntax “not exists F[x]” means that there is no value v for
which F[x] = v.)

closely modeled the handling of Java features after the logic
in the Paddle system. Paddle covers several complex Java
features and semantic complexities (e.g., finalization, privi-
leged actions, threads, etc.). Implementing an analysis that
is logically equivalent to Paddle helps demonstrate that our
Datalog-based approach is a full-featured implementation
and not a toy or a proof-of-concept.

Indeed, in several cases we found ways to add more
precision or model Java semantics better than Paddle, thus
improving over past state-of-the-art techniques and mak-
ing Doop probably the most sophisticated pointer analysis
framework in existence for Java. This sophistication is im-
portant for client analyses that need sound results. For in-
stance, compared to Paddle, Doop adds such features as:

• Better initialization of the Java Virtual Machine. For ex-
ample, we model the system and main thread group, main
thread.

• Full support for Java’s reference objects (such as
WeakReference) and reference queues. For example, ref-

247

erence queues are used by Java Virtual Machine to invoke
finalize methods.

• More sophisticated reflection analysis. For example,
Doop uses distinct representations of instances of
java.lang.Class for every class in the analyzed program.
This reduces the number of human configuration points,
solves more reflection scenarios automatically, and im-
proves precision.

• More precise class initialization, modeling better the Java
Language Specification.

• More precise handling of cast and assignment compatibil-
ity checking.

• More precise exception analysis, using logic that is mu-
tually recursive with the main points-to logic. Exceptions
are propagated over the context-sensitive call graph, caught
exceptions are filtered, and the order of exception handlers
is considered. In a separate publication [3] we describe
on-the-fly exception analysis in detail and demonstrate its
impact on precision, especially for object-sensitive analy-
ses. On-the-fly exception analysis is expressible highly el-
egantly in Doop—another benefit of the declarative speci-
fication approach.

• Native methods are simulated in a more principled way.
In Paddle, indirect method calls via native code are some-
times not represented explicitly, but shortcut directly from
the Java call to the Java method. We model the call graph
edges more precisely, which is important if applications
need a correct call graph.

The declarative approach was of great help in adding
language feature support. A major benefit is that semantic
extensions are well localized and do not affect the basic
definitions (e.g., those in Section 3.2) at all. In contrast,
several features in the Paddle framework (e.g., privileged
actions, finalization, threads) have their implementation span
multiple components.

A second advantage of the declarative approach is that the
logic is high-level and often very close to the Java Language
Specification. A striking example is the implementation of
the logic for the Java cast checking—i.e., the answer to the
question “can type A be cast to type B?” Figure 3 shows
the full logic, directly from the Doop implementation, with
the text of the Java Language Specification in the comments
preceding each rule. As can be seen, the Datalog code is
almost an exact transcription of the Java specification. (The
main difference is that the specification is written in a must
style, whereas the Datalog code specifies which casts may
happen. The “must” property is ensured by the least-fixpoint
evaluation of Datalog.)

3.4 Discussion

Doop currently supports a rich range of analyses with
standard precision enhancements from the research litera-

/** If S is an ordinary (nonarray) class, then:

* o If T is a class type, then S must be the

* same class as T, or a subclass of T.

*/

CheckCast(?s, ?s) <- ClassType(?s).

CheckCast(?s, ?t) <- Subclass(?t, ?s).

/** o If T is an interface type, then S must

* implement interface T.

*/

CheckCast(?s, ?t) <- ClassType(?s),

Superinterface(?t, ?s).

/** If S is an interface type, then:

* o If T is a class type, then T must be Object

*/

CheckCast(?s, "java.lang.Object") <- InterfaceType(?s).

/** o If T is an interface type, then T must be the

* same interface as S or a superinterface of S

*/

CheckCast(?s, ?s) <- InterfaceType(?s).

CheckCast(?s, ?t) <- InterfaceType(?s),

Superinterface(?t, ?s).

/** If S is a class representing the array type SC[],

* that is, an array of components of type SC, then:

* o If T is a class type, then T must be Object.

*/

CheckCast(?s, "java.lang.Object") <- ArrayType(?s).

/** o If T is an array type TC[], that is, an

* array of components of type TC, then one

* of the following must be true:

* + TC and SC are the same primitive type

*/

CheckCast(?s, ?t) <- ArrayType(?s), ArrayType(?t),

ComponentType(?s, ?sc),

ComponentType(?t, ?sc),

PrimitiveType(?sc).

/** + TC and SC are reference types (2.4.6),

* and type SC can be cast to TC by

* recursive application of these rules.

*/

CheckCast(?s, ?t) <- ComponentType(?s, ?sc),

ComponentType(?t, ?tc),

ReferenceType(?sc),

ReferenceType(?tc),

CheckCast(?sc, ?tc).

/** o If T is an interface type, T must be one of

* the interfaces implemented by arrays (2.15).

*/

CheckCast(?s, "java.lang.Cloneable") <- ArrayType(?s).

CheckCast(?s, "java.io.Serializable") <- ArrayType(?s).

Figure 3. Checkcast implementation in Doop.

ture. This range includes or exceeds practically all precise
context-sensitive analyses demonstrated to be feasible in
prior literature. We refer throughout the paper to the pre-
cision characteristics of the analyses in Doop, especially by
reference to other systems. In order, however, to classify the
Doop-supported analyses in the larger spectrum of pointer

248

analysis mechanisms, it is convenient to explicitly list the
major features for completeness:

• Doop implements subset-based (or inclusion-based) anal-
yses, which preserve the directionality of assignments (un-
like equivalence-based analyses).

• There is fully on-the-fly callgraph discovery. Additionally,
the propagation of analysis facts is limited to reachable
methods (i.e., takes the callgraph into account).

• The analyses are field-sensitive, which distinguishes be-
tween the different fields of an object (as opposed to “field-
insensitive”), and between fields of different objects (as op-
posed to “field-based”).

• The analyses can have different kinds of context-
sensitivity (call-site, thread- or object-sensitivity) as well
as a context-sensitive heap abstraction (“heap cloning”).
The context of a called method can be chosen from the
current context as well as the context of the receiver ob-
ject.

• The analyses are array-element insensitive, i.e. elements
of an array are not distinguished.

• The analyses take type information into account: points-
to facts are not propagated if they would violate the JVM
type system.

• Doop integrates several specialized precision enhance-
ments. For instance, a straightforward but imprecise way to
model the flow of the receiver object in virtual method dis-
patch is by an assignment of the base variable of the virtual
call (?base in Figure 1) to this. This is imprecise, since
the same virtual method call can invoke different methods,
depending on the type of the receiver object. These meth-
ods all receive the same points-to set for this if the base
variable is assigned to this. Instead, we combine the as-
signment of receiver objects with virtual method dispatch
and assign a specific receiver object (?heap in Figure 1) to
this. This precision improvement is borrowed from Pad-
dle.

• Doop only considers special methods (constructors, pri-
vate, and superclass methods) reachable if the base vari-
able of the invocation points to any objects. Unlike virtual
method invocations, the target of a special method invo-
cation does not depend on the run-time class of the object.
Therefore, it is tempting to ignore the objects the base vari-
able points to. However, if the variable does not point to
any objects, then the method cannot be invoked. This pre-
cision improvement is borrowed from Paddle as well.

• Just as in the Paddle framework, Doop can achieve some
of the benefits of flow-sensitivity for local variables, by
applying the analysis on the static single assignment (SSA)
form of the program, e.g. the SSA variant of Soot’s Jimple
intermediate representation of Java bytecode.

The above list immediately serves to classify the Doop-
supported analyses as much more precise and full-featured
than previous declarative pointer analyses in the literature.
Specifically, the bddbddb system [28, 29] lacks in support
for many Java features, such as native code, reflection, fi-
nalization, etc., whose handling constitutes a large part of
the Doop analyses. Although sophisticated client analyses
have been implemented on top of bddbddb (e.g., jchord [21])
these analyses are such that they can tolerate unsound han-
dling of Java features, and they act as pure clients: their
sophistication does not benefit in any way the precision
of the base points-to analysis. Similarly, the quite sophis-
ticated reflection analysis of Livshits et al. [19] is expressed
on top of bddbddb’s points-to analysis, but is not strictly
declarative since it depends on facts computed by a Java
pre-analysis, and only applies to context-insensitive analy-
ses. (As mentioned earlier, context-sensitivity in bddbddb is
cloning-based and, thus, relies on having a pre-computed
call-graph. Integrating this with reflection would be non-
trivial.) Furthermore, the reflection analysis of Livshits et al.
produces an incorrect call-graph, because it does not take
into account the possibility of dynamic dispatch for methods
invoked reflectively. This observation is perhaps indicative
of the difference between treating language features as an in-
tegral part of a declarative points-to analysis intended as the
basis for sound inferences, vs. separating the base points-to
analysis from language feature support. Doop’s handling of
reflection can be viewed as analogous to adding a sophisti-
cated analysis similar to Livshits et al.’s, but in conjunction
with a context-sensitive points-to analysis, to obtain the full
benefit from the mutual increase in precision of both com-
ponent analyses.

