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decrease in mental effort, or increase in comprehensibility,
appears to motivate the purification of algorithms.

REFERENCES
[1] N. Bulut and M. H. Halstead, "Impurities found in algorithm

implementations," ACM SIGPLAN Notices, vol. 9, pp. 9-12,
Mar. 1974.

[2] L. J. Chmura and H. F. Ledgard, Cobol With Style: Program-
mingProverbs. Rochelle Park, NJ: Hayden, 1976.

[31 O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Pro-
gramming. New York: Academic, 1972.

[41 J. L. Elshoff, "Measuring commercial PL/I programs using Hal-
stead's criteria," ACM SIGPLAN Notices, vol. 11, pp. 38-46,
May 1976.

[51 M. H. Halstead, "Natural laws controlling algorithm structure?"
ACM SIGPLANNotices, vol. 7, pp. 19-26, Feb. 1972.

[6] -, Elements of Software Science. New York: Elsevier, 1977.
[7] I. D. Hill, R. S. Scowen, and B. A. Wichmann, "Writing algorithms

in ALGOL 60," Software Practice and Experience, vol. 5, pp.
223-224, July-Sept. 1975.

[8] B. W. Kernighan and P. J. Plauger, The Elements ofProgramming
Style. New York: McGraw-Hill, 1974.

[91 , "Programming style: Examples and counterexamples," ACM
Computing Surveys, vol. 6, pp. 303-319, Dec. 1974.

[10] D. E. Knuth, "A review of 'structured programming,' " Dep.
Comput. Sci., Stanford Univ., Stanford, CA, Tech. Rep. 371,
June 1973.

(111 D. E. Knuth and R. W. Floyd, "Notes on avoiding GO TO-
statements," Inform. Process. Lett., vol. 1, pp. 23-31, Feb. 1971.

[12] J. M. Yohe, "An overview of programming practices," ACM
Computing Surveys, vol. 6, pp. 221-245, Dec. 1974.

Ronald D. Gordon, for a photograph and biography, see this issue,
p. 90.

Designing Software for Ease of Extension
and Contraction

DAVID L. PARNAS

Abstract-Designing software to be extensible and easily contracted is
discussed as a special case of design for change. A number of ways that
extension and contraction problems manifest themselves in current
software are explained. Four steps in the design of software that is
more flexible are then discussed. The most critical step is the design of
a software structure called the "uses" relation. Some criteria for design
decisions are given and illustrated using a small example. It is shown
that the identification of minimal subsets and minimal extensions can
lead to software that can be tailored to the needs of a broad variety of
users.

Index Terms-Contractibility, extensibility, modularity, software en-
gineering, subsets, supersets.
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I. INTRODUCTION
THIS paper is being written because the following com-

plaints about software systems are so common.
1) "We were behind schedule and wanted to deliver an early

release with only a <proper subset of intended capabilities>,
but found that that subset would not work until everything
worked."
2) "We wanted to add <simple capability>, but to do so

would have meant rewriting all or most of the current code."
3) "We wanted to simplify and speed up the system by re-

moving the <unneeded capability>, but to take advantage of
this simplification we would have had to rewrite major sec-
tions of the code."
4) "Our SYSGEN was intended to allow us to tailor a sys-

tem to our customers' needs but it was not flexible enough to
suit us."
After studying a number of such systems, I have identified

some simple concepts that can help programmers to design
software so that subsets and extensions are more easily obtained.
These concepts are simple if you think about software in the
way suggested by this paper. Programmers do not commonly
do so.
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II. SOFTWARE AS A FAMILY OF PROGRAMS
When we were first taught how to program, we were given a

specific problem and told to write one program to do that job.
Later we compared our program to others, considering such is-
sues as space and time utilization, but still assuming that we
were producing a single product. Even the most recent litera-
ture on programming methodology is written on that basis.
Dijkstra's A Discipline of Programming [1] uses predicate
transformers to specify the task to be performed by the pro-

gram to be written. The use of the definite article implies that
there is a unique problem to be solved and but one program to
write.
Today, the software designer should be aware that he is not

designing a single program but a family of programs. As dis-
cussed in an earlier paper [2] , we consider a set of programs
to be a program family if they have so much in common that
it pays to study their common aspects before looking at the as-

pects that differentiate them. This rather pragmatic definition
does not tell us what pays, but it does explain the motivation
for designing program families. We want to exploit the com-

monalities, share code, and reduce maintenance costs.
Some of the ways that the members of a program family

may differ are listed below.
1) They may run on different hardware configurations.
2) They may perform the same functions but differ in the

format of the input and output data.
3) They may differ in certain data structures or algorithms

because of differences in the available resources.

4) They may differ in some data structures or algorithms be-
cause of differences in the size of the input data sets or the rel-
ative frequency of certain events.

5) Some users may require only a subset of the services or

features that other users need. These "less demanding" users

may demand that they not be forced to pay for the resources

consumed by the unneeded features.
Engineers are taught that they must try to anticipate the

changes that may be made, and are shown how to achieve de-
signs that can easily be altered when these anticipated changes
occur. For example, an electrical engineer will be advised that
the world has not standardized the 60-cycle 110-V current.
Television designers are fully aware of the differing transmis-
sion conventions that exist in the world. It is standard prac-

tice to design products that are easily changed in those aspects.
Unfortunately, there is no magic technique for handling unan-

ticipated changes. The makers of conventional watches have
no difficulty altering a watch that shows the day so that it dis-
plays "MER" instead of "WED," but I would except a long de-
lay for redesign were the world to switch to a ten day week.
Software engineers have not been trained to design for change.

