[image: image1.jpg]g

Language Specification

Notice

This document is provided for informational purposes only and Microsoft makes no warranties, either express or implied, in this document. Information in this document is subject to change without notice. The entire risk of the use or the results of the use of this document remains with the user.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2002-2004 Microsoft Corporation. All rights reserved.

Microsoft, Windows, and Visual C# are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries/regions.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Table of Contents

11. Introduction

1.1 Overview of features
1
1.1.1 Processes
2
1.1.2 Creating processes
2
1.1.2.1 activate methods
2
1.1.2.2 async method calls
2
1.1.3 Inter-process communication
3
1.1.4 Synchronization
3
1.1.5 End-states
3
1.1.6 Blocking and atomicity
3
1.1.7 Non-determinism
4
1.2 Examples
4
1.2.1 Dining Philosophers
4
1.2.2 Alternating-bit protocol
6
2. Lexical Structure
13
2.1 Models
13
2.2 Tokens
13
2.3 Keywords
13
2.4 Operators and punctuators
13
2.5 Pre-processing
13
3. Types
14
3.1 Simple Types
14
3.1.1 Predefined types
14
3.1.2 Enumerations
14
3.1.3 Ranges
14
3.1.4 Structures
14
3.2 Complex Types
15
3.2.1 Arrays
15
3.2.2 Sets
15
3.2.3 Channels
15
3.2.4 Classes
15
3.2.5 object type
15
3.3 Instantiation and initialization
15
4. Enumerations
16
4.1 Enum declarations
16
4.2 Enum members
16
4.3 Enum values and operations
17
4.4 Non-deterministic selection
17
5. Ranges
18
5.1 Range declarations
18
5.2 Range variables and operations
18
5.3 Non-deterministic selection
18
6. Arrays
19
6.1 Array declarations
19
6.1.1 Variable-size arrays
19
6.2 Array variables and operations
19
6.2.1 Construction
19
6.2.2 Indexing
20
6.2.3 Iteration
20
6.2.4 Sizeof
20
6.2.5 Non-deterministic selection
20
7. Sets
21
7.1 Set declarations
21
7.2 Set variables and operations
21
7.2.1 Construction
21
7.2.2 Adding an element
21
7.2.3 Removing an element
21
7.2.4 Set addition
21
7.2.5 Set subtraction
22
7.2.6 Testing membership
22
7.2.7 Testing cardinality
22
7.2.8 Iteration
22
7.2.9 Non-deterministic selection
22
8. Channels
23
8.1 Channel declarations
23
8.2 Channel variables and operations
23
8.2.1 Construction
23
8.2.2 Sending a message
23
8.2.3 Receiving a message
23
8.2.4 Obtaining the queue length
23
9. Classes
24
9.1 Class declarations
24
9.2 Class members
24
9.2.1 Static and instance members
24
9.3 Fields
25
9.3.1 Field initialization
25
9.3.2 Variable initializers
25
9.4 Methods
25
9.4.1 Method parameters
26
9.4.1.1 Value parameters
27
9.4.1.2 Output parameters
27
9.4.2 Static and instance methods
27
9.4.3 Atomic methods
27
9.4.4 Activated methods
27
9.4.5 Method body
28
10. Structs
29
10.1 Struct declarations
29
10.2 Fields
29
11. Statements
30
11.1 Blocks
30
11.1.1 Statement Lists
31
11.2 Labeled statements
31
11.3 The empty statement
31
11.4 Declaration statements
32
11.5 Expression statements
33
11.6 The if statement
33
11.7 Iteration statements
34
11.7.1 The while statement
34
11.7.2 The foreach statement
34
11.8 Jump statements
34
11.8.1 The goto statement
35
11.8.2 The return statement
35
11.8.3 The raise statement
35
11.9 The try statement
36
11.10 The async statement
36
11.11 Communication and blocking
37
11.11.1 The send statement
37
11.11.2 The select statement
37
11.11.2.1 The first qualifier
37
11.11.2.2 The end qualifier
38
11.11.2.3 Join lists
38
11.11.2.4 wait patterns
38
11.11.2.5 receive patterns
38
11.11.2.6 Timeouts
38
11.12 Monitoring execution
39
11.12.1 The trace statement
39
11.12.2 The event statement
39
11.13 State-space control
40
11.13.1 The assert statement
40
11.13.2 The assume statement
40
11.13.3 Atomic blocks
41
12. Expressions
42
12.1 Expression classifications
42
12.1.1 Values of expressions
42
12.2 Operators
42
12.2.1 Operator precedence and associativity
43
12.2.2 Numeric promotions
43
12.2.2.1 Unary numeric promotions
43
12.2.2.2 Binary numeric promotions
44
12.3 Member lookup
44
12.4 Function members (methods)
44
12.4.1 Argument lists
44
12.4.2 Method invocation
45
12.5 Primary expressions
45
12.5.1 Literals
46
12.5.2 Simple names
46
12.5.3 Parenthesized expressions
46
12.5.4 Member access
46
12.5.4.1 Identical simple names and type names
47
12.5.5 Element access
47
12.5.5.1 Array access
47
12.5.6 This access
48
12.5.7 The new operator
48
12.5.8 The sizeof operator
48
12.5.9 The choose operator
48
12.6 Unary operators
49
12.6.1 Unary plus operator
49
12.6.2 Unary minus operator
49
12.6.3 Logical negation operator
49
12.6.4 Bitwise complement operator
49
Arithmetic operators
49
12.6.5 Multiplication operator
50
12.6.6 Division operator
50
12.6.7 Remainder operator
50
12.6.8 Addition operator
50
12.6.9 Subtraction operator
50
12.7 Shift operators
51
12.8 Relational and membership-testing operators
51
12.8.1 Integer comparison operators
52
12.8.2 Boolean equality operators
52
12.8.3 Enumeration comparison operators
52
12.8.4 Reference type equality operators
52
12.8.5 The in operator
52
12.9 Logical operators
53
12.10 Conditional logical operators
53
12.11 Invocation expressions
53
12.12 Assignment
54
12.13 Expression
54
12.14 Constant expressions
54
12.15 Boolean expressions
55
A. Grammar
56
A.1 Lexical grammar
56
A.1.1 Line terminators
56
A.1.2 White space
56
A.1.3 Comments
56
A.1.4 Tokens
57
A.1.5 Unicode character escape sequences
57
A.1.6 Identifiers
57
A.1.7 Keywords
58
A.1.8 Literals
59
A.1.9 Operators and punctuators
60
A.1.10 Pre-processing directives
60
A.2 Syntactic grammar
62
A.2.1 Basic concepts
62
A.2.2 Types
62
A.2.3 Variables
63
A.2.4 Expressions
63
A.2.5 Statements
65
A.2.6 Compilation Unit
68
A.2.7 Classes
68
A.2.8 Structs
69
A.2.9 Arrays
70
A.2.10 Enums
70
A.2.11 Ranges
70
A.2.12 Sets
70
A.2.13 Channels
70
B. Runtime Errors
71
C. Example Source Code
72
C.1 Dining Philosophers
72
C.2 Alternating-bit protocol
73

1. Introduction

Concurrent programs are hard to develop and test. While writing concurrent programs, the programmer has to consider every possible interleaving of events among various processes. In spite of several decades of research and engineering experience, few people write robust concurrent programs. Concurrency related bugs (sometimes called “heisenbugs”) still surface only in stress-tests, and these bugs are very hard to reproduce, debug and fix. With the advent of efforts such as the .Net platform, we are enabling more programmers to write distributed and concurrent programs. Thus, problems associated with concurrency are only going to be more widespread.

A technique called “model checking” has proven to be surprisingly effective in the design and testing of concurrent programs. Model checkers work by systematically exploring all possible states of the concurrent program. Industrial software has such large number of states that it is infeasible for any systematic approach to cover all the reachable states. Our goal is the following: suppose we manage to represent a “model” from a program, where a model abstractly represents only a small amount of information about the program, then it is feasible to systematically explore the states of the model.

The Zing project has three components: (1) a modeling language for expressing executable concurrent models of software, (2) a model checking infrastructure for exploring the state space of Zing models, and (3) support infrastructure for generating Zing models automatically from common programming languages like VB, C/C++, C#, and MSIL. This document is a language specification for the Zing language. Details of the model checking infrastructure and support infrastructure for generating Zing models are beyond the scope of this document.
Zing is not a programming language. One does not do useful work directly in Zing. In a typical scenario, a Zing model is automatically extracted from some source system. Generally, the Zing model represents an abstraction of the original system’s behavior that is geared toward the detection of a particular error, or class of errors. Thus, Zing is a target for automatic model extraction from code. Like traditional modeling languages, Zing includes constructs for concurrency, communication (via shared memory or queues), and non-determinism. But unlike earlier efforts, Zing embraces modern software constructs such as functions, objects, exceptions, and dynamic memory allocation. Zing’s goal is to preserve as much of the control-structure of the source program as possible. Zing’s model checker can exploit the structure of the code, which is preserved in the model, to optimize systematic state space exploration.

1.1 Overview of features

Zing provides several features to support automatic generation of models from programs written in common programming languages.

· Concurrency model: Zing supports a basic asynchronous interleaving model of concurrency with both shared memory and message queues.

· Control constructs: In addition to sequential flow, branching and iteration, Zing supports function calls and exception handling. Functions can be called asynchronously. An asynchronous call returns to the caller immediately, and the callee runs as a fresh process in parallel with the caller.

· Data: Zing supports primitive and reference types. An object model similar to C# is supported, although inheritance is not supported.

Zing also provides features to support abstraction and efficient model checking.

· Atomicity brackets: Any sequence of Zing statements (with some restrictions) can be bracketed as atomic. This is essentially a directive to the model checker to not consider interleavings with other threads while any given thread executes an atomic sequence. It is the responsibility of the Zing model extractor (the tool that generates Zing from source code) to ensure that the source code satisfies such atomicity specifications, implemented possibly using locks.

· Sets: Zing supports a set data structure. Sets are used to represent collections where the ordering of objects is not important (thus reducing the number of potentially distinct states Zing needs to explore).

· Nondeterministic choice: Zing supports a nondeterministic construct called choose. This construct can be used to non-deterministically pick an element out of a finite set of integers, enumeration values, or object references. The choose construct has several uses. For example, it can be used to abstract irrelevant data from the code, and soundly model conditionals that are dependent on such irrelevant data.
Below, we give a brief overview of some important features that will enable the reader to get started with Zing quickly.

1.1.1 Processes

Processes are the unit of concurrency in Zing. Processes may be created statically in the initial state of a model, or dynamically as the execution of a model proceeds. Each process has an entry point – the Zing method in which it begins execution. A process normally terminates execution by simply returning from its entry point method. Because Zing supports functions (methods), each process also has a stack of unbounded size.
1.1.2 Creating processes

Processes come into existence through one of the two methods described below.
1.1.2.1 activate methods

A method marked with activate results, in the initial state of the model, in a single process whose entry point is the method so decorated. A method marked in this way must meet the following qualifications:

· Its type must be void.

· It must have no parameters,

· It must also be marked as static.

To be useful, a Zing model must contain one or more activate methods.
1.1.2.2 async method calls

Processes may also be created dynamically via asynchronous method calls. A method may be called asynchronously if it meets the following requirements:

· Its type must be void.

· It may have only input parameters.

A method meeting these requirements may be called both synchronously and asynchronously in the same model. To invoke a method asynchronously, the method call is simply preceded by the async keyword. This results in a new process whose entry point is the given method. Once instantiated, there is no implicit connection or relationship between a process and its creator, although in many cases the processes will exchange data or synchronize their execution using the standard communication facilities of the Zing language.
1.1.3 Inter-process communication

Once a process is created, it executes concurrently with all other runnable processes in the Zing model. Zing will consider all useful
 interleavings between the processes according to the semantics of the Zing statements executed by each process (as described in the later chapters of this document). In many cases, features are deliberately excluded from the Zing language precisely to make these semantics simpler and easier to understand and implement correctly. Zing processes may communication with one another through shared memory, message queues (channels) or any combination thereof. Channels are typed FIFO queues for conveying messages of any type. The size of a channel is unbounded, but a number of techniques may be used to bound the size of a channel during the execution of a model.
1.1.4 Synchronization

Zing provides a single blocking construct – the select statement. A select statement contains a variable number of “condition / statement” pairs, where the execution of a statement is gated by its associated condition (its “join statement”).

A join statement consists of one or more join conditions. If multiple join conditions are given, the statement is enabled only when all of the join conditions hold.

Join conditions come in two styles:

· Wait: The wait join condition allows a Zing process to block until an arbitrary Boolean expression evaluates to true. The wait expression often refers to the contents of shared memory or the size of a communication channel.

· Receive: The receive join condition is the only way in which a message may be received from a channel. The receive join condition specifies a channel, and a variable into which the message should be read. When the join statement is enabled (and selected for execution), all of its receive operations are completed.
1.1.5 End-states

The final state of a model is not necessarily one in which all processes have terminated. Sometimes, the proper final state of a “listener” process is one in which it is blocked awaiting the arrival of work. To distinguish between select statements that do, or do not, represent valid end states, Zing provides the end keyword which may appear between the select keyword and the list of join statements.
1.1.6 Blocking and atomicity

Some restrictions apply to the use of select statements within atomic blocks. A select statement may appear as the first statement of an atomic block in which case it acts as a “guard” on the execution of the block. When the select statement becomes runnable and its process is chosen for execution, it will execute the remainder of the atomic block in a single state transition.