To illustrate the gap in analysis sophistication between
bddbddb and Doop (as well as Paddle), we performed the
same context-insensitive analysis in both frameworks for the
DaCapo benchmark programs. (DaCapo v.2006-10-MR2,
JDK 1.4–j2re1.4.2 18, bddbddb svn revision 654, joeq com-
piler framework revision 2483.) Compared to Doop, bddb-
ddb reports roughly half the reachable methods (max: 74%,
min: 17%, median: 53%, over the 10 DaCapo applications)
and less than one-quarter of the points-to facts (max: 64%,
min: 3%, median: 21%). The discrepancy is due entirely to
the incompleteness of the points-to logic in bddbddb, since
the analyses have the same inherent precision. (Increased
precision would be unlikely to account for such a dramatic
reduction in reachable methods anyway: even the most pre-
cise, highly context-sensitive analysis in the Doop and Pad-
dle set barely reduces the number of reachable methods by
3-4%.)

In the past, researchers have questioned whether it is
even possible to express purely declaratively a full-featured
points-to analysis (comparable to Paddle, which uses im-
perative code with support for relations [17]). Lhoták [15]
writes:

249

“[E]ncoding all the details of a complicated program
analysis problem (such as the interrelated analyses [on-
the-fly call graph construction, handling of Java features])
purely in terms of subset constraints [i.e., Datalog] may be
difficult or impossible.”
Doop demonstrates that an elegant declarative specification
is possible and even easy.

Although Doop is a flexible framework, it is not suited to
all kinds of analyses. A clear limitation, for instance, is that
the context-depth used in the analysis has to be bounded.
Doop cannot support analyses that keep an unbounded num-
ber of calling contexts, even if the number is guaranteed to
be finite (e.g., recursive cycles are flattened). This is due
to the lack of constructors/functions in Datalog. This ob-
servation is unlikely to have any bearing in practice, how-
ever, since other precision enhancements, such as a context-
sensitive heap, have been shown to be a better trade-off
than an unbounded number of contexts [18]. Combining a
context-sensitive heap with even small bounds in context
sensitivity (e.g., 4-context-sensitive) is sufficient to make an
analysis explode in complexity.

4. Illustration of Doop Optimizations
A declarative specification has advantages in terms of modu-
larity, ease of understanding, and conciseness of expression.
One more advantage, however, is that it decouples the analy-
sis logic from its implementation, and allows high-level rea-
soning about implementation choices. In Doop we have used
a novel optimization methodology to convert initial speci-
fications into highly efficient algorithms. Because Doop is
expressed in a version of Datalog that exposes indexing de-
cisions to the language level, we can illustrate the optimiza-
tions as just Datalog program transformations.

We begin with some background information on Datalog
runtimes and the particular engine we use.

4.1 Background: Efficient Datalog Evaluation

A standard optimization for Datalog (indeed, a virtual pre-
requisite for high performance implementations) is the semi-
naive evaluation strategy. Semi-naive evaluation keeps track
of relation “deltas” on every recursive step, which corre-
spond to the new facts produced by the step. In this way, the
next step’s results are derived incrementally by using only
the previous step’s deltas, in all their possible join combina-
tions with full relations. Consider the evaluation of the ex-
ample from Section 2, reproduced below:

VarPointsTo(?var, ?heap) <-1

AssignHeapAllocation(?var, ?heap).2

VarPointsTo(?to, ?heap) <-3

Assign(?from, ?to), VarPointsTo(?from, ?heap).4

Initially, relation VarPointsTo is empty. The first
step populates relation VarPointsTo with the facts from
AssignHeapAllocation, as dictated by lines 1-2. The rule
in lines 3-4 has nothing to contribute, since VarPointsTo

was empty at the beginning of the step. In the second step,
however, this rule joins the new members of VarPointsTo
from step 1, ΔVarPointsTo1, with those of input relation
Assign. This produces ΔVarPointsTo2, i.e., the new mem-
bers of VarPointsTo from step 2. The next step only needs
to join ΔVarPointsTo2 with Assign, in order to produce
ΔVarPointsTo3, and so on.

This optimization is straightforward, yet crucial. It is a
major benefit that we get for free from using a declarative
language for specifying our analysis. There are more benefits
that Doop receives for free through standard Datalog imple-
mentation techniques. Specifically, local join optimization is
performed: a good order of joins in a single Datalog rule is
automatically determined based on statistics on the size of
relations and selectivity of joins. This baseline is valuable
but still leaves us orders of magnitude away from the perfor-
mance of a state-of-the-art context-sensitive program analy-
sis. For this we need optimizations across rules, introduction
of new database indexes, etc. These optimizations are typi-
cally not well-automatable: they correspond to producing an
efficient algorithm from a specification, and require human
intervention.

In order to execute Datalog programs efficiently, the low-
level representation of relations should be compact and an
indexing scheme should be in place so that all rules are ex-
ecuted efficiently. The LogicBlox Datalog engine used for
Doop allows the user to specify maximum cardinalities for
the domains of variables (e.g., the maximum number of val-
ues for ?var in relation VarPointsTo(?var, ?heap)). These
are used to store domain values as integers and all values of
variables (keys) in the same relation (?var and ?heap in our
example) are packed together in the smallest number of ma-
chine words possible using bit shifts and mask operations. A
relation is then represented as a sequence of these packed in-
tegers for which the relation is true. (Alternatively, the user
can specify that the default value for the relation is “false”, in
which case the system stores all packed keys for which the
relation is false. So far we have not used this capability in
Doop because all points-to results are very sparse relations.)

As in all database languages, efficiency of execution typ-
ically depends on what indexes are defined on the data so
that relational operations can be highly efficient. A unique
feature of the Datalog engine that we use is that the index-
ing is exposed to the Datalog language level. In this way,
introducing and eliminating indexes can be viewed as just a
program transformation, instead of needing to edit the data
schema or other configuration files. Specifically, a relation,
e.g., VarPointsTo(?var, ?heap), is stored with its contents
(pairs of packed variable values) ordered by innermost vari-
able, i.e., ?heap, and then by the next innermost variable,
i.e., ?var, etc. The relation is indexed using a B-tree with a
key consisting of all variables together. Since, however, a B-
tree is an ordered map, knowing the value of the innermost
variable alone is sufficient for efficient indexing. (I.e., the in-

250

nermost variable is the major index, the second innermost
is the next major index, etc.) Thus, variable ordering is very
important. The user can change the indexing efficiency to op-
timize joins, by just reordering variables. For instance, a join
between two relations is very fast if both relations have the
join variables in their innermost positions and in the same
order. In that case, both relations just need to be traversed
linearly and their contents merged. Another scheme for an
efficient join is when joining over the innermost variable of
one relation and the second relation is small (so it can be
iterated exhaustively and bind the index variable of the first
relation). As a rule of thumb, when a relation is known to be
small, the local query optimizer will automatically choose
to perform the join by iterating exhaustively over its con-
tents. The iteration will bind variables of other relations be-
ing joined. These variables should be in the innermost posi-
tions, so that their values can be used for efficient indexing.
Our optimization methodology, described next, exploits this
technique, in particular considering semi-naive evaluation.

In summary, the use of Datalog in Doop separates the
specification of an analysis from its implementation, there-
fore allowing multiple techniques for efficient execution, all
expressed at the level of Datalog evaluation. Our current
Datalog engine is in many ways mature, but only uses very
simple data structures (B-trees and an explicit representation
of relations). It is tempting in the future to consider alterna-
tive Datalog execution techniques (e.g., the option to trans-
parently use BDDs to represent relations) especially if these
are provided in a well-engineered implementation.

4.2 Optimization Methodology

Based on this understanding of Datalog evaluation and op-
timization opportunities, we next present the optimization
techniques we use in Doop through examples.

Consider a refinement of our above rudimentary two-
rule pointer analysis logic. We will add to our analy-
sis field sensitivity: heap objects can be stored to and
loaded from instance fields and the analysis keeps track
of such actions. (This example ignores other language
features such as method calls—i.e., we assume the ana-
lyzed program is just a single main function.) Two new
input relations are derived from the code of a Java pro-
gram: LoadInstanceField(?base, ?signature, ?to) and
StoreInstanceField(?from, ?base, ?signature). The
former tracks a load from the object referenced by vari-
able ?base in the field identified by ?signature. If, for in-
stance, the Java program contains an action “x = v.fld;”,
then LoadInstanceField contains an entry with ?base be-
ing the representation of Java variable “v”, ?signature
identifying field “fld”, and ?to corresponding to “x”.
StoreInstanceField tracks store actions in a similar
manner: Every Java program action “v.fld = u;” corre-
sponds to an entry in StoreInstanceField(?from, ?base,
?signature), with v represented by variable ?base, u repre-

sented by ?from, and an identifier for field fld captured by
?signature.

Our simple analysis can then be elaborated: (The first two
rules are the same but two more rules are added.) A new
relation, InstanceFieldPointsTo, is used to compute which
heap object (?baseheap) can point to which other (?heap)
through a given field (?signature).