The usual programming courses neither mention the need to
anticipate changes nor do they offer techniques for designing
programs in which changes are easy. Because programs are ab-
stract mathematical objects, the software engineers' techniques
for responding to anticipated changes are more subtle and
more difficult to grasp than the techniques used by designers
of physical objects. Further, we have been led astray by the

and prove theorems. When a mathematician becomes aware of
the need for a set of closely related theorems, he responds by
proving a more general theorem. For mathematicians, a more
general result is always superior to a more specialized product.
The engineering analogy to the mathematician's approach
would be to design television sets containing variable trans-
formers and tuners that are capable of detecting several types
of signals. Except for the U.S. armed forces stationed overseas,
there is little market for such a product. Few of us consider
relocations so likely that we are willing to pay to have the gen-
erality present in the product. My guess is that the market for
calendar watches for a variable length week is even smaller
than the market for the television sets just described.
In [2] I have treated the subject of the design of program

families rather generally and in terms of text in a programming
language. In this paper I focus on the fifth situation described
above; families of programs in which some members are sub-
sets of other family members or several family members share
a common subset. I discuss an earlier stage of design, the stage
when one identifies the major components of the system and
defines relations between those components. We focus on this
early stage because the problems described in the introduction
result from failure to consider early design decisions carefully.

III. How DOES THE LACK OF SUBSETS AND
EXTENSIONS MANIFEST ITSELF?

Although we often speak of programs that are "not subset-
able" or "not extensible," we must recognize that phrase as in-
accurate. It is always possible to remove code from a program
and have a runable result. Any software system can be ex-
tended (TSO proves that). The problem is that the subsets and
extensions are not the programs that we would have designed
if we had set out to design just that product. Further, the
amount of work needed to obtain the product seems all out of
proportion to the nature of the change. The obstacles com-
monly encountered in trying to extend or shrink systems fall
into four classes.

A. Excessive Information Distribution
A system may be hard to extend or contract if too many

programs were written assuming that a given feature is present
or not present. This was illustrated by an operating system in
which an early design decision was that the system would sup-
port three conversational languages. There were many sections
of the system where knowledge of this decision was used. For
example, error message tables had room for exactly three en-
tries. An extension to allow four languages would have required
that a great deal of code be rewritten. More surprisingly, it
would have been difficult to reduce the system to one that ef-
ficiently supported only two of the languages. One could re-
move the third language, but to regain the table space, one
would have had to rewrite the same sections of code that
would be rewritten to add a language.

B. A Chain ofData Transforming Components
Many programs are structured as a chain of components,

each receiving data from the previous component, processing it
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(and changing the format), before sending the data to the next
program in the chain. If one component in this chain is not
needed, that code is often hard to remove because the output
of its predecessor is not compatible with the input require-
ments of its successor. A program that does nothing but change
the format must be substituted. One illustration would be a
payroll program that assumed unsorted input. One of the
components of the system accepts the unsorted input and pro-
duces output that is sorted by some key. If the firm adopts an
office procedure that results in sorted input, this phase of the
processing is unnecessary. To eliminate that program, one
may have to add a program that transfers data from a file in
the input format to a file in the format appropriate for the
next phase. It may be almost as efficient to allow the original
SORT component to sort the sorted input.

C. Components That Perform More Than One Function
Another common error is to combine two simple functions

into one component because the functions seem too simple to
separate. For example, one might be tempted to combine syn-
chronization with message sending and acknowledgment in
building an operating system. The two functions seem closely
related; one might expect that for the sake of reliability one
should insist on a "handshake" with each exchange of syn-
chronization signals. If one later encounters an application in
which synchronization is needed very frequently, one may
find that there is no simple way to strip the message sending
out of the synchronization routines. Another example is the
inclusion of run-time type-checking in the basic subroutine
call mechanism. In applications where compile-time checking
or verification eliminates the need for the run-time type-check,
another subroutine call mechanism will be needed. The irony
of these situations is that the "more powerful" mechanism
could have been built separately from, but using, simpler
mechanisms. Separation would result in a system in which the
simpler mechanism was available for use where it sufficed.

D. Loops in the "Uses"Relation
In many software design projects, the decisions about what

other component programs to use are left to individual sys-
tems programmers. If a programmer knows of a program in
another module, and feels that it would be useful in his pro-
gram, he includes a call on that program in his text. Pro-
grammers are encouraged to use the work of other program-
mers as much as possible because, when each programmer
writes his own routines to perform common functions, we end
up with a system that is much larger than it need be.
Unfortunately, there are two sides to the question of pro-

gram usage. Unless some restraint is exercised, one may end
up with a system in which nothing works until everything
works. For example, while it may seem wise to have an oper-
ating system scheduler use the file system to store its data
(rather than use its own disk routines), the result will be that
the file system must be present and working before any task
scheduling is possible. There are users for whom an operating
system subset without a file system would be useful. Even if

one has no such users, the subset would be useful during de-
velopment and testing.

IV. STEPS TOWARDS A BETTER STRUCTURE
This section discusses four parts of a methodology that I be-

lieve will help the software engineer to build systems that do
not evidence the problems discussed above.