It is also possible to use select statements elsewhere within an atomic block, but in this case it is required that at least one of the join statements within the select be runnable. Violations of this requirement are reported as errors by Zing. Once an atomic block begins execution (regardless of whether it was guarded by a select statement) it must be capable of running to its conclusion without blocking.
1.1.7 Non-determinism

Zing supports non-deterministic behavior (a useful facility for abstraction) in two ways. The choose operator allows for the explicit, non-deterministic selection from a set of values. When applied to an enumeration type, a range type, or the bool type, a selection is made from a set of values known statically at compile-time. When applied to an array or set variable, a selection is made dynamically from the contents of the variable at run-time. In both bases, the value of the choose operator is that of the selected value, and the model-checker will generate successor states corresponding to each of the possible values.

Another form of non-determinism arises from the select statement. If multiple join statements in a select are satisfied, Zing will, by default, consider the selection of each runnable join statement as a non-deterministic choice. If this behavior is not desired, the first qualifier may be added to the select statement in which case preference is always given to the join statement that appears first.
1.2 Examples
We illustrate the basic features of Zing through two classic examples. For each example, we outline the problem, and describe a model of the scenario written in Zing. The entire source code for example is included (without interruption) in appendix B.
1.2.1 Dining Philosophers

The “dining philosophers” problem is a demonstration of issues relating to concurrency and shared resources. The problem is described as follows: a group of N philosophers is seated around a circular table eating spaghetti. Each philosopher alternates between periods of thinking and eating. Between each pair of philosophers is a fork. To eat, a philosopher must obtain the forks on their left and right side, which they return to the table when they stop eating and begin to think.
We model this in Zing with an array of fork objects and an array or philosopher objects, arranged appropriately. First, we consider the fork class (below). A fork contains a reference to the philosopher who holds it or null if the fork is not currently in use. The “Pickup” method waits until the fork is not used and then marks it as being held by the given philosopher. An atomic block ensures the caller is not interrupted between the time that the fork becomes idle and the time at which it is marked as being used.
class Fork {

Philosopher holder;

void PickUp(Philosopher eater) {

atomic {

select {

wait(holder == null) -> holder = eater;

}

}

}

void PutDown() {

holder = null;

}

};
The philosophers are modeled by the following class. A philosopher has a reference to the forks on their left and right side. (Note that each fork rests to the left of one philosopher and the right of another.) The “Run” method models the behavior of the philosopher. In this example, our philosophers pick up the fork on their left (waiting until it is available), and then the fork on their right. After eating, they return the forks to the table in the same order. Clearly, there are going to be problems with this simple-minded scheme, and the Zing model will discover this.
class Philosopher {

Fork leftFork;

Fork rightFork;

void Run() {

while (true) {

// pick up forks

leftFork.PickUp(this);

rightFork.PickUp(this);

// eat for a while

leftFork.PutDown();

rightFork.PutDown();

// think for a while

}

}

};
To model the arrangement of five philophers and five forks, we create a new array type for each.
array Philosophers[5] Philosopher;

array Forks[5] Fork;
Finally, we need to initialize the arrays and set the philosophers loose to go about their business. We do this in a separate “Init” class. The static method “Run” is marked with the activate modifier which will cause it to begin execution in the initial state of the model. We first create an instance of each array, and then initialize the arrays by creating each philosopher and fork object. Then, we associate each philosopher with the forks to their left and right, and let them begin by calling their “Run” method asynchronously (thus creating a new process for each).
Because we’re only interested in the behavior of the philosophers once they are seated and the table is set, we enclose the initialization code in an atomic block. This way, we don’t need to consider what happens if the first philosopher is allowed to start before the others have been initialized.
class Init {

activate static void Run() {

Philosophers p;

Forks f;

int i;

atomic {

// Allocate the arrays of forks and philosophers

p = new Philosophers;

f = new Forks;

// Allocate the individual fork and philosopher objects

i = 0;

while (i < sizeof(Philosophers)) {

p[i] = new Philosopher;

f[i] = new Fork;

i = i + 1;

}

// Associate the philosophers with their forks and let them begin

i = 0;

while (i < sizeof(Philosophers)) {

p[i].leftFork = f[i];

p[i].rightFork = f[(i+1) % sizeof(Philosophers)];

async p[i].Run();

i = i + 1;

}

}

}

};
When this Zing model is compiled, an assembly is generated that is suitable for consumption by the Zing model-checker. For this model, the model-checker will report that the system can become stuck and will generate an execution trace showing how this condition can be reached.
1.2.2 Alternating-bit protocol

The alternating-bit protocol is a simple data-transfer protocol. It implements the reliable transmission of data in one direction, from a sender to a receiver, using a pair of communication channels, both of which may be unreliable. Each message is appended with a single “protocol” bit. Messages are acknowledged by the receiver by sending an “ack” message containing a matching protocol bit. The name of the protocol comes from the fact that the protocol bit alternates between zero and one after each successful message transfer.
A simple Zing class is used to model each of the message and acknowledgement packets. The “body” field of the Msg class represents the information-bearing portion of the message. The Zing model will verify that this data is conveyed to the receiver without corruption, duplication, or message loss, and that the sender’s messages arrive in order. The “bit” field of each class is the “protocol” portion of the message.
class Msg {

 bool body;

 bool bit;

};

class Ack {

 bool bit;

};
We declare new channel types for the Msg and Ack objects. A channel is simply an ordered queue containing zero or more elements of the given type. The size of a queue is unbounded, but as we’ll see later, we can arrange for our model to restrict itself to a limited size.
chan MsgChan Msg;

chan AckChan Ack;
To verify that the message body reaches the receiver correctly, we’ll use a separate channel that’s effectively independent of the protocol implementation. It models what the sender and receiver would see through a perfectly reliable transport. It needs to carry only a single bit for each message, so we can declare a simpler channel for it.
chan BoolChan bool;

The sender is implemented as a class containing:

· a transmit channel (for messages)

· a receive channel (for acks)

· a helper method to model the unreliable transmission of messages

· a main body (in the Run method).

During initialization we’ll arrange for the outgoing channel of the sender process to be the same as the incoming channel of the receiver process, and vice-versa.
class Sender {

 static MsgChan xmit;

 static AckChan recv;

The TransmitMsg method takes a data bit and a protocol bit as parameters and sends them unreliably to the Receiver process. To model the possibility of message loss, we want to consider two distinct alternatives. One way to do this is to use the select statement as shown here. Recall that in the last example we used a select statement to block until a given expression became true. If a select statement contains multiple satisfied join statements it will (by default) select one of them in a non-deterministic fashion.
 The Zing idiom shown here is the preferred mechanism for considering multiple possible paths of execution. If the first join statement is chosen, the message is delivered to the Receiver. The second join statement models message loss.
Another important Zing feature is illustrated here. The assume statement is used to avoid considering paths of execution that aren’t interesting, or that we wish to avoid for some reason. Following an assume statement, we are assured that its predicate holds true. If an execution trace is encountered in which the condition does not hold, then we simply ignore that path. Unlike the assert statement, an assume failure is not treated as an error. In this case, the assume statement asserts that our transmission channel contains fewer than “Main.QueueSize” messages. Without this, Zing would have to consider execution paths in which the Sender transmits a message and then, not seeing an ack, continues to retry the transmission without end. In practice, a real protocol implementation would use a non-zero timeout or other control-flow features to prevent this, but for this simple example, we can use assume to effectively eliminate executions in which the Sender gets far ahead of the Receiver.
 static void TransmitMsg(bool body, bool bit)

 {

 Msg m;

 select {

 wait(true) -> {

 assume(sizeof(xmit) < Main.QueueSize);

 m = new Msg;

 m.body = body;

 m.bit = bit;

 send(xmit, m);

 }

 wait(true) -> /* lost message */ ;

 }

 }
The Run method of the sender loops forever constructing new messages and sending them to the receiver
. Within this loop, the creation of new messages for transmission is modeled abstractly using Zing’s choose operator. Given a suitable type
 as a parameter, the choose operator returns a member of the type’s value-set non-deterministically. To verify that the message reaches the receiver reliably (and in order) we also transmit through a reliable channel. Next, the message is transmitted through the normal, unreliable transport and the sender begins to wait for an acknowledgement. The atomic block here insures that the message creation and initial transmission is done as a single step.
 static void Run()

 {

 bool currentBit = false;

 Ack a;

 bool body;

 bool gotAck;

 while (true) {

 atomic {

 body = choose(bool);

 send(Main.reliableChan, body);

 TransmitMsg(body, currentBit);

 gotAck = false;

 }
Next, the sender begins waiting for an acknowledgement of the message from the receiver. The while loop will continue until a suitable ack message is received. The select statement waits until an acknowledgement is received, but also deals with the possibility that the message (or it’s acknowledgement) was lost. If we receive an ack, it is only considered valid if its protocol bit matches that of the message that was sent. Otherwise we continue to wait. If a timeout occurs, we simply transmit the message again and continue waiting for an ack. The first keyword on the select statement causes it to always select the first satisfied join statement. Because the timeout join condition is always satisfied, this gives preference to a pending ack message if one is available.

 while (!gotAck) {

 atomic {

 select first {

 receive(recv, a) -> gotAck = (a.bit == currentBit);

 timeout -> TransmitMsg(body, currentBit);

 }

 }

 }
Finally, after the message is acknowledged we toggle the current procotol bit before proceeding with the next message.
 currentBit = !currentBit;

 }

 }

};
The receiver class is similar to the sender. It has a receive channel for messages and a transmit channel for acknowledgements. It’s TransmitAck method delivers acknowledgements unreliably to the sender.
class Receiver {

 static MsgChan recv;

 static AckChan xmit;

 static void TransmitAck(bool bit)

 {

 Ack a;

 select {

 wait(true) -> {

 a = new Ack;

 a.bit = bit;

 send(xmit, a);

 }

 wait(true) -> /* lost ack */ ;

 }

 }
The Run method of the receiver loops forever waiting for messages from the sender and then consuming them. The loop begins by blocking until a message is received from the sender. A received message is always acknowledged by sending an ack with the same protocol bit value. If the protocol bit received is the next “expected” bit, then the message is “new” and should be consumed. When a message is consumed, we get its counterpart from the reliable channel and verify that the message body value matches. Then, the value of the expected protocol bit is toggled. Here again, atomic blocks are used to eliminate potential interleavings due to statements that are purely internal to the process.
 static void Run()

 {

 bool expectedBit = false;

 bool trueBody;

 Msg m;

 // Loop forever consuming messages

 while (true) {

 select { receive(recv, m) -> ; }

 atomic {

 // Always send an ack with the same bit

 TransmitAck(m.bit);

 if (expectedBit == m.bit) {

 // Consume the message here and verify it's body matches

 // what we received through the reliable channel

 select { receive(Main.reliableChan, trueBody) -> ; }

 assert(trueBody == m.body);

 expectedBit = !expectedBit;

 }

 }

 }

 }

};

As in the dining philosophers example, a separate class is used to hold global data and initialize the model. The Run method initializes the reliable message channel, and then creates channels for the the unreliable transmission of messages and acknowledgements. The new channels are used to initialize the xmit and recv fields of the sender and receiver as appropriate. Finally, the Run methods of both the sender and receiver are called asynchronously to begin execution of the model.
class Main {

 static int QueueSize = 2;

 static BoolChan reliableChan;

 activate static void Run()

 {

 atomic {

 reliableChan = new BoolChan;

 Sender.xmit = Receiver.recv = new MsgChan;

 Sender.recv = Receiver.xmit = new AckChan;

 async Sender.Run();

 async Receiver.Run();

 }

 }

};

2. Lexical Structure

The lexical (and syntactic) structure of Zing is heavily influenced by C#. For a detailed description of the C# lexical structure as well as the grammar notation use here, please refer to chapter 2 of the C# language specification.

In the remainder of this chapter, we highlight differences between the lexical structure of C# and Zing.
2.1 Models

A Zing model consists of one or more source files. From a set of source files, the Zing compiler produces a single .Net assembly suitable for use with other Zing tools such as the model-checker.

To be executable, a Zing model must include at least one static method definition qualified with the activate keyword.

2.2 Tokens

Zing does not currently support real literals or character literals as tokens.

2.3 Keywords

The following keywords are reserved and may not be used as an identifier.

keyword: one of
activate

array

assert

assume

async
atomic

bool

byte

chan

choose
class

else

enum

end

event
external

false

first

foreach

goto
if

in

int

new

null
object

out

range

raise

receive
return

select

send

set

sizeof
static

struct

this

timeout

trace
true

try

void

wait

while
with

2.4 Operators and punctuators

The following character sequences are recognized as operators and punctuators by the Zing compiler.

operator-or-punctuator: one of
{

}

[

]

(

)

.

,

:

;
+

-

*

/

%

&

|

^

!

=
<

>

..