VarPointsTo(?var, ?heap) <-1

AssignHeapAllocation(?var, ?heap).2

VarPointsTo(?to, ?heap) <-3

Assign(?from, ?to), VarPointsTo(?from, ?heap).4

VarPointsTo(?to, ?heap) <-5

LoadInstanceField(?base, ?signature, ?to),6

VarPointsTo(?base, ?baseheap),7

InstanceFieldPointsTo(?baseheap, ?signature, ?heap).8

9

InstanceFieldPointsTo(?baseheap, ?signature, ?heap) <-10

StoreInstanceField(?from, ?base, ?signature),11

VarPointsTo(?base, ?baseheap),12

VarPointsTo(?from, ?heap).13

Reordering Transformation. The above is a straightfor-
ward way to express the analysis, but the resulting program
is highly inefficient. (Recall that the order of variables in the
above relations reflects how the relations are indexed.) In
particular, the joins of line 4, 6-8, and 11-13 are all costly.
In line 4, neither relation has the join variable in its inner-
most position. In particular, relation VarPointsTo is recur-
sive. After the first step, Datalog’s semi-naive evaluation will
only need to join the delta of the VarPointsTo relation (i.e.,
a small relation) to produce the new results for the next step.
Therefore, it makes sense to reorder the variables of rela-
tion Assign so that it is indexed efficiently based on vari-
able bindings produced by VarPointsTo. That is, the pro-
gram will be more efficient if relation Assign is stored as
Assign(?to, ?from) rather than Assign(?from, ?to), be-
cause variable ?from is bound by iterating over the contents
of small relation ΔVarPointsTo. (Of course, this decision on
how to store Assignmay adversely affect joins in other parts
of the program—we will soon see how to resolve this.) Sim-
ilar observations apply to the joins in lines 6-8 and 11-13: no
relation has a join variable in its innermost position. Just by
applying simple reorderings we can produce a much more
efficient implementation:

VarPointsTo(?heap, ?var) <-1

AssignHeapAllocation(?heap, ?var).2

VarPointsTo(?heap, ?to) <-3

Assign(?to, ?from), VarPointsTo(?heap, ?from).4

VarPointsTo(?heap, ?to) <-5

LoadInstanceField(?to, ?signature, ?base),6

VarPointsTo(?baseheap, ?base),7

InstanceFieldPointsTo(?heap, ?signature, ?baseheap).8

9

InstanceFieldPointsTo(?heap, ?signature, ?baseheap) <-10

StoreInstanceField(?from, ?signature, ?base),11

VarPointsTo(?baseheap, ?base),12

VarPointsTo(?heap, ?from).13

Folding Transformation. The idea we used in the above
transformation is general. The key novel principle of our op-

251

timization methodology is that, for highly recursive Data-
log programs (such as our points-to analyses), the primary
determinant of performance is whether the relation deltas
produced by semi-naive evaluation bind all the variables
needed to index into other relations. In this way, exhaus-
tive traversal of non-deltas is avoided. To achieve this effect,
we often need to introduce new indexes. Since in our Dat-
alog engine an index is always tied to the order of relation
variables, to obtain a new index we need to introduce new
relations. This is done through applications of the folding
program transformation [5]. Folding introduces a temporary
relation that holds the result of intermediate joins. This can
improve performance in many ways. First, it can re-order
variables in the intermediate relation and, thus, introduce a
new index, so that further joins are more efficient. Second, it
can cache intermediate results, implementing the “view ma-
terialization” database optimization. Third, it can be used to
guide the query optimizer to perform joins between smaller
relations first, so as to minimize intermediate results. Fi-
nally, it can be used to project out unnecessary variables,
thus keeping intermediate results small.

Many of these benefits can be obtained in our simple
pointer analysis program. Consider the 3-way join in lines
11-13 of the above “optimized” program. Since relation
VarPointsTo is recursive and used twice, either of its in-
stances can be thought of as a “small” relation from the
perspective of join efficiency. Specifically, under semi-naive
evaluation, one can think of the above rule (in lines 10-13)
as equivalent to the following delta-rewritten program:

ΔInstanceFieldPointsTo(?heap, ?signature, ?baseheap) <-

StoreInstanceField(?from, ?signature, ?base),

ΔVarPointsTo(?baseheap, ?base),

VarPointsTo(?heap, ?from).

ΔInstanceFieldPointsTo(?heap, ?signature, ?baseheap) <-

StoreInstanceField(?from, ?signature, ?base),

VarPointsTo(?baseheap, ?base),

ΔVarPointsTo(?heap, ?from).

(We elide version numbers, since we are just making an
efficiency point. Note that the deltas are also part of the
full relation—i.e., they are the deltas from the previous step.
Hence, we do not need a third rule that joins two deltas
together.)

The first rule is fairly efficient as-is: the delta relation
binds variable ?base, which is used to index into rela-
tion StoreInstanceField and bind variable ?from, which
is used to index into relation VarPointsTo(?heap, ?from).
The second rule, however, would be disastrous if executed
as-is: none of the large relations has its innermost variable
bound by the delta relation. We could improve the perfor-
mance of the second rule by reordering the variables of
StoreInstanceField but there is no way to do so without
destroying the performance of the first rule.

This conflict can be resolved by a fold. We introduce a
temporary relation that captures the result of a two-relation
join, projects away unnecessary variables, and reorders the

remaining variables so that the join with the third relation is
highly efficient. This results in the following optimized pro-
gram, with intermediate relation StoreHeapInstanceField
introduced.

VarPointsTo(?heap, ?var) <-1

AssignHeapAllocation(?heap, ?var).2

VarPointsTo(?heap, ?to) <-3

Assign(?to, ?from), VarPointsTo(?heap, ?from).4

VarPointsTo(?heap, ?to) <-5

LoadInstanceField(?to, ?signature, ?base),6

VarPointsTo(?baseheap, ?base),7

InstanceFieldPointsTo(?heap, ?signature, ?baseheap).8

9

InstanceFieldPointsTo(?heap, ?signature, ?baseheap) <-10

StoreHeapInstanceField(?baseheap, ?signature, ?from),11

VarPointsTo(?heap, ?from).12

13

StoreHeapInstanceField(?baseheap, ?signature, ?from) <-14

StoreInstanceField(?from, ?signature, ?base),15

VarPointsTo(?baseheap, ?base).16

Note that the last two rules only contain relations with
the same innermost variables, therefore any delta-execution
of those rules is efficient. Implicitly, this is achieved because
the folding also adds a new index, for the new intermediate
relation.

The above program still admits more optimization, as one
more inefficient join remains. Consider the joins in lines
6-8 of the above program. Both relation VarPointsTo and
relation InstanceFieldsPointsTo are recursively defined.
(There is direct recursion in VarPointsTo, as well as mu-
tual recursion between them.) Thus, after the first step, their
deltas will be joined with the full other relations. Specifi-
cally, in semi-naive evaluation the above rule (lines 5-8) is
roughly equivalent to:

ΔVarPointsTo(?heap, ?to) <-

LoadInstanceField(?to,?signature,?base),

ΔVarPointsTo(?baseheap,?base),

InstanceFieldPointsTo(?heap, ?signature, ?baseheap).

ΔVarPointsTo(?heap, ?to) <-

LoadInstanceField(?to, ?signature, ?base),

VarPointsTo(?baseheap, ?base),

ΔInstanceFieldPointsTo(?heap, ?signature, ?baseheap).

As before, the performance problem is with the second
delta rule: the innermost variable of the large relations is
not bound by the delta relation. It is tempting to try to
eliminate the inefficiency with a different variable order,
without performing more folds. Indeed, we could optimize
the joins in lines 3-8 without an extra fold, by reordering the
variables of VarPointsTo as well as LoadInstanceField—
the latter so that ?signature is last. This would conflict with
the joins in lines 10-16, however, and would require further
rewrites.

Therefore, the inefficiency can be resolved with a fold,
which will also reorder variables so that all joins are highly
efficient: the joined relations always have a common in-
nermost variable. We introduce the intermediate relation

252

LoadHeapInstanceField, and get our final highly-optimized
program:

VarPointsTo(?heap, ?var) <-1

AssignHeapAllocation(?heap, ?var).2

VarPointsTo(?heap, ?to) <-3

Assign(?to, ?from), VarPointsTo(?heap, ?from).4

VarPointsTo(?heap, ?to) <-5

LoadHeapInstanceField(?to, ?signature, ?baseheap),6

InstanceFieldPointsTo(?heap, ?signature, ?baseheap).7

8

LoadHeapInstanceField(?to, ?signature, ?baseheap) <-9

LoadInstanceField(?to, ?signature, ?base),10

VarPointsTo(?baseheap, ?base).11

12

InstanceFieldPointsTo(?heap, ?signature, ?baseheap) <-13

StoreHeapInstanceField(?baseheap, ?signature, ?from),14

VarPointsTo(?heap, ?from).15

16

StoreHeapInstanceField(?baseheap, ?signature, ?from) <-17

StoreInstanceField(?from, ?signature, ?base),18

VarPointsTo(?baseheap, ?base).19

Programmer Insights. Note that the above optimization
decisions are intuitively appealing, although no intuition was
used in deriving them. For instance, a programmer with an
understanding of the domain will likely prefer this order-
ing of variables in VarPointsTo. (Recall that the innermost
variable yields the most important indexing with our B-tree
ordering.) The relation seems intuitively much more useful
when treated as a map of program variables to heap objects,
rather than as a map of heap objects to variables that can
point to them. Values flow through variables in a points-to
analysis, not through heap objects directly.

