
Dynamic Inference of Abstract
Types

Abstract Types

• Even declared types only capture a portion of
programmer intent for use of variable values

• Want finer-grained types – these will be the
abstract types

• Find them by noticing what values interact
with each other (by parameterizable
definitions of interact). If they interact, they
have the same abstract type

To be clear…

• Value: a concrete instance of an entity that a
program operates on

• Variable: a container for a value, may hold
different values over its lifetime.

• Paper introduces a method to find abstract
types dynamically using values, rather than
statically using variables

Example

1. int totalCost(int a, int b, int c, int d) {
2.
3. if ((a > 1000) && (d > 2000)) {
4. int e = 10;
5. return b + c + e;
6. } else {
7. return a + b;
8. }
9. }

One dynamic solution…

• totalCost(3000, 50, 3, 2006)
1. a: 3000 b:50 c:3 d:2006

3. a:3000 1000 b:50 c:3 d:2006 2000

4. a:3000 1000 e:10 b:50 c:3 d:2006 2000

5. a:3000 1000 e:10 b:50 c:3 rv:63 d:2006 2000

Precise results: group in abstract types only variables that could actually
interact in execution. When would variable a not be in its own abstract type?

Interactions:

• Dataflow: nothing counts as interaction between values,
every value is a unique abstract type. Why is this
interesting?

• Dataflow & comparisons: operands to a comparison
operator interact.

• Units: Add in addition and subtraction to count as
interactions. Variables with same abstract type could be
assigned same scientific units.

• Arithmetic: Add all arithmetic and bitwise operators are
interactions. Shift operations are interactions between
thing being shifted and result (not shift amount).

• Logical operators?

Dynamic Value method:

• Every time a value is created, a unique tag is
associated with it, and it’s initially in its own
set.

• A global union-find data structure (value_uf)
groups tags into interaction sets.

• Whenever two values interact (by whatever
definition of interact), the sets they belong to
get combined into the same interaction set.

From Values to Variables

• Variables will be in the same abstract type if they held
values from the same interaction set. Compute these
separately at certain program points (a site).

• Two approaches: simple and complex.
– Simple: look at site at moment of execution, if two

variables have values from the same value-interaction set,
combine the variables into the same abstract set

– Complex: similar, but keep track of per-site value
interaction sets, augmenting them every time you visit a
site. Do one more pass at the end of execution – now
variable abstract type sets are independent of the order of
value-interactions.

Results

• Two implementations, one for binary-compiled exe’s
like C and C++, one for JVM-compiled class files (Java).

• Abstract types produced were nearly identical to those
produced manually on a small program.

• User studies produced results that were beneficial to
the users of the tool, with users indicating that use of
the tool would have saved them significant time in
their tasks.

• Using this as a pre-processing step to Daikon resulted
in faster runtimes with less spurious invariants
reported.

Closing thoughts

• Compared to static? In general, better (feel
from paper).

• Problem with good inputs for dynamic
generation? Not really, even small and trivial
inputs produced fairly good type abstractions.