&&

||

<<

>>

==

!=

->
<=

>=

2.5 Pre-processing

The pre-processing facilities of Zing are identical to C#.
3. Types
A Zing source file is a collection of type definitions. In Zing, types are either simple or complex, the primary difference being that complex types are allocated on the heap, and simple types are not. This chapter contains a brief overview of the various types supported by Zing. More detailed information is available in later chapters of this document.
3.1 Simple Types

Simple Zing types include the predefined types (bool, byte and int); enumerations and ranges, which are effectively subtypes of int; and structures, which are collections of simple types or references to complex types.
3.1.1 Predefined types

Currently, Zing’s only predefined types are bool, byte and int. The byte type is an 8-bit unsigned integer, and int is a 32-bit signed integer.
3.1.2 Enumerations

An enumeration is a distinct type that declares a set of named constants. These work much like C# except that enumeration members may not be assigned specific integer values.
3.1.3 Ranges

A range type is a distinct type that declares a range of integer values.

Caveat: Range types are currently only useful in combination with the choose operator, the result of which should be assigned to a variable of type byte or int. While it should be possible to declare and use variables of a range type, this is not currently supported.
3.1.4 Structures

A structure type defines a collection of fields of simple types or references to complex types. A structure may be declared as a field of another structure. Structure declarations may appear:

1. As static members of a Zing class. In this case the structure is statically allocated as part of the state’s “global” section.

2. As instance members of a Zing class. The structure appears in the heap as part of the class instance.

3. As the element type of a Zing set, array, or channel. The structure appears in the heap as part of its container type.

4. As a parameter or local variable in a method. The structure is allocated on a Zing process stack as part of the method’s call frame.

Caveat: Structures should be generally avoided for now. There are known issues related to channels, sets, or arrays of structures – and probably other unknown problems as well. Until these bugs are addresses, classes should be strongly preferred over structures.
3.2 Complex Types

Complex types are allocated from the Zing heap. All complex objects are allocated using the new operator.
3.2.1 Arrays

Zing currently supports a subset of the array syntax shown in the BNF of Appendix A. Arrays must currently be of a fixed size, and may be indexed only with an integer type. Support for variable-size arrays and indexing by enumeration and range types will likely be added in a future release.
3.2.2 Sets

A set is a homogeneous, unordered collection of elements. The size of a set is unbounded. One may iterate over the contents of a set (using the foreach statement), but array-style indexing is not permitted. Detailed information on the available set operations is provided in chapter 7.
3.2.3 Channels

A channel is a homogeneous, ordered queue of elements. The size of a channel is unbounded. One may send a message to a channel, receive a message from a channel, or obtain the number of messages currently residing in the channel.
3.2.4 Classes

Zing supports a very simple notion of class. Zing classes do not support: inheritance, overloading of any kind, constructors, or access modifiers. Class definitions may not be nested.

Classes may contain static or non-static (i.e. instance) declarations of both fields and methods. Fields may include initializers provided the initialization expression is simple – they may not include method calls or the choose operator.
3.2.5 object type

The generic object type may be used in place of a strongly-typed declaration. Zing does not support typecasts or a typeof operator. Any complex type reference may be assigned to a variable of type object. An object value may be assigned to a strongly-typed variable, which is effectively a typecast to the target type. If the object instance is not of the target type, a runtime error will be reported. This facility can be used to implement a kind of “poor man’s polymorphism” but it is up to the Zing author to ensure that runtime errors do not result. This often calls for the use of a wrapper class and enumeration definition.

One may not create an instance of the object type.
3.3 Instantiation and initialization
The predefined types are initialized to their default values (false for bool, zero for int or byte) unless an initialization expression is applicable. The default value of a complex type reference is null.

The fields of a struct type may include an initialization expression which will be applied when the struct is initialized.
All complex objects are instantiated using the new operator. Sets and channels are empty upon creation. An array is filled with the default value of its element.

For classes, the fields of the new instance are initialized with their default values unless an initialization expression is given. In that case, the initialization expression is executed atomically as part of the new operator.
4. Enumerations

As in C#, an enum type is a distinct type that declares a set of named constants.

The example

enum Color
{

Red,

Green,

Yellow
};

declares an enum type named Color with members Red, Green, and Blue.
4.1 Enum declarations

An enum declaration declares a new enum type. It begins with the keyword enum, and defines the members of the enum.

enum-declaration:
enum identifier enum-body ;
enum-body:
{ enum-member-declarations }
{ enum-member-declarations , }
Enum member declarations are separated by the comma character, and a comma is permitted but not required after the last one. Both of the enum declarations in the following example are valid.

enum Color1
{

Red,

Green,

Yellow
};
enum Color2
{

Red,

Green,

Yellow,
};
4.2 Enum members

The body of an enum type declaration defines one or more enum members, which are the named constants of the enum type. No two enum members can have the same name.

enum-member-declarations:
enum-member-declaration
enum-member-declarations , enum-member-declaration

enum-member-declaration:
identifier

Note that unlike C#, the constant value of the enum members may not be set explicitly.
4.3 Enum values and operations

No conversion is permitted between an enum type and other integral types (or other enums). The following operators may be used on the values of an enum type: ==, !=, <, >, <=, and >=.
4.4 Non-deterministic selection
An enum type name may be used as the operand of the choose operator. The result of this expression is a value of the enum type. In the following example, the Zing model makes a non-deterministic selection from the Color enum. The model-checker will consider the execution paths that result from each of the possible values of Color.

Color stopLightState;

stopLightState = choose(Color):

if (stopLightState == Color.Green)

...
else if (stopLightState == Color.Red)

...
else

...
5. Ranges

A range type is a distinct type that declares a range of integer values.

The example

range NumItems 0 .. 5;

declares a range type named NumItems with the possible values 0, 1, 2, 3, 4, and 5.
5.1 Range declarations

A range declaration creates a new range type. It begins with the keyword range followed by the lower and upper limits of the range, separated by “..”.

range-declaration:
range identifier constant-expression .. constant-expression ;
5.2 Range variables and operations

Currently, Zing does not support instances of range types. They may only be used as the operand for the choose operator.
5.3 Non-deterministic selection
A range type name may be used as the operand of the choose operator. The result is a value of type int, chosen from the possible values of the range type. The model-checker will consider all possible value selections from the range.
6. Arrays

An array type is a distinct type that declares an ordered, indexable container of elements. The elements of an array are all of the same type, and this type is referred to as the element type of the array. The size of an array may be fixed or variable, and the index used to access an array element may be of an enum, range, or integer type. The type used to index an array is called the domain type of the array.
The element type of an array can be any type, including an array type.
Note: Only fixed arrays indexed by int or byte are supported in the current release.

The example

array TwoBools[2] bool;

declares an array type named TwoBools containing two elements of type bool.

6.1 Array declarations

An array declaration declares a new array type. An array declaration begins with the keyword array followed by the name of the array type, a specification of its domain, and finally its element type.

array-declaration:
array identifier [constant-expression] type ;
array identifier [type] type ;
array identifier [] type ;
In the first declaration form, the constant expression must be of type int, declares a fixed-size array of elements. The number of elements is specified by the constant expression, which must be of type int. The elements of the array are indexed by integer values ranging from zero to (but not including) the value of the given expression.

In the second declaration form, the type name within the square brackets must refer to either a range type or an enumeration type, which becomes the domain type of the array.

In the final declaration form, the size is unspecified and will be provided dynamically when the array is constructed. The domain type for this kind of array is int.

Note: only declarations of the first kind are supported in this release.
6.1.1 Variable-size arrays

Variables-size arrays are not supported in the current release.
6.2 Array variables and operations

6.2.1 Construction

Arrays are constructed using the new operator. During construction, the elements of the array are initialized to their default value.

Example:

TwoBools listA;
listA = new TwoBools;
6.2.2 Indexing

The indexing operator [] is used to access the elements of an array.

Example:

TwoBools listA;
listA = new TwoBools;
listA[0] = choose(bool);
listA[1] = !listA[1];
6.2.3 Iteration

It is possible to iterate over the contents of an array using the foreach statement. The type of the iteration variable in a foreach statement must be the same as the element type of the array.

Example:

foreach (bool b in listA)
{

...
}
6.2.4 Sizeof

The sizeof operator may be applied to an array reference or an array type name to return the number of elements in the array.

Example:

assert(sizeof(TwoBools) == 2);
assert(sizeof(listA) == 2);
6.2.5 Non-deterministic selection

A reference to an array instance may be used as the operand for the choose operator. The result is a non-deterministic selection from the elements of the array. The resulting expression type is that of the array’s element type.

Example:

bool someElement;
someElement = choose(listA);
7. Sets

A set type is a distinct type that declares an unordered collection of elements. The number of elements in a set is unbounded and the elements must be of the same type.
The example

set SmallInts byte;

declares a set type named SmallInts whose elements are of type byte.
7.1 Set declarations

A set declaration declares a new set type. The set declaration begins with the set keyword followed by the name and element type of the set.

set-declaration:
set identifier type ;
7.2 Set variables and operations

Note: the set operations described in this section are the only forms currently supported by the Zing compiler. Future versions of the compiler may support more operators, or more flexible use of the existing operators.
7.2.1 Construction

Set instances are created using the new operator. Sets are empty following construction.

Example:

SmallInts myInts;
myInts = new SmallInts;
7.2.2 Adding an element

To add an element to a set, use the + operator in an assignment of the form:

s = s + e;

or

s = e + s;

where s refers to a set and e is an expression whose type matches that of the set’s element type.
7.2.3 Removing an element

To remove an element from a set, use the – operator in an assignment of the form:

s = s - e;

where s refers to a set and e is an expression whose type matches that of the set’s element type.
7.2.4 Set addition

The elements of one set may be added to another using the + operator:

s1 = s1 + s2;

where s1 and s2 refer to sets of the same type.
7.2.5 Set subtraction

Set subtraction is supported via the – operator:

s1 = s1 – s2;

where s1 and s2 refer to sets of the same type.
7.2.6 Testing membership

The in operator may be used to test for the presence of a particular value in a set:

if (e1 in s || e2 in s)
{

...
}

where s refers to a set, and both e1 and e2 are expressions whose type is that of the set’s element type.
7.2.7 Testing cardinality

The sizeof operator returns the number of elements in a set:

if (sizeof(s) > 0)
{

...
}
7.2.8 Iteration

It is possible to iterate over the members of a set using the foreach statement. The type of the iteration variable in a foreach statement must be the same as the element type of the set.

Example:

foreach (int i in myIntSet)
{

...
}
7.2.9 Non-deterministic selection

A reference to a set instance may be used as the operand for the choose operator. The result is a non-deterministic selection from the members of the set. The resulting expression type is that of the set’s element type.

Example:

int someElement;
someElement = choose(setOfInts);

Applying the choose operator to an empty set results in a Zing runtime error.
8. Channels

A channel type is a distinct type that declares a FIFO message queue of unbounded size. The messages in a channel must all be of the same Zing type.

The example

chan IntChan int;

declares a channel type named IntChan which contains messages of type int.
8.1 Channel declarations

A channel declaration declares a new channel type. The declaration begins with the chan keyword followed by the name and element type of the channel.

channel-declaration:
chan identifier type ;
8.2 Channel variables and operations

8.2.1 Construction

Channel instances are created using the new operator.

Example:

IntChan myIntChan;
myIntChan = new IntChan;
8.2.2 Sending a message

The send statement (section 11.11.1) is used to send a message to a channel.
8.2.3 Receiving a message

Messages are received from a channel using a select statement (section 11.11.2) with a receive join condition.
8.2.4 Obtaining the queue length

The sizeof operator returns the number of messages in a channel. This is often useful for bounding the size of a channel, either by forcing senders to block or by using an assume statement to simply ignore interleavings in which message producers outpace consumers.

Example:

atomic {

select {

wait (sizeof(myIntChan) < 3) -> send(myIntChan, x);

}
}
9. Classes

Zing classes are very simple compared to other object oriented languages. Zing classes do not support inheritance, constructors, overloading, nesting, or access qualifiers (on the class or its members). A Zing class is a heap-allocated data structure that may contain data members (fields) and function members (methods).
9.1 Class declarations

A class declaration declares a new Zing class. It consists of the class keyword followed by an identifier that names the class and a set of member declarations enclosed in braces.

class-declaration:
class identifier class-body ;
class-body:
{ class-member-declarationsopt }
9.2 Class members

Class members consist of field declarations and method declarations appearing within the class body. The order of the member declarations is not significant. Member names must be unique within the class.
class-member-declarations:
class-member-declaration
class-member-declarations class-member-declaration

class-member-declaration:
 field-declaration
method-declaration
9.2.1 Static and instance members

Members of a class are either static members or instance members. It is useful to think of static members as belonging to classes, and instance members as belonging to objects (instances of classes).

When a field or method declaration includes the static modifier, it declares a static member. Static members have the following characteristics:

· When a static member is referenced in a member access of the form E.M, E must denote a type that has a member M. It is a compile-time error for E to denote an instance.

· A static field identifies exactly one storage location. No matter how many instances of a class are created, there is only ever one copy of a static field.

· A static function member does not operate on a specific instance, and it is a compile-time error to refer to this in such a function member.

When a field or method declaration does not include a static modifier, it declares an instance member. Instance members have the following characteristics:

· When an instance member is referenced in a member access of the form E.M, E must denote an instance of a type that has a member M. It is a compile-time error for E to denote a type.

· Every instance of a class contains a separate set of all instance fields of the class.

