
Finding User/Kernel Bugs 
with Type Inference

Rob Johnson and David Wagner
UC Berkeley



User/Kernel Pointer Bugs

•buf might point to unmapped memory → page fault

•buf might point to kernel region

•first set then get → can override kernel memory
• attacker could read arbitrary kernel memory locations  

int x;
void sys_setint(int *p) {
  memcpy(&x, p, sizeof(x)); // BAD!
} 
void sys_getint(int *p) {
  memcpy(p, &x, sizeof(x)); // BAD!
}

getint(buf);



The solution:
Different pointer types

• User pointers
A pointer whose value is under user control and hence untrustworthy

• Kernel pointers
A pointer variable whose value is under kernel and guaranteed by the kernel 
to always point into kernel's memory space, and hence is trustworthy

• Relation to ADT
kernel int is different type than user int, so the type checker can check them



The solution:
Different pointer types

Pointer

KernelUser



The solution:
Different pointer types

Pointer

KernelUser



The solution:
Different pointer types

User

Kernel



The solution:
Different pointer types

int copy_from_user(void * kernel to,
                   void * user from, int len);

int memcpy(void * kernel to,
           void * kernel from, int len);

int x;
void sys_setint(int * user p) {
    copy_from_user(&x, p, sizeof(x));
}

void sys_getint(int * user p) {
    memcpy(p, &x, sizeof(x));  // TYPE-CHECK ERROR
}



Qualifier inference

• Want to find bugs in Linux kernel which is 
huge (2.3 Mloc)

• Manually annotating every pointer with a 
qualifier is infeasible

• Instead: write down qualifiers in a few key 
places, infer them everywhere else



How inference works

• They use a modified version of CQUAL

• Uses similar algorithmic idea as Lackwit

• Manually annotate:

• system calls with user

• dereferences with kernel

• Everything in between is inferred.



Qualifier inference example
int copy_to_user(void * user uto,
                 void * kernel kfrom, 
               int len);

int bad ioctl(void * user badp)
{
    char badbuf[8];
    void *badq = badp;
    copy_to_user(badbuf, badq, 8);
} 



Qualifier inference example
int copy_to_user(void * user uto,
                 void * kernel kfrom, 
               int len);

int bad ioctl(void * user badp)
{
    char badbuf[8];
    void *badq = badp;
    copy_to_user(badbuf, badq, 8);
} 

user



Qualifier inference example
int copy_to_user(void * user uto,
                 void * kernel kfrom, 
               int len);

int bad ioctl(void * user badp)
{
    char badbuf[8];
    void *badq = badp;
    copy_to_user(badbuf, badq, 8);
} 

user

badp



Qualifier inference example
int copy_to_user(void * user uto,
                 void * kernel kfrom, 
               int len);

int bad ioctl(void * user badp)
{
    char badbuf[8];
    void *badq = badp;
    copy_to_user(badbuf, badq, 8);
} 

user

badp

badq



Qualifier inference example
int copy_to_user(void * user uto,
                 void * kernel kfrom, 
               int len);

int bad ioctl(void * user badp)
{
    char badbuf[8];
    void *badq = badp;
    copy_to_user(badbuf, badq, 8);
} 

user

badp

badq

kernel



Qualifier inference example
int copy_to_user(void * user uto,
                 void * kernel kfrom, 
               int len);

int bad ioctl(void * user badp)
{
    char badbuf[8];
    void *badq = badp;
    copy_to_user(badbuf, badq, 8);
} 

user

badp

badq

kernel

user ≤ badp ≤ badq ≤ kernel



Qualifier inference example
int copy_to_user(void * user uto,
                 void * kernel kfrom, 
               int len);

int bad ioctl(void * user badp)
{
    char badbuf[8];
    void *badq = badp;
    copy_to_user(badbuf, badq, 8);
} 

user

badp

badq

kernel

user ≤ badp ≤ badq ≤ kernel
user ≰ kernel



CQUAL

• Tool for type qualifier inference and checking

• Authors extended the tool to support user and 
kernel qualifiers

• Ran the tool on Linux kernel source

• Limitations resulted in many false positives

• Refined tool to eliminate false positives



Context Sensitivity

• Both good and bad pointers flow through helper()

• helper should be polymorphic in qualifier:
•∀α void * α helper (void * α h)

• Actual implementation involves labeling graph edges

void * helper (void *h) {
    assert h != null;
    return h;
}

int good_ioctl (void * user goodp) {
    char goodbuf[8];
    void *q = helper(goodp);
    void *b = helper(goodbuf);
    copy_from_user(b, q, 8);
}



Field Sensitivity

• Originally all foo.a were given the same qualifier
• Assigning quals to all fields takes too much memory

• Instead do it on demand
• Unify entire structure on assignment (e.g. x = y)

struct foo { int a; }
void sys_foo (char * user p) {
    struct foo x;
    struct foo y;
    x.a = p;
    *(y.a) = 0;
}



Well-formedness 
Constraints

user flows down pointers

• char * user a → char user * user a

• user ref(α char) → user ref(user char)

• could also flow up pointers but not in this use case

Flowing to structure fields

• struct foo { int a }

• struct foo user; → foo.a gets user

• struct foo * user → foo->a gets user



Pointer/Integer Casts
char **p = ...;
int x = (int)p;

Before: α ref(α' ref(α'' char) ≤ β int
Collapses: α = α' = α'' (all ≤ β)

Treat: int as void *

Now: α ref(α' ref(α'' char) ≤ β ref(β' void)
Now: α ≤ β and α' = α'' = β'

Still collapses, but is more precise and (unlike before) sound.



Error clustering

Planned clustering:

• Sort errors from shortest to longest

• For each qualified variable:

• print only one path passing through that variable

Additional clustering:

• Done manually by the line of code from which the user 
pointer originates



Still generates false 
positives

User/Kernel flag passed at runtime:

void tty_write (void *p, int from_user) {
    char buf[8];
    if (from_user)
        copy_from_user(buf, p, 8);
    else
        memcpy(buf, p, 8);
}



Still generates false 
positives

C type misuse:

void makemsg (char *buf) {
    char msg[10];
    msg[0] = READ_REGISTER;
    msg[1] = 5;
    msg[2] = buf;
    ...



Still generates false 
positives

Temporary variable reuse:

void good_ioctl (char * user up) {
    char buf1[10], buf2[10];
    copy_from_user(buf1, up, 10);

    up = malloc(10);
    ...
    memcpy(buf2, up, 10);
}



Assumptions

• Memory safe (no buffer overflows)

• Unions are used safely

• No separate compilation:

• require whole-program-analysis for 
soundness

• Ignore inline assembly