A. Requirements Definition: Identifying the Subsets First
One of the clearest morals in the earlier discussion about

"design for change" as it is taught in other areas of engineering
is that one must anticipate changes before one begins the de-
sign. At a past conference [3] many of the papers exhorted
the audience to spend more time identifying the actual require-
ments before starting on a design. I do not want to repeat
such exhortations, but I do want to point out that the identifi-
cation of the possible subsets is part of identifying the require-
ments. Treating the easy availability of certain subsets as an
operational requirement is especially important to government
officials who purchase software. Many officials despair of
placing strict controls on the production methods used by
their contractors because they are forbidden by law to tell the
contractor how to perform his job. They may tell him what
they require, but not how to build it. Fortunately, the avail-
ability of subsets may be construed as an operational property
of the software.
On the other hand, the identification of the required subsets

is not a simple matter of asking potential users what they
could do without. First, users tend to overstate their require-
ments. Second, the answer will not characterize the set of sub-
sets that might be wanted in the future. In my experience,
identification of the potentially desirable subsets is a demand-
ing intellectual exercise in which one first searches for the min-
imal subset that might conceivably perform a useful service
and then searches for a set of minimal increments to the sys-
tem. Each increment is small-sometimes so small that it
seems trivial. The emphasis on minimality stems from our de-
sire to avoid components that perform more than one function
(as discussed in Section III-C). Identifying the minimal subset
is difficult because the minimal system is not usually a pro-
gram that anyone would ask for. If we are going to build the
software family, the minimal subset is useful; it is not usually
worth building by itself. Similarly, the maximum flexibility is
obtained by looking for the smallest possible increments in
capability: often these are smaller increments than a user
would think of. Whether or not he would think of them be-
fore system development, he is likely to want that flexibility
later.
The search for a minimal subset and minimal extensions can

best be shown by an example. One example of a minimal sub-
set is given in [4]. Another example will be given later in this
paper.

B. Information Hiding: Interface andModule Definition
In an earlier section we touched upon the difference between

the mathematician's concept of generality and an engineer's
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approach to design flexibility. Where the mathematician
wants his product, a theorem or method of proof, to be as gen-
eral as possible, i.e., applicable, without change, in as many
situations as possible, an engineer often must tailor his product
to the situation actually at hand. Lack of generality is neces-
sary to make the program as efficient or inexpensive as possi-
ble. If he must develop a family of products, he tries to isolate
the changeable parts in modules and to develop an interface
between the module and the rest of the product that remains
valid for all versions. The crucial steps are as follows.

1) Identification of the items that are likely to change.
These items are termed "secrets."
2) Location of the specialized components in separate

modules.
3) Designing intermodule interfaces that are insensitive to

the anticipated changes. The changeable aspects or "secrets"
of the modules are not revealed by the interface.

It is exactly this that the concept of information hiding [5],
encapsulation, or abstraction [6] is intended to do for soft-
ware. Because software is an abstract or mathematical product,
the modules may not have any easily recognized physical iden-
tity. They are not necessarily separately compilable or coinci-
dent with memory overlay units. The interface must be gen-
eral but the contents should not be. Specialization is necessary
for economy and efficiency.
The concept of information hiding is very general and is ap-

plicable in many software change situations-not just the issue
of subsets and extensions that we address in this paper. The
ideas have also been extensively discussed in the literature
[5] -[9]. The special implications for our problem are simply
that, as far as possible, even the presence or absence of a com-
ponent should be hidden from other components. If one pro-
gram uses another directly, the presence of the second pro-
gram cannot be fully hidden from its user. However, there is
never any reason for a component to "know" how many other
programs use it. All data structures that reveal the presence or
number of certain components should be included in separate
information hiding modules with abstract interfaces [10].
Space and other considerations make it impossible to discuss
this concept further in this paper; it will be illustrated in the
example. Readers for whom this concept is new are advised to
read some of the articles mentioned above.

C. The Virtual Machine (VM) Concept
To avoid the problems that we have described as "a chain of

data transforming components," it is necessary to stop think-
ing of systems in terms of components that correspond to
steps in the processing. This way of thinking dies hard. It is
almost certain that your first introduction to programming
was in terms of a series of statements intended to be executed
in the order that they were explained to you. We are goal ori-
ented; we know what we start with and what we want to pro-
duce. It is natural to think in terms of steps progressing to-
wards that goal. It is the fact that we are designing a family of
systems that makes this "natural" approach the wrong one.
The viewpoint that seems most appropriate to designing soft-

ware families is often termed the virtual machine approach.
Rather than write programs that perform the transformation
from input data to output data, we design software machine
extensions that will be useful in writing many such programs.
Where our hardware machine provides us with a set of instruc-
tions that operate on a small set of data types, the extended or
virtual machine will have additional data types as well as "soft-
ware instructions" that operate on those data types. These
added features will be tailored to the class of programs that we
are building. While the VM instructions are designed to be
generally useful, they can be left out of a final product if the
user's programs do not use them. The programmer writing
programs for the virtual machine should not need to distin-
guish between instructions that are implemented in software
and those that are hardware implemented. To achieve a true
virtual machine, the hardware resources that are used in imple-
menting the extended instruction set must be unavailable to
the user of the virtual machine. The designer has traded these
resources for the new data elements and instructions. Any at-
tempt to use those resources again will invalidate the concept
of virtual machine and lead to complications. Failure to pro-
vide for isolation of resources is one of the reasons for the
failure of some attempts to use macros to provide a virtual
machine. The macro user must be careful not to use the re-
sources used in the code generated by the macros.
There is no reason to accomplish the transformation from

the hardware machine to a virtual machine with all of the de-
sired features in a single leap. Instead we will use the machine
at hand to implement a few new instructions. At each step we
take advantage of the newly introduced features. Such a step-
by-step approach turns a large problem into a set of small ones
and, as we will see later, eases the problem of finding the ap-
propriate subsets. Each element in this series of virtual ma-
chines is a useful subset of the system.