· An instance function member operates on a given instance of the class, and this instance can be accessed as this.
9.3 Fields

A field is a member that represents a variable associated with an object or class. A field declaration introduces a field of a given type.

field-declaration:
field-modifiersopt type variable-declarator ;

field-modifiers:
field-modifier
field-modifiers field-modifier
field-modifier:
static
variable-declarator:
identifier
identifier = variable-initializer

variable-initializer:
expression

A field declaration begins (optionally) with a static modifier. The type of a field declaration specifies the type of the member introduced by the declaration. The type is followed by an identifier naming the field. This may be followed by an “=” token and a variable-initializer that gives the initial value of the member.
9.3.1 Field initialization

The initial value of a field is the default value of the field’s type.
9.3.2 Variable initializers
Field declarations may include variable-initializers. For static fields, variable initializers correspond to assignment statements that are executed prior to the initial state of the Zing model. For instance fields, variable initializers correspond to assignment statements that are executed when an instance of the class is created (atomically within the context of the new operator’s execution). It is a compile-time error for the variable initializer for a field to include a function call or the choose operator.
9.4 Methods

A method is a member that implements a computation or action that can be performed by an object or class. Methods are declared using method-declarations.

method-declaration:
method-header method-body

method-header:
method-modifiersopt return-type identifier (formal-parameter-listopt)

method-modifiers:
method-modifier
method-modifiers method-modifier

method-modifier:
activate
atomic
static

return-type:
type
void

method-body:
block

A method-declaration may include any valid combination of the activate, atomic, and static modifiers. The only restriction that must be observed with respect to method modifiers is that activate may only be specified on a method that is also marked as static.
The return-type of a method declaration specifies the type of the value computed and returned by the method and is void if the method does not return a value.

The identifier following the return-type specifies the name of the method.

The optional formal-parameter-list specifies the parameters of the method.
9.4.1 Method parameters

The parameters of a method, if any, are declared by the method’s formal-parameter-list.
formal-parameter-list:
parameters

parameters:
parameter
parameters , parameter

parameter:
parameter-modifieropt type identifier

parameter-modifier:
out

The formal parameter list consists of one or more comma-separated parameters. Each parameter consists of an optional out modifier followed by the type and name of the parameter.

A method declaration creates a separate declaration space for parameters and local variables. Names are introduced into this declaration space by the formal parameter list of the method and by local variable declarations in the block of the method. All names in the declaration space of a method must be unique. It is a compile-time error for a parameter or local variable to have the same name as another parameter or local variable.

A method invocation creates a copy, specific to that invocation, of the formal parameters and local variables of the method, and the argument list of the invocation assigns values to the newly created formal parameters. Within the block of a method, formal parameters can be referenced by their identifiers in simple-name expressions.

There are two kinds of formal parameters:

· Value parameters, which are declared without any modifiers.

· Output parameters, which are declared with the out modifier.
9.4.1.1 Value parameters

A parameter declared with no modifiers is a value parameter. A value parameter corresponds to a local variable that gets its initial value from the corresponding argument supplied in the method invocation.

When a formal parameter is a value parameter, the corresponding argument in a method invocation must be an expression of a type that is implicitly convertible to the formal parameter type.

A method is permitted to assign new values to a value parameter. Such assignments only affect the local storage location represented by the value parameter — they have no effect on the actual argument given in the method invocation.
9.4.1.2 Output parameters

A parameter declared with an out modifier is an output parameter. An output parameter does not create a new storage location. Instead, an output parameter logically represents the same storage location as the variable given as the argument in the method invocation.

When a formal parameter is an output parameter, the corresponding argument in a method invocation must consist of the keyword out followed by a variable-reference of the same type as the formal parameter. A variable need not be definitely assigned before it can be passed as an output parameter, but following an invocation where a variable was passed as an output parameter, the variable is considered definitely assigned.

Within a method, just like a local variable, an output parameter is initially considered unassigned and must be definitely assigned before its value is used.

Every output parameter of a method must be definitely assigned before the method returns.

Output parameters are typically used in methods that produce multiple return values.
9.4.2 Static and instance methods

When a method declaration includes a static modifier, that method is said to be a static method. When no static modifier is present, the method is said to be an instance method.

A static method does not operate on a specific instance, and it is a compile-time error to refer to this in a static method.

An instance method operates on a given instance of a class, and that instance can be accessed as this.

When a method is referenced in a member-access of the form E.M, if M is a static method, E must denote a type containing M, and if M is an instance method, E must denote an instance of a type containing M.

9.4.3 Atomic methods

When a method declaration includes the atomic modifier, all invocations of the method will be performed atomically. The effect is the same as if each invocation of the method was enclosed in an atomic block. The statements in the body of an atomic method must conform to all of the restrictions that apply within an atomic block.

Note that this is not the same as enclosing the entire body of the method in an atomic block, as this would not include the method invocation and return within the scope of the atomic execution.
9.4.4 Activated methods

When a method declaration includes the activate modifier, the initial state of the Zing model will include a single process whose entry point is the method being declared. The activate modifier may only be applied to methods with a return-type of void, and with no formal parameters. Only one instance of the process can be created with this facility. All Zing models must include at least one activate method.
9.4.5 Method body

The method-body of a method declaration consists of a block that contains the statements to execute when that method is invoked.

When the return type of a method is void, return statements in that method's body are not permitted to specify an expression. If execution of the method body of a void method completes normally (that is, control flows off the end of the method body), that method simply returns to its caller.

When the return type of a method is not void, each return statement in that method's body must specify an expression of a type that is implicitly convertible to the return type. The endpoint of the method body of a value-returning method must not be reachable. In other words, in a value-returning method, control is not permitted to flow off the end of the method body.
10. Structs

Structs are similar to classes in that they represent data structures that can contain data members. However, unlike classes (and other complex types), structs are value types and do not require heap allocation. They also may not contain function members. A variable of a struct type directly contains the data of the struct, whereas a variable of a complex type contains a reference to the data.

Warning: structs are not fully implemented in the current release of Zing and their use is not recommended.

10.1 Struct declarations

A struct declaration declares a new struct type.

struct-declaration:
struct identifier struct-body ;
struct-body:
{ struct-member-declarationsopt }
struct-member-declarations:
struct-member-declaration
struct-member-declarations struct-member-declaration

struct-member-declaration:
 field-declaration

A struct-declaration consists of the keyword struct and an identifier that names the struct, followed by a struct-body, followed by a semicolon. The struct-body contains zero or more field declarations, which have the same form as field declarations in a class, except that the static modifier may not be used.
10.2 Fields

Struct fields are declared and initialized just as class fields, with the exception that the static modifier may not be applied to a field of a struct.
11. Statements

Zing supports a variety of statements. Many of these will be familiar to users of languages like C++ or C#, but others are tailored to the unique needs of a modeling language.

statement:
labeled-statement
declaration-statement
embedded-statement

embedded-statement:
block
atomic-block
empty-statement
expression-statement
if-statement
iteration-statement
jump-statement
try-statement
assert-statement
assume-statement
async-call-statement
send-statement
select-statement
trace-statement
event-statement

The embedded-statement nonterminal is used for statements that appear within other statements. The use of embedded-statement rather than statement excludes the use of declaration statements and labeled statements in these contexts. The example

void F(bool b) {

 if (b)

 int i = 44;

}

results in a compile-time error because an if statement requires an embedded-statement rather than a statement for its if branch. Note, however, that by placing i's declaration in a block, the example is valid.

11.1 Blocks

A block permits multiple statements to be written in contexts where a single statement is allowed.

block:
{ statement-listopt }
A block consists of an optional statement-list, enclosed in braces. If the statement list is omitted, the block is said to be empty.

A block may contain declaration statements. The scope of a local variable declared in a block is that of the method in which the block appears. Note: this is different from the semantics of C++ or C#.

A block is executed as follows:

· If the block is empty, control is transferred to the end point of the block.
· If the block is not empty, control is transferred to the statement list. When and if control reaches the end point of the statement list, control is transferred to the end point of the block.
11.1.1 Statement Lists

A statement list consists of one or more statements written in sequence. Statement lists occur in blocks.

statement-list:
statement
statement-list statement

A statement list is executed by transferring control to the first statement. When and if control reaches the end point of a statement, control is transferred to the next statement. When and if control reaches the end point of the last statement, control is transferred to the end point of the statement list.

11.2 Labeled statements

A labeled-statement permits a statement to be prefixed by a label. Labeled statements are permitted in blocks, but are not permitted as embedded statements.

labeled-statement:
identifier : statement

A labeled statement declares a label with the name given by the identifier. The scope of a label is the whole block in which the label is declared, including any nested blocks. It is a compile-time error for two labels with the same name to have overlapping scopes.

A label can be referenced from goto statements within the scope of the label. This means that goto statements can transfer control within blocks and out of blocks, but never into blocks.

Labels have their own declaration space and do not interfere with other identifiers. The example

int F(int x) {

 if (x >= 0) goto x;

 x = -x;

 x: return x;

}

is valid and uses the name x as both a parameter and a label.

Execution of a labeled statement corresponds exactly to execution of the statement following the label.
11.3 The empty statement

An empty-statement does nothing, but does constitute a real, albeit trivial, state transition in the Zing model.

empty-statement:
;

An empty statement is used when there are no operations to perform in a context where a statement is required.

Execution of an empty statement simply transfers control to the end point of the statement.
An empty statement can be used when writing a while statement with a null body:

bool ProcessMessage() {...}

void ProcessMessages() {

 while (ProcessMessage())

 ;

}

Also, an empty statement can be used to declare a label just before the closing "}" of a block:

void F() {

 ...

 if (done) goto exit;

 ...

 exit: ;

}
11.4 Declaration statements

A declaration-statement declares a local variable. Declaration statements are permitted in blocks, but are not permitted as embedded statements.

declaration-statement:
local-variable-declaration ;

local-variable-declaration:
type variable-declarator

variable-declarator:
identifier
identifier = expression

The type of a local-variable-declaration specifies the type of the variables introduced by the declaration. The type is followed by a variable-declarator, which introduces a new variable. A local-variable-declarator consists of an identifier that names the variable, optionally followed by an "=" token and an expression that gives the initial value of the variable.

The value of a local variable is obtained in an expression using a simple-name, and the value of a local variable is modified using an assignment. A local variable must be definitely assigned at each location where its value is obtained.

The scope of a local variable declared in a local-variable-declaration is the method in which the declaration occurs. It is an error to refer to a local variable in a textual position that precedes the local-variable-declarator of the local variable. Within the scope of a local variable, it is a compile-time error to declare another local variable with the same name.

A variable initializer in a local variable declaration corresponds exactly to an assignment statement that is inserted immediately after the declaration.

The example

void F() {

 int x = 1;

}

corresponds exactly to

void F() {

 int x; x = 1;

}
11.5 Expression statements

An expression-statement evaluates a given expression. The value computed by the expression, if any, is discarded.

expression-statement:
statement-expression ;
statement-expression:
invocation-expression
assignment

Not all expressions are permitted as statements. In particular, expressions such as x + y and x == 1 that merely compute a value (which will be discarded), are not permitted as statements.

Execution of an expression-statement evaluates the contained expression and then transfers control to the end point of the expression-statement.
11.6 The if statement

The if statement selects a statement for execution based on the value of a Boolean expression.

if-statement:
if (boolean-expression) embedded-statement
if (boolean-expression) embedded-statement else embedded-statement

boolean-expression:
expression

An else part is associated with the lexically nearest preceding if that is allowed by the syntax. Thus, an if statement of the form

if (x) if (y) F(); else G();

is equivalent to

if (x) {

 if (y) {

 F();

 }

 else {

 G();

 }

}

An if statement is executed as follows:

· The boolean-expression is evaluated.
· If the Boolean expression yields true, control is transferred to the first embedded statement. When and if control reaches the end point of that statement, control is transferred to the end point of the if statement.
· If the Boolean expression yields false and if an else part is present, control is transferred to the second embedded statement. When and if control reaches the end point of that statement, control is transferred to the end point of the if statement.
· If the Boolean expression yields false and if an else part is not present, control is transferred to the end point of the if statement.
11.7 Iteration statements

Iteration statements repeatedly execute an embedded statement.

iteration-statement:
while-statement
foreach-statement
11.7.1 The while statement

The while statement conditionally executes an embedded statement zero or more times.

while-statement:
while (boolean-expression) embedded-statement

A while statement is executed as follows:

· The boolean-expression is evaluated.
· If the Boolean expression yields true, control is transferred to the embedded statement. When and if control reaches the end point of the embedded, control is transferred to the beginning of the while statement.
· If the Boolean expression yields false, control is transferred to the end point of the while statement.
Note that Zing does not currently support break or continue statements. Equivalent behavior can be achieved using goto statements.
11.7.2 The foreach statement

The foreach statement enumerates the elements of a set or array, executing an embedded statement for each element of the collection.

foreach-statement:
foreach (type identifier in expression) embedded-statement

The type and identifier of a foreach statement declare the iteration variable of the statement. The iteration variable corresponds to a read-only local variable. During execution of a foreach statement, the iteration variable represents the collection element for which an iteration is currently being performed. A compile-time error occurs if the embedded statement attempts to modify the iteration variable through assignment or pass the iteration variable as an out parameter.

The type of the expression of a foreach statement must be a set or array reference, and the element type of the collection must match that of the type of the iteration variable. If expression has the value null, a runtime error is reported.

11.8 Jump statements

Jump statements unconditionally transfer control.

jump-statement:
goto-statement
return-statement
raise-statement

The location to which a jump statement transfers control is called the target of the jump statement.