Additionally, the introduction of temporary relation
LoadHeapInstanceField orders the three-way join of
LoadInstanceField, VarPointsTo, and InstanceFieldPointsTo
so that the first two relations are joined first. This is
good, since LoadInstanceField is likely smaller than
InstanceFieldPointsTo: the former is an input relation,
with its contents in one-to-one correspondence with a sub-
set of program instructions, while the latter is inferred from
a subset of program instructions joined with the (multiply
recursive) points-to relation, resulting in a transitive closure
computation.

Such insights can sometimes guide the optimization ef-
fort, but they are just heuristics. In the end, we have not
found dramatic performance differences between optimiza-
tion paths that both end up with joins that are syntactically
efficient, i.e., have the join variables in innermost positions
and always bound by a recursive relation so that its delta is
used. This syntactic criterion is, more than anything else, the
primary determinant of performance.

Impact. Perhaps surprisingly, the above compact set of op-
timizations and insights are the main source of the efficiency
of Doop, compared to a naive Datalog implementation. Ap-
plying these optimizations on a full pointer analysis for re-
alistic programs results in improvements of over 3 orders
of magnitude: run-time is often dropped from many hours

to mere seconds. Furthermore, the optimizations are robust
with respect to the different analysis variants supported in
Doop. The same optimized trunk of code is used for analy-
ses with several different kinds of context sensitivity.

5. Doop Performance
We next present performance experiments for Doop, and
especially contrast it with Paddle—a BDD-based framework
that is state-of-the-art in terms of features and scalability.
Because of the variety of experimental results, a roadmap is
useful:

• We first evaluate Doop in “Paddle-compatibility” mode. In
this mode, Doop results are precisely equivalent to Paddle.
This, however, means that the analysis does not support ex-
ceptions, which Doop treats very differently. In this mode,
Doop is much faster (6.6x to 16.3x in median speedup) than
Paddle for standard context-sensitive analyses (1-call-site,
1-call-site+heap, 1-object, 1-object+heap).

• We then compare the full analyses of Doop with the full
Paddle. The Doop analyses are not exactly equivalent, but
are strictly more precise than their Paddle counterparts.
In this “full-mode”, Doop outperforms Paddle by 10x for
call-site-sensitive analyses (including heavier ones, such
as 1-call-site+heap) scales similarly or better than Paddle
for even the heaviest object-sensitive analyses in Paddle’s
experiment set, and even handles analyses that Paddle does
not, such as a 2-call-site-sensitive and a 2-object-sensitive
analysis, both with a context-sensitive heap.

• Finally, we discuss the lessons learned from comparing an
explicit representation approach with a BDD-based one.
We see that the performance discrepancy between Doop
and Paddle is well-explained when one considers the total
size of BDDs for the call-graph, var-points-to, and field-
points-to relations. The numbers cast doubt on whether
BDDs can be the best representation of relations in anal-
yses similar to the ones we have considered.

Preliminaries and Experimental Setup. We use a 64-bit
machine with two quad-core Xeon 2.33GHz CPUs (only one
thread was active at a time, except for Paddle runs, where
the Java garbage collector ran on a different thread). The
machine has 16GB of RAM and 4MB of L2 cache (actually
8MB of L2 cache per CPU, but every 2 cores share 4MB).
(For comparison, the Paddle study [18] was conducted on
a fairly comparable 4-way 2.6GHz Opteron machine, also
with 16GB of RAM. Although we do not compare absolute
numbers with that study, it is useful for context to know
that qualitative scalability estimates are not due to hardware
discrepancies.)

We analyzed the DaCapo benchmark programs, v.2006-
10-MR2, with JDK 1.4 (j2re1.4.2 18), which is much larger
than JDK 1.3 used (with the same programs) by Lhoták
and Hendren [18]. Since recent points-to analysis algorithms
(e.g., [10, 11]) claim scaling to “a million lines of code”, we

253

should point out that our benchmarks are the largest in the
literature on context-sensitive points-to analysis.

We contacted Paddle’s author Ondřej Lhoták to confirm
input parameters for optimal performance (including opti-
mal BDD variable orderings). The initial settings of the anal-
ysis are identical to those in the most recent Paddle study
[18]. Paddle takes an option for an initial number of BDD
nodes to allocate, which can be used to reduce garbage col-
lection. We do not use this option for several reasons. 1) This
initial number is also the maximum number of nodes, which
requires knowing up-front how complex an analysis will be
for a specific benchmark. 2) Setting this number to the maxi-
mum required value would immediately consume all virtual
memory, independent of the specific benchmark. For com-
parison, we want memory consumption to be proportional
to the complexity of an analysis. 3) The performance bene-
fit of setting an initial number of BDD nodes was limited in
our experiments (less than 10%), and does not change any
conclusions.

When referring to different analyses we use the prefixes
“N-call-site-sensitive”, “N-call-site”, or just “N-call” for an
N-call-site-sensitive analysis, and “N-object-sensitive” or
just “N-object” for an N-object-sensitive analysis, as well as
the suffixes “+N-heap” or just “+NH” for an analysis with
a context-sensitive heap with N (object or call-site) contexts
kept. (We omit the N if it can only be 1.) E.g., “2-call+1H”
designates a 2-call-site-sensitive analysis with a context-
sensitive heap using 1 call-site as context for heap object ab-
stractions; “1-call+H” designates a 1-call-site-sensitive anal-
ysis with a context-sensitive heap (which can only have 1
call-site as context).

We consider any analysis that takes more than 7200 sec-
onds (2 hours) to have failed.

The software, benchmark scripts, and more statistics are
available at http://doop.program-analysis.org/oopsla09.

5.1 Paddle-Compatibility

We first evaluate Doop and Paddle in a mode in which the
results are equivalent. We worked hard to ensure semantic
equivalence to a high degree. All operations on relations are
designed to be logically equivalent. That is, all propagation
of facts and all intermediate relations are virtually identical.

Comparing the results of pointer analyses is challenging
because of many minor differences between the analyses.
Also, minor differences frequently propagate everywhere,
making it difficult to locate the source of an issue. Never-
theless, we achieved exact equivalence of reachable meth-
ods, reachable method contexts, context-sensitive call graph
edges, instance field points-to, static field points-to, and vari-
able points-to information. We compared the results auto-
matically and report any differences. The various improve-
ments of Doop over Paddle in support for Java language fea-
tures (Section 3.3) have been patched in Paddle and submit-
ted as bug reports (e.g., reference object support), or disabled
in Doop (e.g., reflection analysis) for this comparison.

There is one algorithmic enhancement applied to Doop as
well as Paddle in Paddle-compatibility mode: Doop treats
static initializer methods (clinit) context-insensitively.
Static initializers are not affected by any context, so they can
be treated context-insensitively for all of the context abstrac-
tions we study. (For very different kinds of analyses, e.g.,
a thread-sensitive analysis, this will not be true.) This en-
hancement (as well as other logical enhancements discussed
later) is not significant for Paddle (it strictly improves per-
formance but only marginally), because Paddle can avoid
redundancy through its use of BDDs. The enhancement is,
however, important for Doop’s explicit representation of re-
lations.

Notably, for the experiments in Paddle-compatibility
mode, both Doop and Paddle ignore control- and data-flow
induced by exceptions. This is necessary, since the Doop
handling of exceptions is significantly different from Pad-
dle’s.

Figures 4 to 8 display the execution times of Doop vs.
Paddle for five analyses, ranging from context-insensitive
to 1-object-sensitive+heap. As can be seen, Doop is an
order of magnitude faster than Paddle for the context-
insensitive analysis (min: 7.4x, max: 10.9x, median: 10x),
the 1-call-site-sensitive analysis (min: 7.9x, max: 19.6x,
median: 16.3x), and the 1-object-sensitive analysis (min:
3.2x, max: 18.1x, median: 15.2x). For the heavier analyses,
Doop is almost always significantly faster than Paddle, ex-
cept for the bloat benchmark and a 1-object-sensitive+heap
analysis. Specifically, Doop exhibits a median speedup of
7.3x for the 1-call-site-sensitive+heap analysis (min: 1.8x,
max: 9.2x) and a median speedup of 6.6x for the 1-object-
sensitive+heap analysis (min: 0.9x, max: 7.3x). (Recall that
the latter is the analysis that Lhoták and Hendren considered
to require a research breakthrough to implement efficiently
without BDDs.)

The analysis times in seconds illustrate the significance
of the speedup: for most programs, analysis time is dropped
from several hundreds of seconds to just a few tens of sec-
onds.

