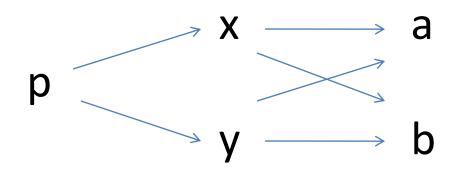
Points-to Analysis in Almost Linear Time

Bjarne Steensgard

Constraint-based Analysis

 Idea: generate constraints and solve them later x = &a; y = &b; p = &x; p = &y;



Inclusion-based Analysis

x = y

$pointsTo(x) \ge pointsTo(y)$

What is the major drawback of this approach?

O(n³)

How can we do this faster?

• Use equality-based analysis. Why?

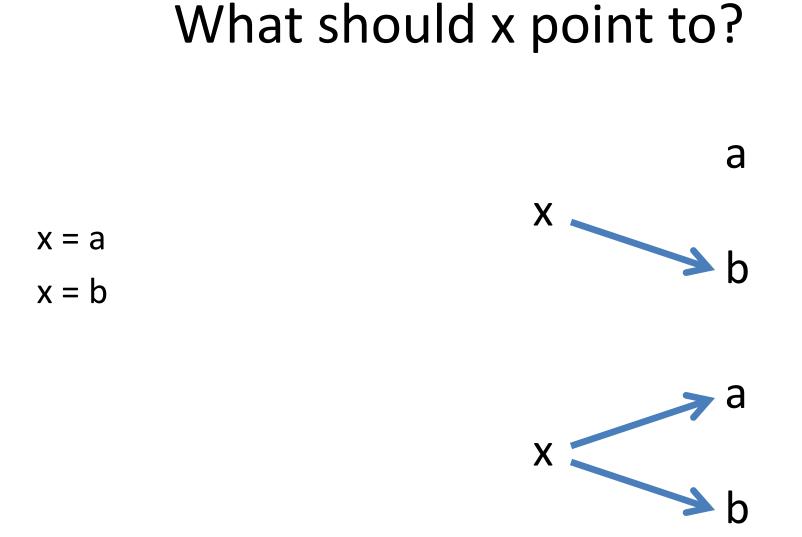
Equality-based Analysis

x = y

pointsTo(x) = pointsTo(y)

Why is this faster?

What are the tradeoffs?



Imprecise, but fast – really?

- How to do equality-based, flow-insensitive analysis in one pass?
- Use type inference with points-to sets as types
 - For every variable X, let X's type α_x = pointsTo(X)
 - The set $\{\alpha_x\}$ the goal of the analysis is found using unification-based type inference
- How is this analysis equality-based?

Type system for points-to inference

- 3 kinds of types:
- Value types (pointer, function) tuples $-\alpha ::= \tau \times \lambda$
- pointer/address types: $-\tau ::= ref(\alpha) \mid \perp (null, or actual value / not pointer)$
- function signatures:

$$-\lambda ::= (\alpha_1, ..., \alpha_n) \rightarrow (\alpha_{n+1}, ..., \alpha_{n+m}) \mid \bot$$

Type inequality / compatibility: ≤

• For atomic types α_1 and α_2 :

 $-\alpha_1 \leq \alpha_2$ iff $\alpha_1 = \alpha_2$ or α_1 is \perp

 For composite types, component types must be compatible recursively

Type rules induce points-to constraints

Example: assignment "x = y", under type environment A:

- $A \vdash x : ref(\alpha_1)$
- $A \vdash y : ref(\alpha_2)$
- $\alpha_2 \le \alpha_1$ $\Rightarrow A \vdash well-typed(x = y)$

Why does this only make sense for equality-based analysis?

Other type rules

- Simple language with fairly obvious typing rules
 - Assignment of one variable to another (plus dereference on either side, address-of on right)
 - Using built-in operators
 - malloc()
 - Function definition and call

Algorithm: Infer Types

• Consider the following program:

x = &a; y = &b; p = &x; p = &y;

Algorithm: Initialize Types

x = &a	x : t1
y = &b	y : t2
p = &x	a : t3
p = &y	b : t4

p : *t*5

Algorithm: Initial Constraints

- *x : t1*
- y : t2
- a : t3
- *b* : *t*4
- p : t5
- $t1 = \mathbf{ref}(t3 \times \bot)$
- $t2 = \mathbf{ref}(t4 \times \bot)$
- $t5 = \mathbf{ref}(t1 \times \bot)$
- $t5 = \mathbf{ref}(t2 \times \bot)$

- x = &a; y = &b; p = &x;
- p = &y;

Algorithm: Joining

- x : t1
- y : t1
- x = &a; *a : t3*
- y = &b;
- p = &x;
- p = &y;

a: t3 b: t4 p: t5 $t1 = ref(t3 \times \bot)$ $t1 = ref(t4 \times \bot)$ $t5 = ref(t1 \times \bot)$

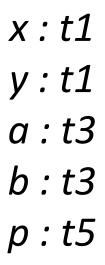
Algorithm: Joining

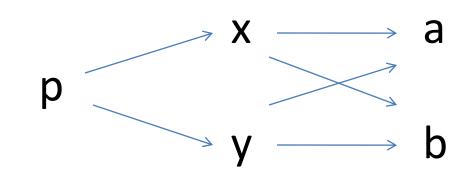
- *x : t1*
- y : t1
- x = &a; *a : t3*
- y = &b; b
- p = &x;
- p = &y;

- b:t3 p:t5 $t1 = ref(t3 \times \bot)$
- $t5 = \mathbf{ref}(t1 \times \bot)$

Algorithm: End

$$t1 = ref(t3 \times \bot)$$
$$t5 = ref(t1 \times \bot)$$





Algorithm

• What about values that are never a pointer?

- Conditional join
 - If left-hand side has type _ , add right-hand side variable to left-hand set
 - If left-hand side has type other than _ , do real join

Data Structures

• Fast union-find

Time Complexity

- What is the time complexity of this algorithm?
- Cost of traversing program statements + cost of creating type variable data structures + cost of joins
- First two are proportional to size of input program, N
- Joins: O(Nα(N,N)), where α is an inverse Ackermann's function (grows slowly)

Results

• Can analyze 100,000 line programs (up from about 10,000 lines)

• Did not find anything interesting in the code

• How effective is this method?