When a jump statement occurs within a block, and the target of that jump statement is outside that block, the jump statement is said to exit the block. While a jump statement may transfer control out of a block, it can never transfer control into a block.

11.8.1 The goto statement

The goto statement transfers control to a statement that is marked by a label.

goto-statement:
goto identifier ;
The target of a goto statement is the labeled statement with the given label. If a label with the given name does not exist in the current function member, or if the goto statement is not within the scope of the label, a compile-time error occurs. This rule permits the use of a goto statement to transfer control out of a nested scope, but not into a nested scope.
11.8.2 The return statement

The return statement returns control to the caller of the function member in which the return statement appears.

return-statement:
return expressionopt ;

A return statement with no expression can be used only in a method with the return type void.

A return statement with an expression can only be used in a method with a non-void return type. An implicit conversion must exist from the type of the expression to the return type of the containing function member.

A return statement is executed as follows:

· If the return statement specifies an expression, the expression is evaluated and the resulting value is converted to the return type of the containing function member by an implicit conversion. The result of the conversion becomes the value returned to the caller.
· Control is returned to the caller of the containing function member.
11.8.3 The raise statement

The raise statement raises a named exception.

raise-statement:
raise identifier ;

Exceptions in Zing are simply globally-scoped names. Exceptions (like labels) are not declared explicitly.

When an exception is raised, control is transferred to the first with clause in an enclosing try statement that can handle the exception. The process that takes place from the point of the exception being raised to the point of transferring control to a suitable exception handler is known as exception propagation. Propagation of an exception consists of repeatedly evaluating the following steps until a with clause that matches the exception is found. In this description, the raise point is initially the location at which the exception is raised.

· In the current function member, each try statement that encloses the raise point is examined. For each statement S, starting with the innermost try statement and ending with the outermost try statement, the following steps are evaluated:
· If the try block of S encloses the raise point and if S has one or more with clauses, the with clauses are examined in order of appearance to locate a suitable handler for the exception. The first with clause whose name matches the raised exception is considered a match. A general with clause is considered a match for any exception name. If a matching with clause is located, the exception propagation is completed by transferring control to the statement of that with clause.
· If an exception handler was not located in the current function member invocation, the function member invocation is terminated. The steps above are then repeated for the caller of the function member with a throw point corresponding to the statement from which the function member was invoked.
· If the exception processing terminates all function member invocations in the current process, indicating that the process has no handler for the exception, then a runtime error is reported.
Note that exceptions as described here are different from runtime errors like ZingDivideByZeroException or ZingNullReferenceException, which cannot be caught or handled in any way.
11.9 The try statement

The try statement provides a mechanism for catching exceptions that occur during execution of a block.

try-statement:
try block with { with-clauses }
with-clauses:
with-clause
with-clauses with-clause

with-clause:
identifier -> embedded-statement
* -> embedded-statement

If an exception is raised during the execution of the try statement’s block, control may be transferred to one of the with clauses as described in section 11.8.3. A with clause using the token “*” instead of an exception name is a general with clause and will match any raised exception.

Runtime errors like ZingNullReferenceException are not Zing exceptions and cannot be caught in a try statement.
11.10 The async statement

The async statement creates a new Zing process (thread) through the asynchronous invocation of a given method.

async-call-statement:
async invocation-expression ;
The invocation-expression provides for the invocation of any static or instance method in a Zing class or object, respectively. The async statement requires only that the method have a return type of void, and that it includes no output parameters.

After the async statement executes, a new (runnable) process exists whose entry point is the specified method. There is no special relationship between the new process and its creator. Any communication or synchronization between the processes must be explicitly programmed by the author of the Zing model.
11.11 Communication and blocking

11.11.1 The send statement

The send statement is used to enqueue a message on a Zing channel.

send-statement:
send (expression , expression) ;
The first expression in the send statement identifies the channel to which the message should be delivered. The type of the expression must be a reference to a Zing channel. The second expression is the message to be enqueued on the channel. The type of the second expression must match the element type of the channel referenced in the first expression.

Note that if the channel’s element type is complex, then sending a message merely enqueues a Zing pointer and the message is passed by reference. If the channel’s element type is simple, then messages are passed by value.
11.11.2 The select statement

The select statement allows a Zing model to select a path of execution from a number of alternatives (join statements) based on the status of their join conditions. If necessary, the select statement will block until one of its join conditions is satisfied. This is the only way in which a Zing process can become blocked.
select-statement:
select select-qualifiersopt { join-statements }

select-qualifiers:
end firstopt
first endopt
join-statements:
join-statement
join-statements join-statement

join-statement:
join-list -> embedded-statement
timeout -> embedded-statement

join-list:
join-pattern
join-list && join-pattern

join-pattern:
wait (boolean- expression)
receive (expression , expression)
The select statement consists of the select keyword, followed by one or more optional qualifiers and a set of join statements enclosed in braces. Each join statement consists of a join-list followed by the “->” token, followed by an embedded-statement. The join-list specifies the conditions that must be satisfied before executing the embedded-statement.
11.11.2.1 The first qualifier

When multiple join-statements in a select statement are satisfied, Zing will, by default, make a non-deterministic selection from the available alternatives and the model-checker will consider the states resulting from each possible selection. If the first qualifier appears on a select statement, then only the first satisfied join statement will be considered.
11.11.2.2 The end qualifier

By default, Zing models reach a successful conclusion when all of their running processes terminate normally by returning from their entry point method. In some cases, though, it is normal for one or more processes to reach an idle state awaiting input of some kind. The end qualifier identifies those select statements that can be considered normal end states for a process.
11.11.2.3 Join lists

Each join statement in a select begins with a join list. A join list may be either a list of one or more join patterns (separated by the “&&” token), or the timeout keyword. The timeout keyword may not be combined with the other kinds of join patterns described here.

If a list of join patterns is used, then the join statement is runnable when all of the patterns in the list are satisfied.
11.11.2.4 wait patterns

A wait pattern is used to enable or disable the execution of a join statement based on the value of a given Boolean expression. In the simplest case of a single join statement and join pattern, the select statement simply blocks until the Boolean expression becomes true.
The expression must be atomic and free of side-effects. Method calls are not permitted and the choose operator must not be used.
11.11.2.5 receive patterns

A receive pattern is enabled when a message is available on the referenced channel. The receive pattern specifies both the channel and a variable to which the received message will be assigned. This assignment happens as a side-effect, when (and if) the receive pattern’s join statement is selected for execution.

This is the only way in which a message can be received from a channel.

Note that the join patterns of a join list are tested individually to see if they are runnable. Because a receive pattern has an implied side-effect, it is possible to create join statements that appear to be runnable, but in fact are not. In the example below, the select statement will appear to be runnable if channel “ch” contains a single message, even though the join pattern will attempt to consume two messages. If this statement is executed with only a single message in the channel, a runtime error will be reported.
select {

receive(ch, m1) && receive(ch, m2) -> got_messages = true;
}
The following example shows how to safely consume multiple messages from a channel in a single select statement.

select {

wait(sizeof(ch) >= 2) && receive(ch, m1) && receive(ch, m2) ->

got_messages = true;
}
11.11.2.6 Timeouts

The timeout join pattern is effectively a shortcut for using “wait(true)” as the join condition for the final join statement in a select. If the first qualifier is not present, the timeout will be considered as a possibility (perhaps the only possibility) whenever the select statement is executed. If the first qualifier is present, then the timeout is effectively treated as a last resort – to be considered only when no other join statements are runnable.
11.12 Monitoring execution
11.12.1 The trace statement

The Zing runtime environment includes a facility for tracking interesting events in the execution of a Zing model. Most of these events are “hard-wired” into the Zing runtime – events related to process creation and termination, sending and receiving messages, and so on. One kind of event, called a “trace” event, is reserved for annotating an execution trace with information that may be application- or domain-specific. Trace events are generated whenever a trace statement is executed.

trace-statement:
trace (string-literal) ;
trace (string-literal , argument-list) ;
A trace statement consists of the trace keyword and a parenthesized, variable-length argument list. The first argument in the list is required to be a string-literal.

By convention, the first argument is treated as a format string for the remaining arguments (see String.Format in the .NET Framework). When the Zing tools display the event, it will be formatted using this assumption. This is not required, however, and the Zing runtime object model makes it a simple matter to retrieve the arguments of a trace statement whether or not they are referenced and formatted by the string-literal.

During state-space exploration, trace statements are effectively ignored to minimize their impact on performance. When an error is detected, the offending path can be quickly executed again with trace statements enabled to make their events available for inspection.
Multiple trace statements may be executed within a single atomic block. The resulting Zing state will be annotated with trace events for all of the trace statements encountered, and the events will appear in the order in which they were generated.
11.12.2 The event statement

In some cases, it can be useful to consider application-specific information during state-space exploration. trace statements cannot be used for this purpose because of their relatively high overhead (which is why they are normally disabled during model-checking). The event statement is similar in spirit to the trace statement, but with less flexibility and overhead.

event-statement:
event (integer-expression , boolean-expression) ;
The event statement has a fixed argument list consisting of an integer-valued expression followed by a Boolean expression.

When an event statement is executed, the resulting Zing state is annotated with the runtime values of the two expressions. Multiple event statements may be executed within a single atomic block.

To date, the event statement has been used to note the interactions of a Zing model with a simulated “environment” process used to stimulate it and accept inputs from it. The integer expression encodes the number of a simulated, “external” channel, and the Boolean expression encodes a message direction. A specialized model-checker, called a conformance checker, can then be used to compare the visible behavior of two models – a specification and an implementation – to see if the implementation conforms to the specification.

Another potential application would be to encode information such as time, cost, or probability using events and use this information in a custom model-checker to find paths that exceed some time or cost threshold, or to estimate the likelihood that some execution path will be encountered.
The standard Zing model-checker makes no use of the data from event statements, but this information is available through the Zing runtime, and is displayed in the Zing state browser.
11.13 State-space control
11.13.1 The assert statement

The assert statement is used to encode application-specific safety properties in a Zing model.

assert-statement:
assert (boolean-expression) ;
assert (boolean-expression , string-literal) ;
The assert statement asserts that a given expression will be true in any state in which the statement is runnable. If a state is encountered in which the assert statement is runnable, but its boolean-expression is not true, then an error will be reported. The optional string-literal may be used to supply additional application-specific context with the assertion.

If an assertion should hold for all states of a model, this can be encoded by placing the assertion (or assertions) in a separate, activated process:

class GlobalAssertions
{

activate static void CheckAssertions()

{

assert (... expression1 ...);

assert (... expression2 ...);

...

}
};
11.13.2 The assume statement

The assume statement is used to remove unwanted execution scenarios from consideration.
assume-statement:
assume (boolean-expression) ;
By “assuming” a condition holds, a Zing model instructs the runtime to silently ignore any execution path in which the condition is found to be false. Unlike the assert statement, this is not considered to be an error condition.

The alternating-bit protocol example in chapter 1 shows one example of this. In that case, we used an assert statement to avoid any process interleavings in which the producer process got too far ahead of the consumer.
assume statements can also be a useful way of applying a filter to a set of related non-deterministic selections:

atomic
{

bool b1 = choose(bool);

bool b2 = choose(bool);

assume (b1 != b2);
}

During the execution of the atomic block, two non-deterministic selections and a total of four outcomes will have to be considered. When the atomic block completes, only two states will remain – the ones in which different values were chosen for b1 and b2. The other two states did not satisfy the assume and were effectively pruned from the state graph. And because an atomic block is used, the unwanted intermediate states are never visible to the rest of the Zing model.
11.13.3 Atomic blocks

An atomic block guarantees that the statements within the block will be executed in a single state transition and will not have their execution interleaved with other runnable processes in the Zing model.
atomic-block:
atomic { statement-listopt }
If the first statement within the atomic block is a select statement, it serves as a guard on the entire block. In this case, the atomic block is not considered runnable until the select statement becomes runnable. Once this happens, the select statement and the remainder of the atomic block are executed in a single atomic step.

If the first statement in the block is not a select statement, then the atomic block is always runnable and will run to completion as soon as its process is selected for execution.

If a select statement appears elsewhere in an atomic block (i.e. not as its first statement), then it must always be the case that at least one join statement in the select is runnable. If this requirement is not satisfied, then a runtime error is reported.

atomic blocks are often required to ensure that a Zing model exhibits the desired operational semantics. A wide variety of synchronization primitives, for example, can be modeled through combinations of select statements and atomic blocks. In addition to achieving correct behavior, the liberal use of atomic blocks is encouraged as a way of reducing the state-space of a model, provided they do not overly constrain its behavior.

12. Expressions

An expression is a sequence of operators and operands. This chapter defines the syntax, order of evaluation of operands and operators, and meaning of expressions.

12.1 Expression classifications

An expression is classified as one of the following:

A value. Every value has an associated type.

A variable. Every variable has an associated type, namely the declared type of the variable.

A type. An expression with this classification can only appear as the left hand side of a member-access or as an operand for the choose operator. In any other context, an expression classified as a type causes a compile-time error.

A method resulting from a member lookup. A method may have an associated instance expression. When an instance method is invoked, the result of evaluating the instance expression becomes the instance represented by this. A method is only permitted in an invocation-expression. In any other context, an expression classified as a method causes a compile-time error.

Nothing. This occurs when the expression is an invocation of a method with a return type of void. An expression classified as nothing is only valid in the context of a statement-expression.