D. Designing the "Uses" Structure
The concept of an abstract machine is an intuitive way of

thinking about design. A precise description of the concept
comes through a discussion of the relation "uses" [111, [12] .
1) The relation "uses": We consider a system to be divided

into a set of programs that can be invoked either by the nor-
mal flow of control mechanisms, by an interrupt, or by an ex-
ception handling mechanism. Each of these programs is as-
sumed to have a specification that defines exactly the effect
that an invocation of the program should have.
We say of two programs A and B that A uses B if correct ex-

ecution of B may be necessary for A to complete the task de-
scribed in its specification. That is, A uses B if there exist sit-
uations in which the correct functioning of A depends upon
the availability of a correct implementation of B. Note that to
decide whether A uses B or not, one must examine both the
implementation and the specification of A.
The "uses" relation and "invokes" very often coincide, but

uses differs from invokes in two ways:
a) Certain invocations may not be instances of "uses." If

A's specification requires only that A invoke B when certain
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conditions occur, then A has fulfilled its specification when it
has generated a correct call to B. A is correct even if B is in-
correct or absent. A proof of correctness of A need only make
assumptions about the way to invoke B.
b) A program A may use B even though it never invokes it.

The best illustration of this is interrupt handling. Most pro-
grams in a computer system are only correct on the assump-
tion that the interrupt handling routine will correctly handle
the interrupts (leave the processor in an acceptable state).
Such programs use the interrupt handling routines even though
they never call them. "Uses" can also be formulated as "re-
quires the presence ofa correct version of."
Systems that have achieved a certain "elegance" (e.g., T.H.E.

[51, Venus [61 ) have done so by having parts of the system
"use" other parts in such a way that the "user" programs were
simplified. For example, the transput stream mechanism in
T.H.E. uses the segmenting mechanism to great advantage. In
contrast, many large and complex operating systems achieve
their size and complexity by having "independent" parts. For
example, there are many systems in which "spooling," virtual
memory management, and the file system all perform their
own backup store operations. Code to perform these func-
tions is present in each of the components. Whenever such
components must share a single device, complex interfaces
exist.
The disadvantage of unrestrained "usage" of each others fa-

cilities is that the system parts become highly interdependent.
Often there are no subsets of the system that can be used be-
fore the whole system is complete. In practice, some duplica-
tion of effort seems preferable to a system in which nothing
runs unless everything runs.
2) The uses hierarchy: By restricting the relation "uses" so

that its graph is loop free we can retain the primary advantages
of having system parts "use" each other while eliminating the
problems. In that case it is possible to assign the programs to
the levels of a hierarchy by the following rules:

a) level 0 is the set of all programs that use no other program;
b) level i (i > 1) is the set of all programs that use at least

one program on level i - 1 and no program at a level higher
than i - 1.

If such a hierarchical ordering exists, then each level offers a
testable and usable subset of the system. In fact, one can get
additional subsets by including only parts of a level. The easy
availability of these subsets is very valuable for the construc-
tion of any software systems and is vital for developing a
broad family of systems.
The design of the "uses" hierarchy should be one of the

major milestones in a design effort. The division of the system
into independently callable subprograms has to go on in paral-
lel with the decisions about uses, because they influence each
other.
3) The criteria to be used in allowing one program to use

another: We propose to allow A "uses" B when all of the fol-
lowing conditions hold:

a) A is essentially simpler because it uses B;
b) B is not substantially more complex because it is not al-

c) there is a useful subset containing B and not A;
d) there is no conceivably useful subset containing A but

not B.
During the process of designing the "uses" relation, we often

find ourselves in a situation where two programs could obvi-
ously benefit from using each other and the conditions above
cannot be satisfied. In such situations, we resolve the apparent
conflicts by a technique that we call "sandwiching." One of
the programs is "sliced" into two parts in a way that allows
the programs to "use" each other and still satisfy the above
conditions. If we find ourselves in a position where A would
benefit from using B, but B can also benefit from using A, we
may split B into two programs: Bl and B2. We then allow A
to use B2 and Bl to use A. The result would appear to be a
sandwich with B as the bread and A as the filling. Often, we
then go on to split A. We start with a few levels and end up
with many.
An earlier report [ 1] introduced many of the ideas that are

in this paper and illustrated them by proposing a "uses" rela-
tion for a family of operating systems. It contains several
examples of situations where "sandwiching" led us from a
"T.H.E.-like structure" [14] to a structure with more than
twice as many levels. For example, the virtual memory mech-
anism was split into address translation and dynamic allocation
of memory areas to segments.
The most frequent instances of splitting and sandwiching

came because initially we were assuming that a "level" would
be a "module" in the sense of Section IV-B. We will discuss
this in the final part of this paper.
4) Use of the word "convenience": It will trouble some