Generally, Doop in Paddle-compatibility mode scales
very well even to much more complex analyses (e.g.,
2-object+heap). Nevertheless, recall that the Paddle-
compatibility mode does not support Java exception han-
dling. Adding exception handling in a way that is compati-
ble with Paddle would artificially distort Doop performance.
Paddle exception handling is highly imprecise, treating ev-
ery exception throw as an assignment to a single global vari-
able. The variable is then read at the site of an exception
catch. This approach ignores the information about what
exceptions can propagate to a catch site: all catch sites be-
come related with all type-compatible throw sites and with
each other. This very approximate treatment affects the pre-
cision of the analysis results but barely affects performance
for Paddle: the BDD representation of relations tolerates the

254

 0

 50

 100

 150

 200

 250

 300

 350

antlr bloat chart eclipse hsqldb jython luindex lusearch pmd xalan

a
n
a
ly

s
is

 t
im

e
 (

s
e
c
o
n
d
s
)

doop
paddle

Figure 4. (Paddle-compatibility mode) context-insensitive

 0

 200

 400

 600

 800

 1000

 1200

 1400

antlr bloat chart eclipse hsqldb jython luindex lusearch pmd xalan

a
n
a
ly

s
is

 t
im

e
 (

s
e
c
o
n
d
s
)

doop
paddle

Figure 5. (Paddle-compatibility mode) 1-call

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

antlr bloat chart eclipse hsqldb jython luindex lusearch pmd xalan

a
n
a
ly

s
is

 t
im

e
 (

s
e
c
o
n
d
s
)

doop
paddle

Figure 6. (Paddle-compatibility mode) 1-call+H

 0

 100

 200

 300

 400

 500

 600

 700

 800

antlr bloat chart eclipse hsqldb jython luindex lusearch pmd xalan

a
n
a
ly

s
is

 t
im

e
 (

s
e
c
o
n
d
s
)

doop
paddle

Figure 7. (Paddle-compatibility mode) 1-object

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

antlr bloat chart eclipse hsqldb jython luindex lusearch pmd xalan

a
n
a
ly

s
is

 t
im

e
 (

s
e
c
o
n
d
s
)

doop
paddle

Figure 8. (Paddle-compatibility mode) 1-object+H

redundancy in the computed relations (e.g., a higher num-
ber of facts in the call-graph or the var-points-to relations)
since the extra facts are highly regular. The BDD represen-
tations of relations in Paddle are hardly larger, even with
significant exception-handling-induced imprecision. In con-
trast, Doop’s explicit representation of relations cannot tol-
erate the addition of such “regular” imprecision without suf-
fering performance penalties. This phenomenon is perhaps
counter-intuitive: Doop performs much better when impre-
cision is avoided, which is also a desirable feature for the
quality of the analysis.

5.2 Full Doop Performance and Precision

Our main experimental results compare the full version of
Doop with the full Paddle, and present detailed statistics on
the precision of Doop analyses.

The full mode of Doop is not exactly equivalent to the full
Paddle, yet the Doop analysis logic is always strictly more
precise and more complete, resulting in higher-quality anal-
yses. The differences are in the more precise and complete
handling of reflection, more precise handling of exceptions,
etc.

Figures 9 to 16 compare the performance of Doop and
Paddle. (The analyses presented are a representative selec-
tion for space and layout reasons.) This range of analy-
ses reproduces the most demanding analyses in Lhoták and
Hendren’s experiment set [18] and includes analyses that
even exceed the capabilities of Paddle: 2-call+1-heap, 2-
object+1-heap, and 2-call+2-heap. As can be seen, Doop
is often significantly faster, especially for call-site-sensitive
analyses (e.g., a large speedup for 1-call-site—min: 5.0x,
max: 12.9x, median: 9.7x—and for 1-call-site+heap—min:
2.3x, max: 16.7x, median: 12.3x).

Doop is not as fast for object-sensitive analyses, but recall
that it performs a much more precise analysis than Paddle
because of its precise exception handling. On-the-fly excep-
tion handling results in a dramatic, 2x increase in var points-
to precision (i.e., on average each variable is inferred to point
to half as many objects) for object-sensitive analyses [3].
Still, Doop outperforms Paddle for the vast majority of data
points, even for the heaviest analyses in the Paddle set. For
the 1-object+heap analysis Doop is faster for 8 out of 10
benchmarks (min: 0.4x, max: 4.0x, median: 3.0x). The only
benchmark for which Doop is significantly slower is xalan,
but this outlier is due to Paddle’s less complete reflection
analysis. Paddle misses a large part of the call graph (only
reports 3722 reachable methods, instead of 6468 reported by
Doop) and analyzes much less code.

The significance of these results cannot be overstated:
The conventional wisdom has been that such analyses can-
not be performed without BDDs. For instance, Lhoták and
Hendren write regarding the Paddle study: “It is the use
of BDDs and the Paddle framework that finally makes this
study possible. Moreover, some of the characteristics of the
analysis results that we are interested in would be very costly

255

 0

 50

 100

 150

 200

 250

 300

 350

 400

antlr bloat chart eclipse hsqldb jython luindex lusearch pmd xalan

a
n
a
ly

s
is

 t
im

e
 (

s
e
c
o
n
d
s
)

doop
paddle

Figure 9. (Full mode) context-insensitive

 0

 200

 400

 600

 800

 1000

 1200

 1400

antlr bloat chart eclipse hsqldb jython luindex lusearch pmd xalan

a
n
a
ly

s
is

 t
im

e
 (

s
e
c
o
n
d
s
)

doop
paddle

Figure 10. (Full mode) 1-object

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

antlr bloat chart eclipse hsqldb jython luindex lusearch pmd xalan

a
n
a
ly

s
is

 t
im

e
 (

s
e
c
o
n
d
s
)

doop
paddle

Figure 11. (Full mode) 1-object+H

 0

 200

 400

 600

 800

 1000

 1200

 1400

antlr bloat chart eclipse hsqldb jython luindex lusearch pmd xalan

a
n
a
ly

s
is

 t
im

e
 (

s
e
c
o
n
d
s
)

doop

Figure 12. (Full mode) 2-object+1H

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

antlr bloat chart eclipse hsqldb jython luindex lusearch pmd xalan

a
n
a
ly

s
is

 t
im

e
 (

s
e
c
o
n
d
s
)

doop
paddle

Figure 13. (Full mode) 1-call

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

antlr bloat chart eclipse hsqldb jython luindex lusearch pmd xalan

a
n
a
ly

s
is

 t
im

e
 (

s
e
c
o
n
d
s
)

doop
paddle

Figure 14. (Full mode) 1-call+H

 0

 500

 1000

 1500

 2000

 2500

antlr bloat chart eclipse hsqldb jython luindex lusearch pmd xalan

a
n
a
ly

s
is

 t
im

e
 (

s
e
c
o
n
d
s
)

doop

Figure 15. (Full mode) 2-call+1H

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

antlr bloat chart eclipse hsqldb jython luindex lusearch pmd xalan

a
n
a
ly

s
is

 t
im

e
 (

s
e
c
o
n
d
s
)

doop

Figure 16. (Full mode) 2-call+2H

to measure on an explicit representation.” [18] (Recall also
that the Paddle study analyzed the DaCapo benchmarks with
the smaller JDK 1.3.1 01.)

The last three analyses of our set (2-call+1-heap, 2-
object+1-heap, and 2-call+2-heap) are more precise than
any context-sensitive analyses ever reported in the research
literature. With a time limit of 2 hours, Doop analyzed most
of the DaCapo applications under these analyses. All three
analyses are impossible with Paddle. The first two are not

supported by the Paddle framework, while the third is too
heavy to run. (In our tests, the analysis times-out even for
the smallest of the DaCapo benchmarks. Lhoták also reports
that “[He] never managed to get Paddle to run in available
memory with these settings”.2)

The range of Doop-supported analyses allows us to obtain
insights regarding analysis precision. Figure 17 shows some

2 http://www.sable.mcgill.ca/pipermail/soot-list/2006-March/000601.html

256

of the most important statistics on our analyses’ results for
representative programs. Perhaps the most informative met-
ric is the average points-to set size for plain program vari-
ables.3 The precision observations are very similar to those
in the Paddle study: object-sensitivity is very good for en-
suring points-to precision, and a context-sensitive heap can
only serve to significantly enhance the quality of results. We
can immediately see the value of our highly precise analyses,
and especially the combination of a 2-object-sensitive anal-
ysis with a context-sensitive heap. This most precise analy-
sis typically drops the average points-to set size to one-tenth
of the size of the least precise (context insensitive) analy-
sis. Remarkably, this even impacts the number of call-graph
edges—a metric that notoriously improves very little with
increasing the precision of the points-to analysis. In future
work we expect to conduct a thorough evaluation of the pre-
cision of a wide range of analyses for several end-user met-
rics.

5.3 BDDs vs. Explicit Representation

Generally, the performance differences between Doop and
Paddle are largely attributable to the use of BDDs vs. an
explicit representation of relation contents. The comparison
of the two systems reveals interesting lessons regarding the
representation of relations in points-to analysis.