The final result of an expression is never a type or method. Rather, as noted above, these categories of expressions are intermediate constructs that are only permitted in certain contexts.

12.1.1 Values of expressions

Most of the constructs that involve an expression ultimately require the expression to denote a value. In such cases, if the actual expression denotes a type, method, or nothing, a compile-time error occurs. However, if the expression denotes a variable, the value of the variable is implicitly substituted: The value of a variable is simply the value currently stored in the storage location identified by the variable.

12.2 Operators

Expressions are constructed from operands and operators. The operators of an expression indicate which operations to apply to the operands. Examples of operators include +, -, *, /, and new. Examples of operands include literals, fields, local variables, and expressions.

There are two kinds of operators:

Unary operators. The unary operators take one operand and use prefix notation (such as –x).

Binary operators. The binary operators take two operands and all use infix notation (such as x + y).

The order of evaluation of operators in an expression is determined by the precedence and associativity of the operators (§12.2.1).

Operands in an expression are evaluated from left to right. This is separate from and unrelated to operator precedence.

12.2.1 Operator precedence and associativity

When an expression contains multiple operators, the precedence of the operators controls the order in which the individual operators are evaluated. For example, the expression x + y * z is evaluated as x + (y * z) because the * operator has higher precedence than the binary + operator. The precedence of an operator is established by the definition of its associated grammar production. For example, an additive-expression consists of a sequence of multiplicative-expressions separated by + or - operators, thus giving the + and - operators lower precedence than the *, /, and % operators.

The following table summarizes all operators in order of precedence from highest to lowest:

	Section
	Category
	Operators

	12.5
	Primary
	x.y f(x) a[x] new

	12.5.8
	Unary
	+ - ! ~ choose sizeof

	0
	Multiplicative
	* / %

	0
	Additive
	+ -

	12.7
	Shift
	<< >>

	12.8
	Relational and member testing
	< > <= >= in

	12.8
	Equality
	== !=

	12.9
	Logical AND
	&

	12.9
	Logical XOR
	^

	12.9
	Logical OR
	|

	12.10
	Conditional AND
	&&

	12.10
	Conditional OR
	||

	12.11
	Assignment
	=

When an operand occurs between two operators with the same precedence, the associativity of the operators controls the order in which the operations are performed:

Except for assignment, all binary operators are left-associative, meaning that operations are performed from left to right. For example, x + y + z is evaluated as (x + y) + z.

Assignment is right-associative, meaning that operations are performed from right to left. For example, x = y = z is evaluated as x = (y = z).

Precedence and associativity can be controlled using parentheses. For example, x + y * z first multiplies y by z and then adds the result to x, but (x + y) * z first adds x and y and then multiplies the result by z.

12.2.2 Numeric promotions

Numeric promotion consists of automatically performing certain implicit conversions of the operands of the predefined unary and binary numeric operators.

12.2.2.1 Unary numeric promotions

Unary numeric promotion occurs for the operands of the predefined +, –, and ~ unary operators. Unary numeric promotion simply consists of converting operands of type byte to type int.

12.2.2.2 Binary numeric promotions

Binary numeric promotion occurs for the operands of the predefined +, –, *, /, %, &, |, ^, ==, !=, >, <, >=, and <= binary operators. Binary numeric promotion implicitly converts both operands to a common type which, in case of the non-relational operators, also becomes the result type of the operation. Binary numeric promotion consists of applying the following rule:

If either operand is of type int, the other operand is converted to type int.

12.3 Member lookup

A member lookup is the process whereby the meaning of a name in the context of a type is determined. A member lookup may occur as part of evaluating a simple-name or a member-access in an expression. Because Zing does not support inheritance or overloading, the member lookup process is quite simple.
A member lookup of a name N in a type T is processed as follows:

If a member named N exists in T, then this member is the result of the lookup. If no member named N exists, then the lookup produces no match.

12.4 Function members (methods)
Function members are members that contain executable statements. In Zing, the only kind of function member is a method.
The argument list of a method invocation provides actual values or variable references for the parameters of the method.

Once a method has been identified at compile-time, the actual run-time process of invoking the function member is described in §12.4.2.

The following table summarizes the processing that takes place in method invocations. In the table, e, x, and y indicate expressions classified as variables or values, T indicates an expression classified as a type, and F is the simple name of a method.

	Example
	Description

	F(x, y)
	Member lookup is applied to locate method F in the containing class. The method is invoked with the argument list (x, y). If the method is not static, the instance expression is this.

	T.F(x, y)
	Member lookup is applied to locate method F in the class T. A compile-time error occurs if the method is not static. The method is invoked with the argument list (x, y).

	e.F(x, y)
	Member lookup is applied to locate method F in the class given by the type of e. A compile-time error occurs if the method is static. The method is invoked with the instance expression e and the argument list (x, y).

12.4.1 Argument lists

Every method invocation includes an argument list which provides actual values or variable references for the parameters of the function member. The arguments are specified as an argument-list, as described below.

The arguments of a method invocation are specified as an argument-list:

argument-list:
argument
argument-list , argument

argument:
expression
out variable-reference

An argument-list consists of one or more arguments, separated by commas. Each argument can take one of the following forms:

An expression, indicating that the argument is passed as a value parameter (§9.4.1.1).

The keyword out followed by a variable-reference (§Error! Reference source not found.), indicating that the argument is passed as an output parameter (§9.4.1.2).

During the run-time processing of a method invocation (§12.4.2), the expressions or variable references of an argument list are evaluated in order, from left to right, as follows:

For a value parameter, the argument expression is evaluated and an implicit conversion to the corresponding parameter type is performed. The resulting value becomes the initial value of the value parameter in the function member invocation.

For an output parameter, the variable reference is evaluated and the resulting storage location becomes the storage location represented by the parameter in the function member invocation.
12.4.2 Method invocation

This section describes the process that takes place at run-time to invoke a particular method. It is assumed that a compile-time process has already determined the particular method to invoke.

For purposes of describing the invocation process, methods are divided into two categories:

Static methods.

Instance methods. Instance methods and are always invoked on a particular instance. The instance is computed by an instance expression, and it becomes accessible within the function member as this (§12.5.6).

The run-time processing of a method invocation consists of the following steps, where M is the method and, if M is an instance method, E is the instance expression:

If M is a static method:

· The argument list is evaluated as described in §12.4.1.

· M is invoked.

If M is an instance method:

· E is evaluated.
· The argument list is evaluated as described in §12.4.1.

· The value of E is checked to be valid. If the value of E is null, a ZingNullReferenceException error is reported and execution is halted.

· The function member implementation is invoked. The object referenced by E becomes the object referenced by this.

12.5 Primary expressions

Primary expressions include the simplest forms of expressions.

primary-expression:
literal
simple-name
parenthesized-expression
member-access
element-access
this-access
object-creation-expression
sizeof-expression
choose-expression
12.5.1 Literals

A primary-expression that consists of a literal is classified as a value.

12.5.2 Simple names

A simple-name consists of a single identifier.

simple-name:
identifier

A simple-name is evaluated and classified as follows:

If the simple-name appears within a block and if the block (or an enclosing block) contains a local variable or parameter with the given name, then the simple-name refers to that local variable or parameter and is classified as a variable.

Otherwise, for type T of the immediately enclosing class declaration, if a member lookup of the simple-name in T produces a match:

· If lookup identifies a method, the result is a method with an associated instance expression of this.

· If the lookup identifies an instance member, and if the reference occurs within the block of an instance method, the result is the same as a member access (§12.5.4) of the form this.E, where E is the simple-name.

· Otherwise, the result is the same as a member access (§12.5.4) of the form T.E, where E is the simple-name. In this case, it is a compile-time error for the simple-name to refer to an instance member.

Otherwise, the name given by the simple-name is undefined and a compile-time error occurs.

12.5.3 Parenthesized expressions

A parenthesized-expression consists of an expression enclosed in parentheses.

parenthesized-expression:
(expression)
A parenthesized-expression is evaluated by evaluating the expression within the parentheses. If the expression within the parentheses denotes a type or method, a compile-time error occurs. Otherwise, the result of the parenthesized-expression is the result of the evaluation of the contained expression.

12.5.4 Member access

A member-access consists of a primary-expression, followed by a “.” token, followed by an identifier.

member-access:
primary-expression . identifier
A member-access of the form E.I, where E is a primary-expression and I is an identifier, is evaluated and classified as follows:

If E is a primary-expression classified as a type, and a member lookup (§12.3) of I in E produces a match, then E.I is evaluated and classified as follows:

· If I identifies a method, then the result is a method with no associated instance expression.

· If I identifies a static field, the result is a variable, namely the static field I in E.
· If I identifies an enumeration member, then the result is a value, namely the value of that enumeration member.

· Otherwise, E.I is an invalid member reference, and a compile-time error occurs.

If E is a variable, or value, the type of which is T, and a member lookup (§12.3) of I in T produces a match, then E.I is evaluated and classified as follows:

· If I identifies a method, then the result is a method with an associated instance expression of E.

· If T is a class-type and I identifies an instance field of that class-type:

· If the value of E is null, then a ZingNullReferenceException is reported.

· Otherwise, the result is a variable, namely the field I in the object referenced by E.

Otherwise, E.I is an invalid member reference, and a compile-time error occurs.
12.5.4.1 Identical simple names and type names

In a member access of the form E.I, if E is a single identifier, and if the meaning of E as a simple-name (§12.5.2) is a field, local variable, or parameter with the same type as the meaning of E as a type-name, then both possible meanings of E are permitted. The two possible meanings of E.I are never ambiguous, since I must necessarily be a member of the type E in both cases. In other words, the rule simply permits access to the static members of E where a compile-time error would otherwise have occurred.

12.5.5 Element access

An element-access consists of a primary-expression, followed by a “[“ token, followed by an expression, followed by a “]” token.

element-access:
primary-expression [expression]
If the primary-expression of an element-access is a value of an array-type, the element-access is an array access. If the primary-expression is a type or a value of a non-array type, then a compile-time error occurs.
12.5.5.1 Array access

For an array access, the primary--expression of the element-access must be a value of an array-type. The index expression must be of type int or byte.

The result of evaluating an array access is a variable of the element type of the array, namely the array element selected by the value of the index expression.

The run-time processing of an array access of the form P[A], where P is a primary--expression of an array-type and A is an expression, consists of the following steps:

P is evaluated.
The index expression is evaluated. Following evaluation of the index expression, an implicit conversion to int is performed.

The value of P is checked to be valid. If the value of P is null, a ZingNullReferenceException is reported and no further steps are executed.

The value of the index expression is checked against the actual bounds of the array instance referenced by P. If the value is out of range, a ZingIndexOutOfRangeException error is reported and no further steps are executed.

The location of the array element given by the index expression is computed, and this location becomes the result of the array access.

12.5.6 This access

A this-access consists of the reserved word this.

this-access:
this
A this-access is permitted only in the block of an instance method. When this is used in a primary-expression within an instance method, it is classified as a value. The type of the value is the class within which the usage occurs, and the value is a reference to the object for which the method or accessor was invoked.

Use of this in a primary-expression in a context other than the one listed above is a compile-time error. In particular, it is not possible to refer to this in a static method or in a variable-initializer of a field declaration.

12.5.7 The new operator

The new operator is used to create new instances of complex types (classes, arrays, sets, and channels).
object-creation-expression:
new type

The type of an object-creation-expression must be a class, array, set, or channel type. Otherwise, a compile-time error occurs. The result of the object-creation-expression is a value of the given type. The instance is initialized according to the rules given for the type (class, array, set, or channel).
12.5.8 The sizeof operator

The sizeof operator is used to obtain the size of some collection types in Zing.

sizeof-expression:
sizeof (type)
sizeof (primary-expression)
The operand must either denote an array type, or be a value referring to an instance of an array (§6.2.4), set (§7.2.7), or channel (§8.2.4) type. The int result of the sizeof operator is the number of elements, members, or messages in the array, set, or channel, respectively.
12.5.9 The choose operator

The choose operator is used to make a non-deterministic choice from a set of alternative values.
choose-expression:
choose (type)
choose (primary-expression)
The operand determines the set of values from which the selection will be made. When the Zing model is executed, the number of available alternatives is accessible through the object model, and subsequent execution can be directed to accept a particular alternative. The model-checker will consider all possible selections.

The value of the choose operator is that of the externally-chosen alternative.

The operand must be one of the following:

· The type name of a range type (§5.3), an enumeration (§4.4), or the predefined bool type. In this case, the number of alternatives and their values are known at compile-time.
· A value referring to an array (§6.2.5) or set type (§7.2.9). In this case, the number of alternatives and their values are determined at runtime.

Note: The choose operator may only be used as the right operand of a simple assignment statement.
12.6 Unary operators

The +, -, !, and ~ are called the unary operators.

unary-expression:
primary-expression
+ unary-expression
- unary-expression
! unary-expression
~ unary-expression
12.6.1 Unary plus operator

For this operator, the result is simply the value of the operand. The operand must be of type int or implicitly convertible to int, otherwise a compile-time error occurs.
12.6.2 Unary minus operator

For an operation of the form –x, the result is computed by subtracting x from zero. If the value of x is the smallest representable value of the operand type (−231 for int), then the mathematical negation of x is not representable within the operand type. If this occurs, the result is the value of the operand and the overflow is not reported.

The operand must be of type int or implicitly convertible to int, otherwise a compile-time error occurs.