readers that it is usual to use the word "convenience" to de-
scribe a reason for introducing a certain facility at a given level
of the hierarchy. A more substantial basis would seem more
scientific.
As discussed in [11] and [13], we must assume that the

hardware itself is capable of performing all necessary functions.
As one goes higher in the levels, one can lose capabilities (as re-
sources are consumed)-not gain them. On the other hand, at
the higher levels the new functions can be implemented with
simpler programs because of the additional programs that can
be used. We speak of "convenience" to make it clear that one
could implement any functions on a lower level, but the avail-
ability of the additional programs at the higher level is useful.
For each function we give the lowest level at which the features
that are useful for implementing that function (with the stated
restrictions) are available. In each case, we see no functions
available at the next higher level that would be useful for im-
plementing the functions as described. If we implemented the
program one level lower we would have to duplicate programs
that become available at that level.

V. EXAMPLE: AN ADDRESS PROCESSING SUBSYSTEM

As an example of designing for extensibility and subsets, we
consider a set of programs to read in, store, and write out lists
of addresses. This example has also been used, to illustrate a
different point, in [10] and has been used in several classroom
experiments to demonstrate module interchangeability. This
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Fig. 1.

example is intended as an integral part of this paper; several
statements in the final summation are supported only in this
section.

A. Our Basic Assumptions
1) The information items discussed in Fig. 1 will be the

items to be processed by all application programs.

2) The input formats of the addresses are subject to change.
3) The output formats of the addresses are subject to change.
4) Some systems will use a single fixed format for input and

output. Other systems will need the ability to choose from
several input or output formats at run-time. Some systems
will be required in which the user can specify the format using
a format definition language.

5) The representation of addresses in main storage will vary

from system to system.
6) In most systems, only a subset of the total set of addresses

stored in the system need be in main storage at any one time.
The number of addresses needed may vary from system to sys-

tem, and in some systems the number of addresses to be kept
in main memory may vary at run-time.

B. We Propose the Following Design Decisions

1) The input and output programs will be table driven: the
table will specify the format to be used for input and output.
The contents and organization of these format tables will be
the "secrets" of the input and output modules.
2) The representation of addresses in core will be the "se-

cret" of an address storage module (ASM). The implementa-
tion chosen for this module will be such that the operations of
changing a portion of an address will be relatively inexpensive,
compared to making the address table larger or smaller.
3) When the number of addresses to be stored exceeds the

capacity of an ASM, programs will use an address file module
(AFM). An AFM can be made upward compatible with an

ASM; programs that were written to use ASM's could operate
using an AFM in the same way. The AFM provides additional

commands to allow more efficient usage by programs that do
not assume the random access properties of an ASM. These
programs are described below.
4) Our implementation of an AFM would use an ASM as a

submodule as well as another submodule that we will call
block file module (BFM). The BFM stores blocks of data that
are sufficiently large to represent an address, but the BFM is
not specialized to the handling of addresses. An ASM that is
used within an AFM may be said to have two interfaces. In
the "normal interface" that an ASM presents to an outside
user, an address is a set of fields and the access functions hide
or abstract from the representation. Fig. 2 is a list of the ac-
cess programs that comprise this interface. In the second in-
terface, the ASM deals with blocks of contiguous storage and
abstract from the contents. There are commands for the ASM
to input and output "addresses" but the operands are storage
blocks whose interpretation as addresses is known only within
the ASM. The AFM makes assumptions about the association
between blocks and addresses but not about the way that an
address's components are represented as blocks. The BFM is
completely independent of the fact that the blocks contain ad-
dress information. The BFM might, in fact, be a manufacturer
supplied access method.

C. ComponentPrograms
1) Module: Address Input

INAD: Reads in an address that is assumed to be in a
format specified by a format table and calls
ASM or AFM functions to store it.

INFSL: Selects a format from an existing set of for-
mat tables. The selected format is the one
that will be used by INAD. There is always a
format selected.

INFCR: Adds a new format to the tables used by
INFSL. The format is specified in a "format
language." Selection is not changed (i.e.,
INAD still uses the same format table).

INTABEXT: Adds a blank table to the set of input format
tables.

INTABCHG: Rewrites a table in the input format tables us-
ing a description in a format language. Selec-
tion is not changed.

INFDEL: Deletes a table from the set of format tables.
The selected format cannot be deleted.

INADSEL: Reads in an address using one of a set of for-
mats. Choice is specified by an integer
parameter.

INADFO: Reads in an address in a format specified as
one of its parameters (a string in the format
definition language). The format is selected
and added to the tables and subsequent ad-
dresses could be read in using INAD.

