Dynamic Inference of Abstract
Types

Abstract Types

* Even declared types only capture a portion of
programmer intent for use of variable values

 Want finer-grained types — these will be the
abstract types

* Find them by noticing what values interact
with each other (by parameterizable
definitions of interact). If they interact, they
have the same abstract type

To be clear...

e Value: a concrete instance of an entity that a
program operates on

* Variable: a container for a value, may hold
different values over its lifetime.

* Paper introduces a method to find abstract
types dynamically using values, rather than
statically using variables

Example

1. int totalCost(int a, int b, int ¢, int d) {
2

3 if ((a > 1000) && (d > 2000)) {

4, iInt e =10;

5. returnb +c+ e;

6 } else {

7 return a + b;

8. }

9.}

One dynamic solution...

* totalCost(3000, 50, 3, 2006)

1.

3.
4.
5

a: 3000 b:50 || c:3 d:2006

a:3000 1000 b:50 || c:3 d:2006 2000
a:3000 1000|{e:10|| b:50 || c:3 d:2006 2000
a:3000 1000|(e:10 b:50 c¢:3 rv:63 d:2006 2000

Precise results: group in abstract types only variables that could actually
interact in execution. When would variable a not be in its own abstract type?

Interactions:

Dataflow: nothing counts as interaction between values,
every value is a unique abstract type. Why is this
interesting?

Dataflow & comparisons: operands to a comparison
operator interact.

Units: Add in addition and subtraction to count as
interactions. Variables with same abstract type could be
assigned same scientific units.

Arithmetic: Add all arithmetic and bitwise operators are
interactions. Shift operations are interactions between
thing being shifted and result (not shift amount).

Logical operators?

Dynamic Value method:

* Every time a value is created, a unique tag is
associated with it, and it’s initially in its own
set.

e A global union-find data structure (value_uf)
groups tags into interaction sets.

 Whenever two values interact (by whatever
definition of interact), the sets they belong to
get combined into the same interaction set.

From Values to Variables

e Variables will be in the same abstract type if they held
values from the same interaction set. Compute these
separately at certain program points (a site).

 Two approaches: simple and complex.

— Simple: look at site at moment of execution, if two
variables have values from the same value-interaction set,
combine the variables into the same abstract set

— Complex: similar, but keep track of per-site value
interaction sets, augmenting them every time you visit a
site. Do one more pass at the end of execution — now
variable abstract type sets are independent of the order of
value-interactions.

Results

Two implementations, one for binary-compiled exe’s
like C and C++, one for JVM-compiled class files (Java).

Abstract types produced were nearly identical to those
produced manually on a small program.

User studies produced results that were beneficial to
the users of the tool, with users indicating that use of
the tool would have saved them significant time in
their tasks.

Using this as a pre-processing step to Daikon resulted
in faster runtimes with less spurious invariants
reported.

Closing thoughts

 Compared to static? In general, better (feel
from paper).

* Problem with good inputs for dynamic
generation? Not really, even small and trivial
inputs produced fairly good type abstractions.