12.6.3 Logical negation operator

For an operation of the form !x, the operator computes the logical negation of the operand: If the operand is true, the result is false. If the operand is false, the result is true. The operand must be of type bool, otherwise a compile-time error occurs.

12.6.4 Bitwise complement operator

For an operation of the form ~x, the result of the operation is the bitwise complement of x. The operand must be of type int or implicitly convertible to int, otherwise a compile-time error occurs.

Arithmetic operators

The *, /, %, +, and – operators are called the arithmetic operators.

multiplicative-expression:
unary-expression
multiplicative-expression * unary-expression
multiplicative-expression / unary-expression
multiplicative-expression % unary-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression – multiplicative-expression

12.6.5 Multiplication operator

For an operation of the form x * y, the result is the product of x and y. The operands must be of type int or implicitly convertible to int, otherwise a compile-time error occurs.

Overflows are not reported and any significant high-order bits outside the range of the result type are discarded.
12.6.6 Division operator

For an operation of the form x / y, the result is the quotient of x and y. The operands must be of type int or implicitly convertible to int, otherwise a compile-time error occurs.
If the value of the right operand is zero, a ZingDivideByZeroException error is reported.

The division rounds the result towards zero, and the absolute value of the result is the largest possible integer that is less than the absolute value of the quotient of the two operands. The result is zero or positive when the two operands have the same sign and zero or negative when the two operands have opposite signs.

If the left operand is the smallest representable int value and the right operand is –1, an overflow occurs. A ZingOverflowException error is always reported in this situation.

12.6.7 Remainder operator

For an operation of the form x % y, the result is the remainder of the division between x and y. The operands must be of type int or implicitly convertible to int, otherwise a compile-time error occurs.
If the value of the right operand is zero, a ZingDivideByZeroException error is reported.
12.6.8 Addition operator

For an operation of the form x + y, the result is the sum of x and y. The operands must be of type int or implicitly convertible to int, otherwise a compile-time error occurs.
Overflows are not reported and any significant high-order bits outside the range of the result type are discarded.

The addition operator may also be applied to set types as described in §7.2.

12.6.9 Subtraction operator

For an operation of the form x – y, the result is the subtraction of y from x. The operands must be of type int or implicitly convertible to int, otherwise a compile-time error occurs.
Overflows are not reported and any significant high-order bits outside the range of the result type are discarded.
The subtraction operator may also be applied to set types as described in §7.2.

12.7 Shift operators

The << and >> operators are used to perform bit shifting operations.

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

For an operation of the form x << count or x >> count, the operands must be of type int or implicitly convertible to int, otherwise a compile-time error occurs. The result is of type int.
The predefined shift operators are listed below.

Shift left:

The << operator shifts x left by a number of bits computed as described below.

The high-order bits outside the range of the result type of x are discarded, the remaining bits are shifted left, and the low-order empty bit positions are set to zero.

Shift right:

The >> operator shifts x right by a number of bits computed as described below.

The low-order bits of x are discarded, the remaining bits are shifted right, and the high-order empty bit positions are set to zero if x is non-negative and set to one if x is negative.

The shift count is given by the low-order five bits of count. In other words, the shift count is computed from count & 0x1F. If the resulting shift count is zero, the shift operators simply return the value of x.

Shift operations never cause overflows.

12.8 Relational and membership-testing operators

The ==, !=, <, >, <=, >=, is and as operators are called the relational and membership-testing operators.

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
relational-expression in primary-expression
equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

The in operator is described in §12.8.5.
The ==, !=, <, >, <= and >= operators are comparison operators. For an operation of the form x op y, where op is a comparison operator, the operands are converted to the supported parameter types of the operator, and the type of the result is bool.

	Operation
	Result

	x == y
	true if x is equal to y, false otherwise

	x != y
	true if x is not equal to y, false otherwise

	x < y
	true if x is less than y, false otherwise

	x > y
	true if x is greater than y, false otherwise

	x <= y
	true if x is less than or equal to y, false otherwise

	x >= y
	true if x is greater than or equal to y, false otherwise

	x in y
	true if element x is a member of set y, false otherwise

12.8.1 Integer comparison operators

Each of integer comparison operators compares the numeric values of the two integer operands and returns a bool value that indicates whether the particular relation is true or false.

12.8.2 Boolean equality operators

The result of x == y is true if both x and y are true or if both x and y are false. Otherwise, the result is false.

The result of x != y is false if both x and y are true or if both x and y are false. Otherwise, the result is true.

12.8.3 Enumeration comparison operators

The result of evaluating x op y, where x and y are expressions of an enumeration type E, and op is one of the comparison operators is of type bool. Comparisons are made based on the lexical ordering of the enumeration members within the enumeration type declaration. A member that appears before another is “less than” the second member.

12.8.4 Reference type equality operators

The equality operators (== and !=) return the bool result of comparing the two references for equality or non-equality. They apply to all complex types.
The predefined reference type equality operators require the operands to be reference-type values or the value null; furthermore, they require that a standard implicit conversion exists from the type of either operand to the type of the other operand. Unless both of these conditions are true, a compile-time error occurs.
Given these rules, it is a compile-time error to use the predefined reference type equality operators to compare two references that are known to be different at compile-time. For example, if the compile-time types of the operands are two class types A and B, then it would be impossible for the two operands to reference the same object. Thus, the operation is considered a compile-time error.

12.8.5 The in operator

The in operator (§7.2.6) tests for the existence of an element in a set. An expression of the form x in y returns true if x is a member of the set y, false otherwise.
The right operand must be an instance of a set type and the type of the left operand must be the same as the set’s element type. For sets containing complex types, equality is tested according to the equality rules for reference types (§12.8.4). For simple types, the values are compared according to the applicable rules for the type (recursively applied to members for struct types).
12.9 Logical operators

The &, ^, and | operators are called the logical operators.

and-expression:
equality-expression
and-expression & equality-expression

exclusive-or-expression:
and-expression
exclusive-or-expression ^ and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

The & operator computes the bitwise logical AND of the two operands, the | operator computes the bitwise logical OR of the two operands, and the ^ operator computes the bitwise logical exclusive OR of the two operands. No overflows are possible from these operations. The operands must be of type int or implicitly convertible to int, otherwise a compile-time error occurs.
12.10 Conditional logical operators

The && and || operators are called the conditional logical operators. They are also called the “short-circuiting” logical operators.

conditional-and-expression:
inclusive-or-expression
conditional-and-expression && inclusive-or-expression

conditional-or-expression:
conditional-and-expression
conditional-or-expression || conditional-and-expression

The operands of the && and || operators must be of type bool.
For the operation x && y, x is first evaluated. Then, if x is true, y is evaluated, and this becomes the result of the operation. Otherwise, the result of the operation is false.

For the operation x || y, x is first evaluated. Then, if x is true, the result of the operation is true. Otherwise, y is evaluated and this becomes the result of the operation.

12.11 Invocation expressions

An invocation-expression is used to invoke a method.

invocation-expression:
primary-expression (argument-listopt)
The primary-expression of an invocation-expression must be a method. If the primary-expression is not a method, a compile-time error occurs.

The optional argument-list provides values or variable references for the parameters of the method.

The result of evaluating an invocation-expression is classified as follows:

If the invocation-expression invokes a method that returns void, the result is nothing. An expression that is classified as nothing cannot be an operand of any operator, and is permitted only in the context of a statement-expression (§11.5).

Otherwise, the result is a value of the type returned by the method.

The compile-time processing of a method invocation of the form M(A), where M is a method and A is an optional argument-list, consists of the following steps:

The candidate method for the method invocation is determined by member lookup.

If the member lookup returns no result, then no applicable method exists, and a compile-time error occurs.

Given a candidate method, the invocation of the method is validated: If the candidate method is a static method, the method must have resulted from a simple-name or a member-access through a type. If the candidate method is an instance method, the method must have resulted from a simple-name, or a member-access through a variable. If neither of these requirements is true, a compile-time error occurs.

Once a method has been selected and validated at compile-time by the above steps, the actual run-time invocation is processed according to the rules of function member invocation described in §12.4.2.

12.12 Assignment

The assignment operator assigns a new value to a variable.

assignment:
unary-expression = expression
unary-expression = invocation-expression
The left operand of an assignment must be an expression classified as a variable.

In an assignment, the right operand must be an expression of a type that is implicitly convertible to the type of the left operand. The operation assigns the value of the right operand to the variable given by the left operand.

The assignment operator is right-associative, meaning that operations are grouped from right to left. For example, an expression of the form a = b = c is evaluated as a = (b = c).

The result of a simple assignment expression is the value assigned to the left operand. The result has the same type as the left operand and is always classified as a value.

The run-time processing of an assignment of the form x = y consists of the following steps:

· x is evaluated to produce the variable.

· y is evaluated and, if required, converted to the type of x through an implicit conversion.

· The value resulting from the evaluation and conversion of y is stored into the location given by the evaluation of x.

12.13 Expression

An expression is either a conditional-expression or an assignment.

expression:
conditional-expression
assignment

12.14 Constant expressions

A constant-expression is an expression that can be fully evaluated at compile-time.

constant-expression:
expression

The type of a constant expression can be one of the following: byte, int, bool, any enumeration type, or the null type. The following constructs are permitted in constant expressions:

Literals (including the null literal).

References to members of enumeration types.

Parenthesized sub-expressions, which are themselves constant expressions.

The predefined +, –, !, and ~ unary operators.

The predefined +, –, *, /, %, <<, >>, &, |, ^, &&, ||, ==, !=, <, >, <=, and >= binary operators, provided each operand is of a type listed above.

Whenever an expression is of one of the types listed above and contains only the constructs listed above, the expression is evaluated at compile-time. This is true even if the expression is a sub-expression of a larger expression that contains non-constant constructs.

The compile-time evaluation of constant expressions uses the same rules as run-time evaluation of non-constant expressions, except that where run-time evaluation would have caused a runtime error, compile-time evaluation causes a compile-time error to occur.

Constant expressions occur in the contexts listed below. In these contexts, a compile-time error occurs if an expression cannot be fully evaluated at compile-time.

· Array size specifications

· Range type declarations

An implicit constant expression conversion permits a constant expression of type int to be converted to byte, provided the value of the constant expression is within the range of the byte type.

12.15 Boolean expressions

A boolean-expression is an expression that yields a result of type bool.

boolean-expression:
expression

The controlling conditional expression of an if-statement (§11.6) or while-statement (§11.7.1) is a boolean-expression.

A boolean-expression is required to be of type bool. Otherwise, a compile-time error occurs.

A. Grammar

This appendix contains summaries of the lexical and syntactic grammars found in the main document. Grammar productions appear here in the same order that they appear in the main document.

A.1 Lexical grammar

input:
input-sectionopt
input-section:
input-section-part
input-section input-section-part

input-section-part:
input-elementsopt new-line
pp-directive

input-elements:
input-element
input-elements input-element

input-element:
whitespace
comment
token

A.1.1 Line terminators

new-line:
Carriage return character (U+000D)
Line feed character (U+000A)
Carriage return character (U+000D) followed by line feed character (U+000A)
Line separator character (U+2028)
Paragraph separator character (U+2029)

A.1.2 White space

whitespace:
Any character with Unicode class Zs
Horizontal tab character (U+0009)
Vertical tab character (U+000B)
Form feed character (U+000C)
A.1.3 Comments

comment:
single-line-comment
delimited-comment

single-line-comment:
// input-charactersopt

input-characters:
input-character
input-characters input-character

input-character:
Any Unicode character except a new-line-character

new-line-character:
Carriage return character (U+000D)
Line feed character (U+000A)
Line separator character (U+2028)
Paragraph separator character (U+2029)
delimited-comment:
/* delimited-comment-charactersopt */
delimited-comment-characters:
delimited-comment-character
delimited-comment-characters delimited-comment-character

delimited-comment-character:
not-asterisk
* not-slash

not-asterisk:
Any Unicode character except *
not-slash:
Any Unicode character except /
A.1.4 Tokens

token:
identifier
keyword
integer-literal
string-literal
operator-or-punctuator

A.1.5 Unicode character escape sequences

unicode-escape-sequence:
\u hex-digit hex-digit hex-digit hex-digit
\U hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit

A.1.6 Identifiers

identifier:
available-identifier
@ identifier-or-keyword

available-identifier:
An identifier-or-keyword that is not a keyword

identifier-or-keyword:
identifier-start-character identifier-part-charactersopt
identifier-start-character:
letter-character
_ (the underscore character)

identifier-part-characters:
identifier-part-character
identifier-part-characters identifier-part-character

identifier-part-character:
letter-character
decimal-digit-character
connecting-character
combining-character
formatting-character

letter-character:
A Unicode character of classes Lu, Ll, Lt, Lm, Lo, or Nl
A unicode-escape-sequence representing a character of classes Lu, Ll, Lt, Lm, Lo, or Nl
combining-character:
A Unicode character of classes Mn or Mc
A unicode-escape-sequence representing a character of classes Mn or Mc
decimal-digit-character:
A Unicode character of the class Nd
A unicode-escape-sequence representing a character of the class Nd
connecting-character:
A Unicode character of the class Pc
A unicode-escape-sequence representing a character of the class Pc
formatting-character:
A Unicode character of the class Cf
A unicode-escape-sequence representing a character of the class Cf
A.1.7 Keywords

keyword: one of
activate

array

assert

assume

async
atomic

bool

byte

chan

choose
class

else

enum

end

event
external

false

first

foreach

goto
if

in

int

new

null
object

out

range

raise

receive
return

select

send

set

sizeof
static

struct

this

timeout

trace
true

try

void

wait

while
with
A.1.8 Literals

literal:
boolean-literal
integer-literal
string-literal
null-literal

boolean-literal:
true
false

integer-literal:
decimal-integer-literal
hexadecimal-integer-literal

decimal-integer-literal:
decimal-digits integer-type-suffixopt
decimal-digits:
decimal-digit
decimal-digits decimal-digit

decimal-digit: one of
0 1 2 3 4 5 6 7 8 9

integer-type-suffix: one of
U u L l UL Ul uL ul LU Lu lU lu

hexadecimal-integer-literal:
0x hex-digits integer-type-suffixopt
0X hex-digits integer-type-suffixopt
hex-digits:
hex-digit
hex-digits hex-digit

hex-digit: one of
0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

string-literal:
regular-string-literal
verbatim-string-literal

regular-string-literal:
" regular-string-literal-charactersopt "

regular-string-literal-characters:
regular-string-literal-character
regular-string-literal-characters regular-string-literal-character

regular-string-literal-character:
single-regular-string-literal-character
simple-escape-sequence
hexadecimal-escape-sequence
unicode-escape-sequence
single-regular-string-literal-character:
Any character except " (U+0022), \ (U+005C), and new-line-character
verbatim-string-literal:
@" verbatim -string-literal-charactersopt "
verbatim-string-literal-characters:
verbatim-string-literal-character
verbatim-string-literal-characters verbatim-string-literal-character

verbatim-string-literal-character:
single-verbatim-string-literal-character
quote-escape-sequence

single-verbatim-string-literal-character:
any character except "
quote-escape-sequence:
""
null-literal:
null

A.1.9 Operators and punctuators

operator-or-punctuator: one of
{

}

[

]

(

)

.