2) Module: Address Output

OUTAD: Prints an address in a format specified by a
format table. The information to be printed

The following items of information will
be found in the addresses to be processed
and constitute the only items of relevance
to the application programs:

*Last name
,,Given names (first name and possible

middle names)
"Organization (Command or Activity)
*Internal identifier (Branch or Code)
*-Street address or P.O. box
*City or mail unit identifier
&State
*Zip code
*Title
*Branch of service if military
*GS grade if civil service

Each of the above will be strings of
characters in the standard ANSI alphabet,
and each of the above may be empty or blank.
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Access Functions for "Normal Interface"
MODULE: ASM

NAMF O(F
ACCESS P.OCRAM*

*ADOTIT:
ADOGN:
ADDLN:
ADDSERV:
ADDSORC:
ADDCORA:
AODSORP:
ADOCITY:
ADOSTATE:
ADDZIP:
AODGSL:
SETNUM:
FETTIT:
FETGN:
FETGN:
FETLN:

FETSERV:
FETBORC:
FETCORA:
FETSORP:

FETCITY-
FETSTATE;
FETZIP:
FETGSL:
FETNUM:

INPTUT PARA?FTERS

asm X integr,
am X integr
ain X integer

asm X integer
aim X integer
asm X integer
asm X integer
asm X integer
asm X integer
asm X integer

asm X integer
asm X integer

asm X integer

Ism X integer

asm X integer

asm X integer
asm X integer
asm X integer

asm X integer
asm X integer
asm X integer
asm X integer
asm X integer
asm X integer

asm intwer

X string
X string
X string
X string
X string
X string
X string
X string
X string
X string
X string
-~ aIsm
.4 string

string
.4 string
-0 string
.4 string

string
string
string

.4 string

.4 string

.4 string
string

OlITPUT

_ aim
a*sm

a"m

_6 asm &- am

_~ asm
_4 aim

-+ asma

*These are abbreviations: ADDTIT = ADD TITLE; ADDGN = ADD
GIVEN NAME, etc.

Fig. 2. Syntax of ASM functions.

is assumed to be in an ASM and identified by
its position in an ASM.

OUTFSL: Selects a format table from an existing set of
output fornat tables. The selected format
is the one that will be used by OUTAD.

OUTTABEXT: Adds a "blank" table to the set of output for-
mat tables.

OUTTABCHG: Rewrites the contents of a format table using
infornation in a format language.

OUTFCR: Adds a new format to the set of formats that
can be selected by OUTFSL in a format de-
scription language.

OUTFDEL: Deletes a table from the set of format ta-
bles that can be selected by OUTFSL.

OUTADSEL: Prints out an address using one of a set of
formats.

OUTADFO: Prints out an address in a format specified in
a format definition language string, which is
one of the actual parameters. The format is
added to the tables and selected.

3) Module: Address Storage (ASM)

FET: (Component Name): This is a set of functions
used to read information from an address

store. Returns a string as a value. See Fig. 2.
ADD: (Component Name): This is a set of functions

used to write information in an address store.
Each takes a string and an integer as parame-
ters. The integer specifies an address within
the ASM. See Fig. 2.

OBLOCK: Takes an integer parameter, retums a storage
block as a value.

1 BLOCK: Accepts a storage block and integer as param-
eters. Its effect is to change the contents of
an address store-which is reflected by a
change in the values of the FET programs.

ASMEXT: Extends an address store by appending a new
address with empty components at the end of
the address store.

ASMSHR: "Shrinks" the address store.
ASMCR: Creates a new address store. The parameter

specifies the number of components. All
components are initially empty.

ASMDEL: Deletes an existing address store.

4) Module: Block File Module

BLFET: Accepts an integer as a parameter and returns
a "block."
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|AFMFET<CN>I IAFMADD<CN> I AFMEXT AFMSHR| LAFMDEL IAFMCRI
I --- I I , _I M.S _

IFET<CN DD<CN> OBLOCK I IBLOCK ASME M R MCR ASMDEL L S IBFEXA IBFSHR IBFMDEL BFMCRI

INAD INFSL INTABEXTI NTABCHG IINFDEL|

JOUTADFO

OTDSELO |OUTFCR H

LoUTADI OUTFSLI OUTTABEXT UTTABCHGI OUTFDELI
Fig. 3.

BLSTO: Accepts a block and an integer and stores the
block.

BFEXT: Extends BFM by adding additional blocks to
its capacity.

BFSHR: Reduces the size of the BFM by removing
some blocks.

BFMCR: Creates a file of blocks.
BFMDEL: Deletes an existing file of blocks.

5) Module: Address File Module

This module includes implementations of all of the ASM
functions except 0BLOCK and 1 BLOCK. To avoid confusion
in the diagram showing the uses hierarchy we have changed the
names to:

(Component Name) defined as in Fig. 2
(Component Name) defined as in Fig. 1
defined as in BFM above
defined as in BFM above
defined as in BFM above
defined as in1 BFM above.

guages. Systems that work with a small set of addresses can be
built without any BFM components. A program that works
as a query system and never prints out a complete address
would not need any Address Output components.
The system is also easily extended. For example, one could

add a capability to read in addresses with self-defining files. If
the first record on a file was a description of the format in
something equivalent to the format description language, one
could write a program that would be able to read in that record,
use INTABCHG to build a new format table, and then read in
the addresses. Programs that do things with addresses (such as
print out "personalized" form letters) can also be added using
these programs and selecting only those capabilities that they
actually need.
One other observation that can be made is that the upper

level programs can be used to "generate" lower level versions.
For example, the format description languages can be used to
generate the tables used for the fixed format versions. There is
no need for a separate SYSGEN program.
We will elaborate on this observation in the conclusion.

D. Uses Relation
Fig. 3 shows the uses relation between the component pro-

grams. It is important to note that we are now discussing the
implementation of those programs, not just their specifications.
The uses relation is characterized by the fact that there are a
large number of relatively simple, single-purpose programs on
the lowest level. The upper level programs are implemented
by means of these lower level programs so that they too are
quite simple. This uses relation diagram characterizes the set
of possible subsets.

