Finding User/Kernel Bugs
with Type Inference

Rob Johnson and David Wagner
UC Berkeley

User/Kernel Pointer Bugs

int x;
vold sys setint (int *p) {
memcpy (&x, p, sizeof(x)); // BAD!
}
vold sys getint (int *p) {
memcpy (p, &x, sizeof(x)); // BAD!

}

getint (buf) ;

® buf might point to unmapped memory — page fault
e buf might point to kernel region

® first set then get = can override kernel memory
® attacker could read arbitrary kernel memory locations

The solution:
Different pointer types

® User pointers

A pointer whose value is under user control and hence untrustworthy

Kernel pointers
A pointer variable whose value is under kernel and guaranteed by the kernel
to always point into kernel's memory space, and hence is trustworthy

Relation to ADT

kernel int is different type than user int, so the type checker can check them

The solution:
Different pointer types

The solution:
Different pointer types

The solution:
Different pointer types

The solution:
Different pointer types

int copy from user(void * kernel to,
vold * user from, 1int len);

int memcpy (void * kernel to,
vold * kernel from, 1int len):;

int x;
vold sys setint(int * user p)
copy from user (&x, p, sizeof(x));

}

vold sys getint(int * user p) {
memcpy (p, &x, sizeof(x)); // TYPE-CHECK ERROR

}

Qualifier inference

® Want to find bugs in Linux kernel which is
huge (2.3 Mloc)

® Manually annotating every pointer with a
qualifier is infeasible

® |nstead: write down qualifiers in a few key
places, infer them everywhere else

How inference works

® They use a modified version of CQUAL

® Uses similar algorithmic idea as Lackwit

® Manually annotate:

® system calls with user

® dereferences with kernel

® Everything in between is inferred.

Qualifier inference example

int copy to user(void * user uto,

volid * kernel kfrom,
int len);

int bad i1octl(void * user badp)

{
char badbuf[8];
volid *badg = badp;
copy to user (badbuf, badg, 8);

Qualifier inference example

int copy to user(void * user uto,
volid * kernel kfrom,

int len);

int bad i1octl(void * user badp)

{
char badbuf[8];
volid *badg = badp;
copy to user (badbuf, badg, 8);

Qualifier inference example

int copy to user(void * user uto,
volid * kernel kfrom,

int len); <:E§;>

int bad 1octl (void * user badp) v
| Cbadp
char badbuf[8];
volid *badg = badp;
copy to user (badbuf, badg, 8);

Qualifier inference example

int copy to user(void * user uto,
volid * kernel kfrom,

int len); <:E§;>
int bad i1octl(void * user badp) !
{ Chadp D

char badbuf[8];

void *badq = badp; (:@Ei)

copy to user (badbuf, badg, 8);

Qualifier inference example

int copy to user(void * user uto,

volid * kernel kfrom,
int len);

int bad i1octl(void * user badp)

{
char badbuf[8];
volid *badg = badp;
copy to user (badbuf, badq, 8);

Qualifier inference example

int copy to user(void * user uto,

volid * kernel kfrom,
int len);

int bad i1octl(void * user badp)

{
char badbuf[8];
volid *badg = badp;
copy to user (badbuf, badg, 8);

user < badp

Qualifier inference example

int copy to user(void * user uto,

volid * kernel kfrom,
int len);

int bad i1octl(void * user badp)

{
char badbuf[8];
volid *badg = badp;
copy to user (badbuf, badg, 8);

user < badp £ badg £ kernel
user % kernel

CQUAL

Tool for type qualifier inference and checking

Authors extended the tool to support user and
kernel qualifiers

Ran the tool on Linux kernel source
Limitations resulted in many false positives

Refined tool to eliminate false positives

Context Sensitivity

vold * helper (void *h) {
assert h !'= null;
return h;

J

int good 1octl (void * user goodp) {
char goodbuf[8];
volid *g = helper (goodp) ;
vold *b = helper (goodbuf) ;
copy from user (b, g, 8);

}

® Both good and bad pointers flow through helper ()
® helper should be polymorphic in qualifier:

® Voo voi1d * o helper (void * o h)
® Actual implementation involves labeling graph edges

Field Sensitivity

struct foo { i1nt a; }
vold sys foo (char * user p) {
struct foo x;
struct foo vy;
X.a = P;
*(y.a) = 07
}

® Originally all foo.a were given the same qualifier

® Assigning quals to all fields takes too much memory
® |nstead do it on demand

e Unify entire structure on assighment (e.g. x = V)

Well-formedness
Constraints

user flows down pointers
® char * user a — char user * user a

® user ref(a char) = user ref (user char)

® could also flow up pointers but not in this use case

Flowing to structure fields

@ struct foo { 1nt a }
® struct foo user; = foo.a gets user

® struct foo * user = foo->a gets user

Pointer/Integer Casts

char **p = ...,
int x = (1int)p;

Before:a ref (o' ref(a'' char) < B int
Collapses: o = o' = o'' (all = B)

Treat: int as void *

Now: o ref (o' ref(a'' char) < B ref(f' void)
Now:a < B and o' = o'' = R’

Still collapses, but is more precise and (unlike before) sound.

Error clustering

Planned clustering:
® Sort errors from shortest to longest

® For each qualified variable:

® print only one path passing through that variable

Additional clustering:

® Done manually by the line of code from which the user
pointer originates

Still generates false
positives

User/Kernel flag passed at runtime:

vold tty write (void *p, 1nt from user) {
char buf[8];
1f (from user)
copy from user (buf, p, 8);
else
memcpy (buf, p, 8);

Still generates false
positives

C type misuse:

vold makemsg (char *buf)
char msg[10];
msg[0] = READ REGISTER;
msqg [1] o;
msqg [2] buf;

Still generates false
positives

Temporary variable reuse:

volid good 1octl (char * user up) {
char bufl[10], buf2[10];
copy from user (bufl, up, 10);
up = malloc (10);

memcpy (buf2, up, 10);

Assumptions

® Memory safe (no buffer overflows)
® Unions are used safely
® No separate compilation:

® require whole-program-analysis for
soundness

® |gnore inline assembly

