
TYPE INFERENCE AND LACKWIT

GILBERT BERNSTEIN

1. TYPE CHECKING

I’m going to use a running example to make this easier to follow
f : (int, int, int) -> int

let f x y z =

if x > 0 then

x = y

else

x = z

Suppose we’re compiling this code. The first thing we’d do is
parse it into an abstract syntax tree. Here is the AST for the func-
tion f:

AST PIC
Notice at the beginning of the code snippet provided, there is a

type signature:
f : (int, int, int) -> int

The goal of type checking is to ensure that the programmer is not
lying when they make statements like f is a function that takes three
ints and returns an int. Now suppose that someone gave us (totally
out of the blue) a complete labeling of our AST with a type for every
node. We might write down these labels like this

TYPED AST PIC
where x : int is a label on the expression xmeaning that the ex-

pression x has type int. Now our task of type checking is very sim-
ple. All we need to do is make sure that all of these labels are con-
sistent with each other, according to some set of typing rules. These
typing rules are usually written like this:

e1: bool e2: τ1 e3: τ1

if e1 then e2 else e3: τ1

In english, we would read this rule as follows. Given that we know
the following: that e1 is an expression of type bool, that e2 is an ex-
pression of type τ1, and that e3 is an expression of type τ1, then we

1



2 GILBERT BERNSTEIN

can conclude that the compound expression if e1 then e2 else e3
has type τ1. More importantly, notice that if we just flip this rule up-
side down, superimpose it on our AST and substitute in the specific
value int for the placeholder τ1 then we get a perfect match with
our labeling.

In reality, we are not handed a complete labeling of our AST, so
we have to generate it ourselves. We would start with our goal. To
prove that the if-then-else statement has type int:

PARTIAL AST PIC
Then, we would reason in reverse that the sub-expressions must

have the following types:
PROPAGATED LABELING AST PIC
Obviously, doing this gives us a simple recursive algorithm to

type-check with. However, look what happens when we reach the
leaf node x:

BOOLEAN EXPRESSION X BRANCH ZOOM
We need some way to be sure that x is of type int here, but in

general xmight be any type. To solve this problem we need to make
some assumptions (to use Milnor’s language). In modern parlance,
we want a type environment that records information like “x has type
int”, and makes it available to us when needed.

Notice that when we gave the type checker a signature for function
f to check, we told it that f takes three ints. Using this information,
we know that x, y, and z have type int. What we really want the
type checker to do is not to prove that the if-then-else statement has
type int, but to prove that the if-then-else statement has type int,
assuming that x, y, and z have type int. We write this statement in
symbols as

x : int, y : int, z : int ` if e1 then e2 else e3 : int

We use these assumptions as input to the type checking algorithm.
This makes a good mnemonic. The input goes to the left of the ex-
pression, and the output to the right. By passing these assumptions
down the tree, and adding new assumptions whenever we declare a
new variable, we can ensure that we always have the correct type on
hand to assign to any given variable name.

IN MULTIPLE STEPS: BOOLEAN EXPRESSION X BRANCH RE-
SOLVED

Now, when we reach the leaf node for x, we’ve carried along our
assumption that x has type int, so we can easily assign x type int



TYPE INFERENCE AND LACKWIT 3

2. TYPE INFERENCE

In the last section, we had to annotate our function with a type
signature by hand in order to type check it. What if we didn’t do
anything of the sort and just wrote out the function:

let f x y z =

if x > 0 then

x = y

else

x = z

The goal of type inference is to figure out what the type of a func-
tion like f is, even though the programmer didn’t tell us explicitly.
Based on the program text the programmer did write, we can prob-
ably guess (or infer) what type the programmer meant for f to have.

Just like with type checking, we start with an AST
VANILLA EXPRESSION ONLY AST PIC
But this time, when we go to start labeling the AST, we have no

idea what types to assign to anything. So, we introduce type variables
like α, β, γ, δ to use as placeholders. For instance, our previous type
environment, aka. our set of assumptions is now provided as

x : α, y : β, z : γ `

However, note what happens when we get down to the x > 0
branch of the AST.

PICTURE OF BRANCH
We can only compare two variables if they have the same type, so

since 0 has type int, x must have type int too. But, we’ve already
assumed that x has type α. What can we do? Somehow we have to
account for these unanticipated constraints.