E. Discussion
To pick a subset, one identifies the set of upper level pro-

grams that the user needs and includes only those programs
that those programs use (directly or indirectly). For example,
a user who uses addresses in a single format does not need the
component programs that interpret format description lan-

VI. SOME REMARKS ON OPERATING SYSTEMS: WHY
GENERALS ARE SUPERIOR TO COLONELS

An earlier report [1 1] discusses the design of a "uses" hier-
archy for operating systems. Although there have been some
refinements to the proposals of that report, its basic contents
are consistent with the present proposals. This section com-
pares the approach outlined in this paper and the "kernel" ap-
proach or "nucleus" approach to OS design [181-[20]. It is
tempting to say that the suggestions in this paper do not con-
flict with the "kernel" approach. These proposals can be
viewed as a refinement of the nucleus approach. The first few
levels of our system could be labeled "kernel," and one could
conclude that we are just discussing a fine structure within the
kernel.
To yield to that temptation would be to ignore an essential

difference between the approaches suggested in this paper and
the kernel approach. The system kernels known to me are

AFMADD
AFMFET
AFMEXT
AMFSHR
AFMCR
AFMDEL
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such that some desirable subsets cannot be obtained without
major surgery. It was assumed that the nucleus must be in
every system family member. In the RC4000 system the in-
ability to separate synchronization from message passing has
led some users to bypass the kernel to perform teletype han-
dling functions. In Hydra as originally proposed [19], "type
checking" was so intrinsic to the call mechanism that it ap-

peared impossible to disable it when it was not needed or

affordable.'
Drawing a line between "kernel" and the rest of the system,

and putting "essential" services of "critical programs" in the
nucleus yields a system in which kemel features cannot be re-

moved and certain extensions are impractical. Looking for a

minimal subset and a set of minimal independent incremental
function leads to a system in which one can trim away un-

needed features. I know of no feature that is always needed.
When we say that two functions are almost always used to-
gether, we should remember that "almost" is a euphemism for
"not."

VII. SUMMATION

This paper describes an approach to software intended to re-

sult in systems that can be tailored to fit the needs of a broad
variety of users. The points most worthy of emphasis are as

follows.
1) The Requirements Include Subsets and Extensions: It is

essential to recognize the identification of useable subsets as

part of the preliminaries to software design. Flexibility cannot
be an afterthought. Subsetability is needed, not just to meet a

variety of customers' needs, but to provide a fail-safe way of
handling schedule slippage.
2) Advantages of the Virtual Machine Approach: Designing

software as a set of virtual machines has definite advantages
over the conventional (flowchart) approach to system design.
The virtual machine "instructions" provide facilities that are

useful for purposes beyond those originally conceived. These
instructions can easily be omitted from a system if they are

not needed. Remove a jamor box from a flowchart and there
is often a need to "fill the hole" with conversion programs.

3) On the Difference Between Software Generality and
Software Flexibility: Software can be considered "general" if
it can be used, without change, in a variety of situations. Soft-
ware can be considered flexible, if it is easily changed to be
used in a variety of situations. It appears unavoidable that
there is a run-time cost to be paid for generality. Clever de-
signers can achieve flexibility without significant run-time cost,
but there is a design-time cost. One should incur the design-
time cost only if one expects to recover it when changes are

made.
Some organizations may choose to pay the run-time cost for

generality. They build general software rather than flexible
software because of the maintenance problems associated with
maintaining several different versions. Factors influencing this
decision include a) the availability of extra computer resources,

1 Accurate reports on the current status and performance of that sys-
tem are not available to me.

b) the facilities for program change and maintenance available
at each installation, and c) the extent to which design tech-
niques ease the task of applying the same change to many ver-
sions of a program.
No one can tell a designer how much flexibility and general-

ity should be built into a product, but the decision should be a
conscious one. Often, it just happens.
4) On the Distinction Between Modules, Subprograms, and

Levels: Several systems and at least one dissertation [14] -

[17] have, in my opinion, blurred the distinction between
modules, subprograms, and levels. Conventional programming
techniques consider a subroutine or other callable program to
be a module. If one wants the modules to include all programs
that must be designed together and changed together, then, as
our example illustrates, one will usually include many small
subprograms in a single module. If does not matter what word
we use; the point is that the unit of change is not a single call-
able subprogram.
In several systems, modules and levels have coincided [141,

[151. This had led to the phrase "level of abstraction." Each
of the modules in the example abstract from some detail that
is assumed likely to change. In our approach there is no corre-
spondence between modules and levels. Further, I have not
found a relation, '"nore abstract than," that would allow me
to define an abstraction hierarchy [12]. Although I am my-
self guilty of using it, in most cases the phrase "levels of ab-
straction" is an abuse of language.
Janson has suggested that a design such as this one (or the

one discussed in [11]) contain "soft modules" that can repre-
sent a breach of security principles. Obviously an error in any
program in one of our modules can violate the integrity of that
module. All module programs that will be included in a given
subset must be considered in proving the correctness of that
module. However, I see no way that allowing the component
programs to be on different levels of a "uses" hierarchy makes
this process more difficult or makes the system less secure.
The boundaries of our modules are quite firm and clearly
identified.
The essential difference between this paper and other dis-

cussions of hierarchically structured designs is the emphasis on
subsets and extensions. My search for a criterion to be used in
designing the uses hierarchy has convinced me that if one does
not care about the existence of subsets, it does not really mat-
ter what hierarchy one uses. Any design can be bent until it
works. It is only in the ease of change that they differ.
S) On Avoiding Duplication: Some earlier work [21] has