BDDs are a maximally reduced data structure (for a given
variable ordering) so they naturally trade off some time for
space, at least for large relations. Furthermore, BDDs have
heavy overheads, in the case of irregular relations that cannot
be reduced. Consider the worst-case scenario for BDDs: a
relation with a single tuple. The BDD representation in Pad-
dle uses a node per bit—e.g., the single tuple in a relation
over a 48-bit variable space will be represented by 48 BDD
nodes. Each node in the BuDDy library (used by Paddle)
is 20 bytes, or 160 bits. This represents a space overhead
of 160x, but it also represents a time overhead, since what
would be a very quick operation in an explicit tuple repre-
sentation now requires traversing 48 heap objects (allocated
in a single large region, but with no structure-locality).

The difficulty in analyzing the trade-off is that results on
smaller data sets and operations do not translate to larger
ones. For instance, we tried a simple experiment to com-
pare the join performance of Doop and Paddle, without any
other recursion or iteration. We read into memory two pre-
viously computed points-to analysis relations (including the
VarPointsTo relation, for which Paddle’s BDD variable or-
der is highly optimized) and computed their join. The fully
expanded relation size in Doop was a little over 1GB, or
7 million tuples. Doop performed the join in 24.4 seconds.

3 Note the apparent paradox of having the average number of var-points-to
facts often be higher when computed over context-sensitive variables than
over plain variables. Although each context-sensitive variable has fewer
points-to facts than its context-insensitive version, the average over all
context-sensitive variables can be higher: program variables that have many
points-to facts are also used in many more contexts, skewing the results.

analysis nodes edges var points-to

an
tlr

insens 4510 24K 2.8M 67 - -
1-call 4498 24K 897K 22 4.9M 31
1-call+H 4495 24K 887K 22 14M 90
2-call+1H 4484 23K 719K 18 48M 84
2-call+2H 4451 23K 570K 14 79M 171
1-obj 4486 24K 748K 18 4.7M 16
1-obj+H 4435 23K 435K 11 25M 86
2-obj+1H 4382 22K 264K 7 7.8M 8

ch
ar

t

insens 7873 41K 5.9M 84 - -
1-call 7820 40K 2.6M 36 18M 66
1-call+H 7816 40K 2.5M 36 43M 162
2-call+1H 7800 40K 2.2M 31 202M 173
2-call+2H × × × × × ×
1-obj 7803 40K 2.4M 34 18M 27
1-obj+H 7676 37K 1.2M 17 81M 123
2-obj+1H 7570 35K 414K 6 24M 7

pm
d

insens 5536 27K 3.5M 73 - -
1-call 5519 26K 1.1M 22 5.8M 31
1-call+H 5516 26K 1.0M 22 16M 89
2-call+1H 5506 26K 925K 20 65M 94
2-call+2H 5473 25K 803K 17 136M 219
1-obj 5504 26K 964K 21 5.2M 15
1-obj+H 5440 25K 682K 15 25M 77
2-obj+1H 5372 24K 302K 7 7.4M 7

xa
la

n

insens 6580 33K 3.4M 62 - -
1-call 6568 33K 1.4M 25 7.5M 35
1-call+H 6565 33K 1.4M 25 22M 104
2-call+1H 6551 32K 1.2M 22 78M 88
2-call+2H 6505 32K 939K 17 125M 170
1-obj 6549 33K 1.2M 22 19M 30
1-obj+H 6468 31K 696K 13 106M 173
2-obj+1H × × × × × ×

Figure 17. Precision statistics of Doop analyses for a subset
of the DaCapo benchmarks. The columns show call-graph
nodes and edges, as well as total and average (per variable)
points-to facts, first for plain program variables and then for
“context-sensitive variables” (i.e., context-variable tuples).

Paddle spent 40x more time, 957 seconds, creating the BDD,
but then performed the join in just 0.527 seconds. In terms
of space, the BDD representation of the 7 million tuples con-
sisted of just 148.7 thousand nodes—less than 3MB of mem-
ory! This demonstrates how different the cost model is for
the two systems. If Paddle can exploit regularity and build
a new BDD through efficient operations on older ones, then
its performance is unparalleled. Creating the BDD, however,
can often be extremely time consuming. Furthermore, a sin-
gle non-reducible relation can become a bottleneck for the
whole system. Thus, it is hard to translate the results of mi-
crobenchmarks to more complex settings, as the complexity
of BDDs depends on their redundancy.

To gain a better understanding of performance, we ana-
lyzed the sizes of BDDs in Paddle for some major relations
in its analyses, relative to the size of the explicit representa-
tions of the same relations. Figure 18 shows the sizes of rela-

257

tions “nodes” (representing the context-sensitive call-graph
nodes, i.e., context-qualified reachable methods), “edges”
(i.e., context-sensitive call-graph edges), var points-to (the
main points-to relation, for context-qualified vars), and field
points-to (the points-to relation for object fields). For each
relation, the table shows the size of its explicit represen-
tation (measured in number of rows—i.e., number of total
facts in the relation), the size of the BDD representation (in
number of BDD nodes) and the ratio of these two numbers—
although they are in different units the variation of the ratios
is highly informative.

The above numbers are for Paddle as configured for our
Paddle-compatibility experiments, so that the BDD statis-
tics can be directly correlated to the performance of Doop
(explicit representation) vs. Paddle (BDDs). Examination of
the table in comparison with Figures 4-8 reveals that the per-
formance of Paddle relative to Doop is highly correlated with
the overall effectiveness of BDDs for relation representation.
For benchmarks and analyses for which Paddle performs
better compared to Doop, we find that all four relations (or at
least the largest ones, if their size dominates the sizes of oth-
ers) exhibit a much lower ratio of BDD-nodes-to-facts than
in other benchmarks or analyses. Consider, for instance, the
1-object+heap analysis. The BDD size statistics reveal that
bloat and jython are significant outliers compared to the
rest of the DaCapo applications: their BDD-nodes-to-facts
ratios are much lower for all large relations. A quick com-
parison with Figure 8 reveals that Paddle performs unusually
well for these two benchmarks.

This understanding of the performance model for the
BDD-based representation leads to further insights. The ul-
timate question we want to answer is whether (and under
what conditions) there is enough regularity in relations in-
volved in points-to analyses for BDDs to be the best rep-
resentation choice. Figure 18 suggests that this is not the
case, at least for the analyses studied here. The main way
to improve the performance of the BDD representation is by
changing the BDD variable ordering. The BDD variable or-
dering used in our Paddle experiments is one that minimizes
the size of the var points-to relation (which, indeed, consis-
tently has a small BDD-nodes-to-facts ratio in Figure 18).
This order was observed by Lhoták to yield the best results
in terms of performance. (It is worth noting that the Pad-
dle authors were among the first to use BDDs in program
analysis, have a long history of experimentation in multiple
successive systems, and have experimented extensively with
BDD variable orderings until deriving ones that yield “im-
pressive results” [2].) Nevertheless, what we see in Figure 18
is that it is very hard to provide a variable ordering that min-
imizes all crucial BDDs. Although the var points-to relation
is consistently small, the (context-sensitive) call-graph edge
relation is inefficient and it is usually large enough to matter.
All current techniques utilizing BDDs for points-to analy-
sis (e.g., in bddbddb or Paddle) require BDD variable order-

ings “that are simultaneously good for the many BDDs in a
system of interrelated analyses” [15]. It does not, therefore,
seem likely that BDDs will be the best representation option
for precise context-sensitive points-to analyses without sig-
nificant progress in our understanding of how BDDs can be
employed.

6. Related and Future Work
Fast and Precise Pointer Analysis. There is an immense
body of work on pointer analysis, so we need to restrict
our discussion to some representative and recent work. Fast
and precise pointer analysis is, unfortunately, still a trade-
off. This is unlikely to change. Most recent work in pointer
analysis explores methods to improve performance by re-
ducing precision strategically. The challenge is to limit the
loss of precision, yet gain considerably in performance. For
instance, Lattner et al. show [14] that an analysis with a
context-sensitive heap abstraction can be very efficient by
sacrificing precision using unification constraints. This is a
common sacrifice. Furthermore, there are still considerable
improvements possible in solving the constraints of the clas-
sic inclusion-based pointer analysis of Andersen, as illus-
trated by Hardekopf and Lin [10].

In full context-sensitive pointer analysis, there is an on-
going search for context abstractions that provide precise
pointer information, and do not cause massive redundant
computation. Milanova suggested that an object-sensitive
analysis [20] is an effective context abstraction for object-
oriented programs, which was confirmed by Lhoták’s exten-
sive evaluation [18]. Several researchers have argued for the
benefits of using a context-sensitive heap abstraction to im-
prove precision [18, 22].