Here’s an idea. How about we just go ahead with the algorithm
and give x type int. Then, rather than deal with the constraint that
α = int right now, we’ll just write it down and deal with it later.
This is the key idea for Milnor’s algorithm W. All we have to do is
extend our previous type checking algorithm by returning a set of
accumulated constraints.

To make this idea more concrete, consider our previous version of
the if-then-else expression typing rule:

A `e1: bool A `e2: τ1 A `e3: τ1

A `if e1 then e2 else e3: τ1



4 GILBERT BERNSTEIN

In order to convert this rule to support constraints, we want to
replace all of our types with distinct type variables, and move any
particulars into constraints:

A `e1: τ1 A `e2: τ2 A `e3: τ3

A `if e1 then e2 else e3: τ4

with the constraints that τ1 = bool and τ2 = τ3 = τ4. If we further
account for constraints generated by inference on the sub-expressions
e1, e2 and e3, then we get the following, complete, type inference rule:

A `e1: τ1; C1 A `e2: τ2; C2 A `e3: τ3; C3

A `if e1 then e2 else e3: τ4; τ1 = bool, τ2 = τ3 = τ4, C1, C2, C3

which is quite a mouthful if you try to say it in English!
The general form of the annotated AST nodes we’re working with

has now expanded to encompass four different terms.

A ` e : τ ; C

These are, the type environment A (in modern parlance, or as-
sumptions in Milnor’s language), the expression e, the type τ , and
constraints C (which Milnor models as a substitution mapping).

Using this labeling notation with selective omissions, we can visu-
alize the result of running type inference on the AST for f:

SHOW CONSTRAINTS GENERATED BY TYPE INFERENCE
A second algorithm called unification is then run to find the most

general possible substitution of variables that satisfies the produced
set of constraints. In this case we get a result like the following out
of unification.

RESULT OF UNIFICATION
Finally, we take the result of unification and use it to populate our

AST. This tells us what the types of everything ought to be.
AST POPULATED BY UNIFICATION
To keep things familiar, I constructed this example to produce the

same type signature that we got in type checking. However, this is
not generally true. Type inference often produces more general types
than we may have intended. For instance, suppose that I changed
the conditional in f to check equality between x and z:



TYPE INFERENCE AND LACKWIT 5

let f x y z =

if x == z then

x = y

else

x = z

Now f doesn’t contain anything that specifically refers to integers.
Consequently, the inferred type signature won’t refer to integers ei-
ther. However, because all of our variables are potentially compared
or assigned to each other, we may infer that they must all be of the
same type, generating the signature

f : (α, α, α) -> α

where α is a stand in for any type.
This is the idea behind generic types, and type polymorphism.

3. LACKWIT

Lackwit takes the idea of a type inference algorithm and repur-
poses it to try and infer other properties of programs not tradition-
ally represented as types. For instance, in our running example type
inference was able to determine that the input variables x, y, and
z must all share the same type on the basis of interactions between
those variables. Suppose that x, y, and zwere actually all pointers to
integers. Then we could use the result of type inference to conclude
that x, y, and z might be aliased, on the basis that they are all given
the same type. Lackwit is all about using type inference to draw
conclusions like this.

To clarify this point, consider this modification to our function f:
let f x y z w =

if x == y then

z = w

else

w = z

Type inference would now produce the following signature:

f : (α, α, β, β) -> β

From this we can conclude that f does not mix the first two argu-
ments with the second two. Even if all four arguments happen to be
of the same type, we can benefit from pretending that they’re not.
Lackwit’s original goal and proof of concept was to run on C code,
so let’s consider a C version of the function f:



6 GILBERT BERNSTEIN

int* f(int* x, int* y, int* z, int* w) {

if(x == y) {

z = w;

return z;

}

else {

w = z;

return w;

}

}

Lackwit’s first order of business is to completely ignore the stated
types of any variable. Then, type inference is performed. Finally,
Lackwit reinterprets these results to achieve a partition of the origi-
nal types into more specific types, which are referred to as different
representations. In the above function, we end up producing the an-
notation:

int*β f(int*α x, int*α y, int*β z, int*β w)

This signature provides a concise, parameterized summary of what
f might do with its arguments. By modifying the primitive typing
rules provided for basic statements like assignment, we can use type
inference to infer different properties of a program.