suggested that one needs to have duplicate or near duplicate
modules in a hierarchically structured system. For example,
they suggest that one needs one implementation of processes
to give a fixed number of processes at a low level and another
to provide for a varying number of processes at a user's level.
Similar ideas have appeared elsewhere. Were such duplication
to be necessary, it would be a sound argument against the use
of "structured" approaches. One can avoid such duplication if
one allows the programs that vary the size of a data structure
to be on a higher level than the other programs that operate on
that data structure. For example, in an operating system, the
programs to create and delete processes need not be on the
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same level as the more frequently used scheduling operations.
In designing software, I regard the need to code similar func-

tions in two separate programs as an indication of a fundamen-
tal error in my thinking.
6) Designing for Subsets and Extensions Can Reduce the

Need for Support Software: We have already mentioned that

this design approach can eliminate the need for separate
SYSGEN programs. We can also eliminate the need for special-
purpose compilers. The price of the convenience features of-

fered by such languages is often a compiler and run-time

package distinctly larger than the system being built. In our

approach, each level provides a "language extention" available
to the programmer of the next level. We never build a com-

piler; we just build our system, but we get convenience fea-

tures anyway.
7) Extension at Run-Time Versus Extension During

SYSGEN: At a later stage in the design we will have to choose
data structures and take the difference between run-time ex-

tension and SYSGEN extension into consideration. Certain
data structures are more easily accessed but harder to extend

while the program is running; others are easily extended but at
the expense of a higher access cost. These differences do not

affect our early design decisions because they are hidden in

modules.
8) On the Value of a Model: My work on this example and

similar ones has gone much faster because I have learned to ex-

ploit a pattern that I first noticed in the design discussed in

[11]. Low level operations assume the existence of a fixed

data structure of some type. The operations on the next level

allow the swapping of a data element with others from a fixed

set of similar elements. The high level programs allow the cre-

ation and deletion of such data elements. This pattern appears
several times in both designs. Although I have not designed
your system for you, I believe that you can take advantage of
a similar pattern. If so, this paper has served its purpose.
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The Design of a Message Switching System:
An Application and Evaluation of Modula

GREGORY R. ANDREWS

Abstract-Modula is a new programming language for implementing
dedicated, parallel systems. Following a systematic design technique,
this paper illustrates the use of Modula for the design of a message
switching communication system. A message switching system poses
a number of interesting.problems: a high degree of concurrent activity
exists, a variety of I/O devices need to be controUed, messages can
have multiple destinations, and messages can be preempted. The
strengths and wealknesses of Modula with respect to these specific
problems and its utility as a general purpose language are evaluated.

Index Terms-Concurrent systems, message switching, Modula,
modular design, monitors, processes, software design, structured
multiprogramming.

I. INTRODUCTION
THE unmistakable trend in recent years has been toward

the use of high-level languages for systems programming.
In an effort to improve upon available tools, three new lan-
guages have recently been designed: Concurrent Pascal [21
and Modula [81 aid in the design and implementation of
multiprogramming systems while Euclid [4] is intended for
implementing verifiable systems such as compilers or operating
system nuclei. All three borrow heavily from the work of
Wirth in the design of Pascal [7]. Although intended primarily
for the development of small operating systems, both Con-
current Pascal and Modula are applicable to parallel systems
in general.

In this paper, the design of one specific example, a message
switching communication system, is developed using Modula.
Our purposes are: 1) to present a system design technique;
2) to illustrate the use of Modula as a design, documentation,
and implementation language; and 3) to evaluate Modula's
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work was supported in part by the Battelle Columbus Laboratories
under Scientific Services Program Contract 0562 and in part under
National Science Foundation Grant MCS 77-07554.
The author is with the Department of Computer Science, Cornell

University, Ithaca, NY 14853.

utility. A message switching communication system was
chosen as the application because it shows the range of
Modula's applicability and presents a number of interesting
implementation problems. Modula was chosen as the target
language because it is specifically intended for dedicated
multiprogramming systems, provides much needed facilities
for controlling input/output, and appears to be very effi-
ciently implemented [9], [10].
The specific design technique used here is described in

Section II. The communication system itself is then de-
veloped in Sections III-V. Section III specifies the functions
and external interfaces of the system. Section IV summarizes
the major features of Modula and presents the system or-
ganization, information and control flow, and block interfaces
in terms of Modula components. Section V refines the or-
ganization by giving outlines of Modula programs for the
most interesting parts of the system. Finally, Section VI
evaluates the utility of Modula for the design of parallel sys-
tems by reflecting on aspects of the communication system.
Modula is used here as a specification language since its

compiler is not generally available. Even without a compiler
though, we feel that programming any system in a struc-
tured, high-level language such as Modula is a valuable prelude
to actual implementation. It serves as an intermediate step
between specification and coding that helps one develop and
reason about the implementation. It also provides mean-
ingful documentation when used as comments in whatever
implementation language is eventually employed.

II. DESIGN TECHNIQUE
The design described here was developed in three major

steps: system specification, system organization, and program
implementation. Each major step consists of a number of
parts. The first step involves specifying the major functions
of the system and the specific formats of input/output mes-
sages. This characterizes both what and how information
is processed; hence it completely characterizes the user's
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