The use of BDDs attempts to solve the problem of the
large amount of data in context-sensitive pointer analysis by
representing its redundancy efficiently [2, 29]. The redun-
dancy should ideally be eliminated by choosing the right
context abstraction. Xu and Rountev’s recent work [30] ad-
dresses this problem. Their method aims to determine con-
text abstractions that will yield the same points-to informa-
tion. This is an exciting research direction, orthogonal to our
work on declarative specifications and optimization. How-
ever, in their specific implementation, memory consumption
is growing quickly for bigger benchmarks, even on Java 1.3.

IBM Research’s Wala [7] static analysis library is de-
signed to support different pointer analysis configurations,
but no results of Wala’s accuracy or speed have been re-
ported in the literature. It will be interesting to compare our
analyses to Wala in future work.

Reflection and Program Analysis. Reflection, dynamic
class loading, and native methods are a major issue for static
program analysis. Paddle inherits support for many native
methods from its predecessor, Spark [16]. Paddle’s support
for reflection is relatively unsophisticated compared to the
reflection analysis of Livshits specified in Datalog on top

258

call-graph nodes call-graph edges var points-to field points-to
facts bdd ratio facts bdd ratio facts bdd ratio facts bdd ratio

co
nt

ex
t-

in
se

ns
iti

ve

antlr 4K 1K 0.35 23K 95K 4.23 2.0M 58K 0.03 766K 28K 0.04
bloat 6K 2K 0.26 46K 132K 2.86 7.9M 81K 0.01 1.0M 38K 0.04
chart 8K 3K 0.35 39K 163K 4.19 5.3M 101K 0.02 1.8M 51K 0.03
eclipse 5K 2K 0.34 24K 104K 4.39 2.4M 63K 0.03 746K 31K 0.04
hsqldb 4K 1K 0.41 17K 80K 4.71 1.5M 50K 0.03 493K 23K 0.05
jython 6K 2K 0.31 32K 123K 3.90 3.3M 72K 0.02 750K 34K 0.04
luindex 4K 1K 0.38 18K 86K 4.70 1.5M 53K 0.03 567K 25K 0.04
lusearch 4K 2K 0.34 21K 98K 4.65 1.8M 59K 0.03 606K 28K 0.05
pmd 5K 2K 0.32 25K 113K 4.51 2.5M 62K 0.02 652K 28K 0.04
xalan 4K 1K 0.40 17K 80K 4.78 1.4M 50K 0.04 501K 23K 0.05

1-
ca

ll-
si

te
-s

en
si

tiv
e

antlr 22K 37K 1.64 83K 682K 8.26 2.9M 735K 0.26 636K 28K 0.04
bloat 45K 55K 1.21 266K 1.1M 4.32 30M 1.5M 0.05 792K 39K 0.05
chart 39K 64K 1.67 164K 1.2M 7.09 18M 1.6M 0.09 1.4M 52K 0.04
eclipse 23K 38K 1.64 113K 705K 6.22 4.0M 852K 0.21 572K 32K 0.06
hsqldb 17K 29K 1.73 61K 523K 8.62 2.1M 590K 0.28 395K 24K 0.06
jython 31K 47K 1.51 139K 907K 6.53 5.7M 1.0M 0.18 539K 35K 0.06
luindex 18K 31K 1.73 65K 559K 8.63 2.4M 645K 0.27 459K 26K 0.06
lusearch 21K 36K 1.69 76K 638K 8.41 2.9M 751K 0.26 488K 29K 0.06
pmd 25K 42K 1.69 94K 769K 8.14 4.7M 843K 0.18 512K 29K 0.06
xalan 17K 29K 1.74 60K 519K 8.64 2.1M 595K 0.29 396K 24K 0.06

1-
ca

ll-
si

te
-s

en
si

tiv
e+

he
ap

antlr 22K 37K 1.63 83K 682K 8.26 8.9M 2.4M 0.27 12M 7.3M 0.59
bloat 45K 55K 1.22 251K 1.1M 4.55 159M 7.3M 0.05 27M 10M 0.38
chart 39K 64K 1.66 164K 1.2M 7.11 42M 6.3M 0.15 26M 16M 0.63
eclipse 23K 38K 1.64 113K 706K 6.23 14M 3.1M 0.23 9.4M 7.1M 0.75
hsqldb 17K 29K 1.73 61K 523K 8.61 6.2M 1.8M 0.30 5.7M 4.3M 0.76
jython 31K 47K 1.50 139K 908K 6.54 22M 4.2M 0.19 15M 8.6M 0.58
luindex 18K 31K 1.73 65K 560K 8.63 7.0M 2.1M 0.30 6.4M 5.0M 0.78
lusearch 21K 36K 1.70 76K 637K 8.40 8.5M 2.5M 0.30 7.8M 5.7M 0.74
pmd 25K 42K 1.69 94K 768K 8.13 14M 3.1M 0.22 8.2M 6.7M 0.82
xalan 17K 29K 1.74 60K 518K 8.64 6.1M 1.8M 0.30 5.7M 4.3M 0.77

1-
ob

je
ct

-s
en

si
tiv

e

antlr 36K 19K 0.54 218K 489K 2.25 1.5M 324K 0.22 25K 33K 1.33
bloat 71K 27K 0.38 1.8M 1.2M 0.65 14M 646K 0.05 307K 44K 0.14
chart 81K 38K 0.47 1.0M 1.1M 1.14 16M 763K 0.05 60K 58K 0.97
eclipse 40K 22K 0.55 312K 596K 1.91 1.9M 381K 0.20 27K 36K 1.33
hsqldb 31K 17K 0.55 170K 412K 2.43 1.1M 271K 0.25 17K 28K 1.69
jython 64K 26K 0.40 746K 742K 0.99 4.9M 455K 0.09 38K 39K 1.02
luindex 32K 18K 0.57 178K 436K 2.44 1.2M 294K 0.24 18K 30K 1.73
lusearch 35K 20K 0.57 202K 492K 2.43 1.5M 335K 0.23 20K 34K 1.71
pmd 42K 21K 0.50 309K 557K 1.80 2.6M 373K 0.14 40K 34K 0.85
xalan 30K 17K 0.56 168K 411K 2.45 1.1M 274K 0.25 16K 28K 1.73

1-
ob

je
ct

-s
en

si
tiv

e+
he

ap

antlr 35K 19K 0.55 161K 448K 2.79 8.6M 797K 0.09 2.3M 505K 0.22
bloat 69K 27K 0.39 1.4M 1.0M 0.73 56M 1.9M 0.03 13M 1.2M 0.09
chart 76K 37K 0.49 647K 973K 1.50 41M 1.9M 0.05 9.1M 1.3M 0.14
eclipse 39K 22K 0.56 212K 544K 2.56 11M 1.0M 0.10 2.8M 631K 0.23
hsqldb 30K 17K 0.56 131K 380K 2.90 6.3M 656K 0.10 1.7M 409K 0.24
jython 62K 25K 0.41 638K 684K 1.07 76M 1.4M 0.02 15M 1.1M 0.07
luindex 31K 18K 0.58 134K 402K 2.99 6.4M 695K 0.11 1.7M 427K 0.26
lusearch 34K 20K 0.58 147K 447K 3.04 7.3M 785K 0.11 1.8M 488K 0.26
pmd 41K 21K 0.52 216K 499K 2.31 10M 892K 0.09 2.8M 539K 0.19
xalan 30K 17K 0.57 129K 379K 2.93 6.0M 665K 0.11 1.5M 411K 0.27

Figure 18. BDD statistics for the most important context-sensitive relations of Paddle: total number of facts in the context-
sensitive relation, number of BDD nodes used to represent those facts, and the ratio of BDD nodes / total number of facts.

259

of Whaley’s bddbddb [19]. In particular, Paddle does not
maintain information about Class objects created through
Class.forName, which requires very conservative assump-
tions about later Class.newInstance invocations. However,
the reflection analysis of Livshits was only integrated in
a context-insensitive pointer analysis. The fully declarative
nature of Doop allows us to use very similar Datalog rules
also in context-sensitive analyses.

Declarative Programming Analysis. Program analysis us-
ing logic programming has a long history (e.g., [4, 23]), but
this early work only considers very small programs. In re-
cent years, there have been efforts to apply declarative pro-
gram analysis to much larger codebases and more complex
analysis problems. We discussed the relation to Whaley’s
work on context-sensitive pointer analysis using Datalog and
BDDs [29] throughout this paper. The Dimple [1] analysis
framework has shown to be competitive in performance for
context-insensitive pointer analysis using tabled Prolog. The
demonstrated pointer analysis of Dimple uses a conservative,
pre-computed call graph, so the analysis is reduced to prop-
agation of points-to information of assignments, which can
be very efficient. Doop expresses all the logic of a context-
sensitive pointer analysis in Datalog.

Demand-Driven and Incremental Analysis. A demand-
driven evaluation strategy reduces the cost of an analysis
by computing only those results that are necessary for a
client program analysis [12, 26, 27, 31]. This is a useful
approach for client analyses that focus on specific locations
in a program, but if the client needs results from the entire
program, then demand-driven analysis is typically slower
than an exhaustive pointer analysis. Reps [24] showed how
to use the standard magic-sets optimization to automatically
derive a demand-driven analysis from an exhaustive analysis
(like ours). This optimization combines the benefits of top-
down and bottom-up evaluation of logic programs by adding
side-conditions to rules that limit the computation to just the
required data.

More recently, Saha and Ramakrishnan [25] explored the
application of incremental logic program evaluation strate-
gies to context-insensitive pointer analysis. As pointed out
in this work, the algorithms for materialized view mainte-
nance and incremental program analysis are highly related.
As we discussed, incremental evaluation is also crucial for
Doop’s performance. The large number of reachable meth-
ods in an empty Java program4 suggests that incremental
analysis could bring down the from-scratch evaluation time
substantially. We have not explored these incremental eval-
uation scenarios yet. The engine we use also supports in-
cremental evaluation after deletion and updates of facts us-

4 Even an empty Java program causes the execution of a number of methods
from the standard library. This causes a static analysis to compute an even
larger number of reachable methods, especially when no assumptions are
made about the loading environment (e.g., security settings and where the
empty class will be loaded from).

ing the DRed [8] algorithm. Efficient incremental evaluation
might make context-sensitive pointer analysis suitable for
use in IDEs.

7. Conclusions
We presented Doop: a purely declarative points-to analysis
framework that raises the bar for precise context-sensitive
analyses. Doop is elegant, full-featured, modular, and high-
level, yet achieves remarkable performance due to a novel
optimization methodology focused on highly recursive Dat-
alog programs. Doop uses an explicit representation of re-
lations and cha(lle)nges the community’s understanding on
how to implement efficient points-to analyses.

Acknowledgments This work was funded by the NSF
(CCF-0917774, CCF-0934631) and by LogicBlox Inc. We
thank Ondřej Lhoták for his advice on benchmarking Pad-
dle, Oege de Moor and Molham Aref for useful discus-
sions, the anonymous reviewers for helpful comments, and
the LogicBlox developers for their practical help and sup-
port.

References
[1] W. C. Benton and C. N. Fischer. Interactive, scalable, declar-

ative program analysis: from prototype to implementation.
In PPDP ’07: Proc. of the 9th ACM SIGPLAN int. conf. on
Principles and practice of declarative programming, pages
13–24, New York, NY, USA, 2007. ACM.

[2] M. Berndl, O. Lhoták, F. Qian, L. J. Hendren, and N. Umanee.
Points-to analysis using bdds. In PLDI, pages 103–114.
ACM, 2003.

[3] M. Bravenboer and Y. Smaragdakis. Exception analysis and
points-to analysis: Better together. In L. Dillon, editor, ISSTA
’09: Proceedings of the 2009 International Symposium on
Software Testing and Analysis, New York, NY, USA, July
2009. To appear.

[4] S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practical
program analysis using general purpose logic programming
systems—a case study. In PLDI ’96: Proc. of the ACM
SIGPLAN 1996 conf. on Programming language design and
implementation, pages 117–126, New York, NY, USA, 1996.
ACM.

[5] S. K. Debray. Unfold/fold transformations and loop
optimization of logic programs. In PLDI ’88: Proc. of
the ACM SIGPLAN 1988 conf. on Programming Language
design and Implementation, pages 297–307, New York, NY,
USA, 1988. ACM.

[6] M. Eichberg, S. Kloppenburg, K. Klose, and M. Mezini.
Defining and continuous checking of structural program
dependencies. In ICSE ’08: Proc. of the 30th int. conf. on
Software engineering, pages 391–400, New York, NY, USA,
2008. ACM.

[7] S. J. Fink. T.J. Watson libraries for analysis (WALA).
http://wala.sourceforge.net.

260

[8] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Main-
taining views incrementally. In SIGMOD ’93: Proc. of the
1993 ACM SIGMOD int. conf. on Management of data, pages
157–166, New York, NY, USA, 1993. ACM.

[9] E. Hajiyev, M. Verbaere, and O. de Moor. Codequest:
Scalable source code queries with datalog. In Proc. European
Conf. on Object-Oriented Programming (ECOOP), pages 2–
27. Spinger, 2006.

[10] B. Hardekopf and C. Lin. The ant and the grasshopper: fast
and accurate pointer analysis for millions of lines of code.
In PLDI’07: Proc. ACM SIGPLAN conf. on Programming
Language Design and Implementation, pages 290–299, New
York, NY, USA, 2007. ACM.

[11] B. Hardekopf and C. Lin. Semi-sparse flow-sensitive pointer
analysis. In POPL ’09: Proceedings of the 36th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 226–238, New York, NY, USA, 2009.
ACM.

[12] N. Heintze and O. Tardieu. Demand-driven pointer analysis.
In PLDI ’01: Proc. of the ACM SIGPLAN 2001 conf. on
Programming language design and implementation, pages
24–34, New York, NY, USA, 2001. ACM.

[13] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots,
M. Carbin, and C. Unkel. Context-sensitive program analysis
as database queries. In PODS ’05: Proc. of the twenty-fourth
ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 1–12, New York, NY, USA, 2005.
ACM.

[14] C. Lattner, A. Lenharth, and V. Adve. Making context-
sensitive points-to analysis with heap cloning practical for
the real world. SIGPLAN Not., 42(6):278–289, 2007.

[15] O. Lhoták. Program Analysis using Binary Decision
Diagrams. PhD thesis, McGill University, Jan. 2006.

[16] O. Lhoták and L. Hendren. Scaling Java points-to analysis
using Spark. In G. Hedin, editor, Compiler Construction, 12th
Int. Conf., volume 2622 of LNCS, pages 153–169, Warsaw,
Poland, April 2003. Springer.

[17] O. Lhoták and L. Hendren. Jedd: a bdd-based relational ex-
tension of java. In PLDI ’04: Proc. of the ACM SIGPLAN
2004 conf. on Programming language design and implemen-
tation, pages 158–169, New York, NY, USA, 2004. ACM.

[18] O. Lhoták and L. Hendren. Evaluating the benefits of
context-sensitive points-to analysis using a BDD-based
implementation. ACM Trans. Softw. Eng. Methodol., 18(1):1–
53, 2008.

[19] B. Livshits, J. Whaley, and M. S. Lam. Reflection analysis
for Java. In K. Yi, editor, Proceedings of the 3rd Asian
Symposium on Programming Languages and Systems,
volume 3780. Springer-Verlag, Nov. 2005.

[20] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized
object sensitivity for points-to analysis for java. ACM Trans.
Softw. Eng. Methodol., 14(1):1–41, 2005.

[21] M. Naik, A. Aiken, and J. Whaley. Effective static race
detection for java. In Proceedings of the 2006 ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’06), pages 308–319, 2006.

[22] E. M. Nystrom, H.-S. Kim, and W. mei W. Hwu. Importance
of heap specialization in pointer analysis. In PASTE ’04:
Proc. of the 5th ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering, pages
43–48, New York, NY, USA, 2004. ACM.

[23] T. Reps. Demand interprocedural program analysis using
logic databases. In R. Ramakrishnan, editor, Applications
of Logic Databases, pages 163–196. Kluwer Academic
Publishers, 1994.

[24] T. W. Reps. Solving demand versions of interprocedural
analysis problems. In CC ’94: Proc. of the 5th Int. Conf. on
Compiler Construction, pages 389–403, London, UK, 1994.
Springer-Verlag.

[25] D. Saha and C. R. Ramakrishnan. Incremental and demand-
driven points-to analysis using logic programming. In PPDP
’05: Proc. of the 7th ACM SIGPLAN int. conf. on Principles
and practice of declarative programming, pages 117–128,
New York, NY, USA, 2005. ACM.

[26] M. Sridharan and R. Bodı́k. Refinement-based context-
sensitive points-to analysis for java. In PLDI ’06: Proc. of
the 2006 ACM SIGPLAN conf. on Programming language
design and implementation, pages 387–400, New York, NY,
USA, 2006. ACM.

[27] M. Sridharan, D. Gopan, L. Shan, and R. Bodı́k. Demand-
driven points-to analysis for java. In OOPSLA ’05: Proc.
of the 20th annual ACM SIGPLAN conf. on Object oriented
programming, systems, languages, and applications, pages
59–76, New York, NY, USA, 2005. ACM.

[28] J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using
datalog with binary decision diagrams for program analysis.
In K. Yi, editor, APLAS, volume 3780 of Lecture Notes in
Computer Science, pages 97–118. Springer, 2005.

[29] J. Whaley and M. S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In
PLDI ’04: Proc. of the ACM SIGPLAN 2004 conf. on
Programming language design and implementation, pages
131–144, New York, NY, USA, 2004. ACM.

[30] G. Xu and A. Rountev. Merging equivalent contexts
for scalable heap-cloning-based context-sensitive points-to
analysis. In ISSTA ’08: Proc. of the 2008 int. symposium
on Software testing and analysis, pages 225–236, New York,
NY, USA, 2008. ACM.

[31] X. Zheng and R. Rugina. Demand-driven alias analysis
for c. In POPL ’08: Proc. of the 35th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 197–208, New York, NY, USA, 2008.
ACM.

261