,

:

;
+

-

*

/

%

&

|

^

!

=
<

>

..

&&

||

<<

>>

==

!=

->
<=

>=
A.1.10 Pre-processing directives

pp-directive:
pp-declaration
pp-conditional
pp-line
pp-diagnostic
pp-region

pp-new-line:
whitespaceopt single-line-commentopt new-line

conditional-symbol:
Any identifier-or-keyword except true or false
pp-expression:
whitespaceopt pp-or-expression whitespaceopt
pp-or-expression:
pp-and-expression
pp-or-expression whitespaceopt || whitespaceopt pp-and-expression

pp-and-expression:
pp-equality-expression
pp-and-expression whitespaceopt && whitespaceopt pp-equality-expression

pp-equality-expression:
pp-unary-expression
pp-equality-expression whitespaceopt == whitespaceopt pp-unary-expression
pp-equality-expression whitespaceopt != whitespaceopt pp-unary-expression

pp-unary-expression:
pp-primary-expression
! whitespaceopt pp-unary-expression

pp-primary-expression:
true
false
conditional-symbol
(pp-expression)
pp-declaration:
whitespaceopt # whitespaceopt define whitespace conditional-symbol pp-new-line
whitespaceopt # whitespaceopt undef whitespace conditional-symbol pp-new-line

pp-conditional:
pp-if-section pp-elif-sectionsopt pp-else-sectionopt pp-endif

pp-if-section:
whitespaceopt # whitespaceopt if whitespace pp-expression pp-new-line conditional-sectionopt
pp-elif-sections:
pp-elif-section
pp-elif-sections pp-elif-section

pp-elif-section:
whitespaceopt # whitespaceopt elif whitespace pp-expression pp-new-line conditional-sectionopt
pp-else-section:
whitespaceopt # whitespaceopt else pp-new-line conditional-sectionopt
pp-endif-line:
whitespaceopt # whitespaceopt endif pp-new-line

conditional-section:
input-section
skipped-section

skipped-section:
skipped-section-part
skipped-section skipped-section-part

skipped-section-part:
skipped-charactersopt new-line
pp-directive

skipped-characters:
whitespaceopt not-number-sign input-charactersopt

not-number-sign:
Any input-character except #
pp-line:
whitespaceopt # whitespaceopt line whitespace line-indicator pp-new-line
line-indicator:
integer-literal whitespaceopt file-nameopt
default
file-name:
" file-name-characters "
file-name-characters:
file-name-character
file-name-characters file-name-character

file-name-character:
Any input-character except "
pp-diagnostic:
whitespaceopt # whitespaceopt error pp-message
whitespaceopt # whitespaceopt warning pp-message

pp-message:
new-line
whitespace input-charactersopt new-line

pp-region:
pp-start-region conditional-sectionopt pp-end-region

pp-start-region:
whitespaceopt # whitespaceopt region pp-message

pp-end-region:
whitespaceopt # whitespaceopt endregion pp-message

A.2 Syntactic grammar

A.2.1 Basic concepts

type-name:
identifier
A.2.2 Types

type:
value-type
reference-type

value-type:
struct-type
enum-type
range-type
struct-type:
type-name
simple-type

simple-type:
numeric-type
bool
numeric-type:
byte
int
enum-type:
type-name

range-type:
type-name

reference-type:
class-type
array-type
set-type
channel-type
class-type:
type-name
object

array-type:
type-name
set-type:
type-name

channel-type:
type-name

A.2.3 Variables

variable-reference:
expression
A.2.4 Expressions

argument-list:
argument
argument-list , argument

argument:
expression
out variable-reference

primary-expression:
literal
simple-name
parenthesized-expression
member-access
element-access
this-access
object-creation-expression
sizeof-expression
choose-expression
simple-name:
identifier

parenthesized-expression:
(expression)
member-access:
primary-expression . identifier

predefined-type: one of
bool

byte

int

object
element-access:
primary-expression [expression]

this-access:
this
object-creation-expression:
new type
sizeof-expression:
sizeof (type)
sizeof (primary-expression)
choose-expression:
choose (type)
choose (primary-expression)
unary-expression:
primary-expression
+ unary-expression
- unary-expression
! unary-expression

multiplicative-expression:
unary-expression
multiplicative-expression * unary-expression
multiplicative-expression / unary-expression
multiplicative-expression % unary-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression – multiplicative-expression

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
relational-expression in primary-expression
equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

and-expression:
equality-expression
and-expression & equality-expression

exclusive-or-expression:
and-expression
exclusive-or-expression ^ and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

conditional-and-expression:
inclusive-or-expression
conditional-and-expression && inclusive-or-expression

conditional-or-expression:
conditional-and-expression
conditional-or-expression || conditional-and-expression

invocation-expression:
primary-expression (argument-listopt)
assignment:
unary-expression = expression
unary-expression = invocation-expression
expression:
conditional-or-expression
assignment

constant-expression:
expression

boolean-expression:
expression

integer-expression:
expression

A.2.5 Statements

statement:
labeled-statement
declaration-statement
embedded-statement

embedded-statement:
block
atomic-block
empty-statement
expression-statement
if-statement
iteration-statement
jump-statement
try-statement
assert-statement
assume-statement
async-call-statement
send-statement
select-statement
trace-statement
event-statement
block:
{ statement-listopt }
atomic-block:
atomic { statement-listopt }
statement-list:
statement
statement-list statement

empty-statement:
;

labeled-statement:
identifier : statement

declaration-statement:
local-variable-declaration ;

local-variable-declaration:
type variable-declarator
variable-declarator:
identifier
identifier = expression
expression-statement:
statement-expression ;
statement-expression:
invocation-expression
assignment
if-statement:
if (boolean-expression) embedded-statement
if (boolean-expression) embedded-statement else embedded-statement

iteration-statement:
while-statement
foreach-statement

while-statement:
while (boolean-expression) embedded-statement

foreach-statement:
foreach (type identifier in expression) embedded-statement

jump-statement:
goto-statement
return-statement
raise-statement

goto-statement:
goto identifier ;
return-statement:
return expressionopt ;

raise-statement:
raise identifier ;

try-statement:
try block with { with-clauses }
with-clauses:
with-clause
with-clauses with-clause

with-clause:
identifier -> embedded-statement
* -> embedded-statement
assert-statement:
assert (boolean-expression) ;
assert (boolean-expression , string-literal) ;
assume-statement:
assume (boolean-expression) ;
trace-statement:
trace (string-literal) ;
trace (string-literal , argument-list) ;
event-statement:
event (integer-expression , boolean-expression) ;
async-call-statement:
async invocation-expression ;
send-statement:
send (expression , expression) ;
select-statement:
select select-qualifiersopt { join-statements }

select-qualifiers:
end firstopt
first endopt
join-statements:
join-statement
join-statements join-statement

join-statement:
join-list -> embedded-statement
timeout -> embedded-statement

join-list:
join-pattern
join-list && join-pattern

join-pattern:
wait (boolean- expression)
receive (expression , expression)
A.2.6 Compilation Unit
compilation-unit:
type-declarations

type-declarations:
type-declaration
type-declarations type-declaration

type-declaration:
class-declaration
struct-declaration
array-declaration
enum-declaration
range-declaration
set-declaration
channel-declaration

A.2.7 Classes

class-declaration:
class identifier class-body ;
class-body:
{ class-member-declarationsopt }
class-member-declarations:
class-member-declaration
class-member-declarations class-member-declaration

class-member-declaration:
 field-declaration
method-declaration
field-declaration:
field-modifiersopt type variable-declarator ;

field-modifiers:
field-modifier
field-modifiers field-modifier
field-modifier:
static
variable-declarator:
identifier
identifier = variable-initializer

variable-initializer:
expression
method-declaration:
method-header method-body

method-header:
method-modifiersopt return-type identifier (formal-parameter-listopt)

method-modifiers:
method-modifier
method-modifiers method-modifier

method-modifier:
activate
atomic
static
return-type:
type
void

method-body:
block

formal-parameter-list:
parameters

parameters:
parameter
parameters , parameter

parameter:
parameter-modifieropt type identifier

parameter-modifier:
out

A.2.8 Structs

struct-declaration:
struct identifier struct-body ;
struct-body:
{ struct-member-declarationsopt }
struct-member-declarations:
struct-member-declaration
struct-member-declarations struct-member-declaration

struct-member-declaration:
 field-declaration
A.2.9 Arrays

array-declaration:
array identifier [constant-expression] type ;
array identifier [type] type ;
array identifier [] type ;
A.2.10 Enums

enum-declaration:
enum identifier enum-body ;
enum-body:
{ enum-member-declarations }
{ enum-member-declarations , }
enum-member-declarations:
enum-member-declaration
enum-member-declarations , enum-member-declaration

enum-member-declaration:
identifier

A.2.11 Ranges

range-declaration:
range identifier constant-expression .. constant-expression ;
A.2.12 Sets

set-declaration:
set identifier type ;
A.2.13 Channels

channel-declaration:
chan identifier type ;
B. Runtime Errors

In a Zing model, it is not possible to catch or handle runtime errors such as the use of a null object reference or division by zero. These errors, and several others, are reported as runtime errors by the Zing runtime. When an error is encountered, the resulting Zing state is “erroneous”, and its Exception property contains the .Net exception corresponding to the runtime error. Several of these exception classes contain additional information about the error.
For reference, the complete list of Zing runtime errors is provided in this appendix. For each error, the .Net exception name and a description of the error are given.

	.Net Exception Name
	Runtime error description

	ZingAssertionFailureException
	Reported when a Zing assert statement is executed and the value of its expression is false.

	ZingAssumeFailureException
	This exception is used to propagate assume failures through the runtime but it is not actually reported as an error. It yields a terminal state, but not an erroneous one.

	ZingDivideByZeroException
	Reported when division by zero occurs in the Zing model.

	ZingOverflowException
	Reports an arithmetic overflow which can occur as described in §12.6.6.

	ZingIndexOutOfRangeException
	Reported when the index expression in an array reference is outside the bounds of the array.

	ZingInvalidEndStateException
	Reported when there are no runnable processes in the Zing state and one or more processes are blocked in a select statement that is not marked with the end qualifier.

	ZingInvalidBlockingSelectException
	This error occurs if a select statement that is within an atomic block, but is not the first statement in the block, is not runnable. It is an error for select to block in the middle of an atomic execution.

	ZingNullReferenceException
	This error occurs if a Zing pointer is dereferenced and its value is null.

	ZingInvalidChooseException
	This error is reported if a choose operator finds that no alternatives are available. Currently, this can only happen if choose is applied to a set object which happens to be empty.

	ZingUnhandledExceptionException
	This error is a catch-all for any unexpected exceptions that are caught by the Zing runtime. This usually indicates a bug in the Zing runtime or compiler.

C. Example Source Code

C.1 Dining Philosophers

class Fork {

Philosopher holder;

void PickUp(Philosopher eater) {

atomic {

select {

wait(holder == null) -> holder = eater;

}

}

}

void PutDown() {

holder = null;

}

};
class Philosopher {

Fork leftFork;

Fork rightFork;

void Run() {

while (true) {

// pick up forks

leftFork.PickUp(this);

rightFork.PickUp(this);

// eat for a while

leftFork.PutDown();

rightFork.PutDown();

// think for a while

}

}

};
array Philosophers[5] Philosopher;

array Forks[5] Fork;
class Init {

activate static void Run() {

Philosophers p;

Forks f;

int i;

atomic {

// Allocate the arrays of forks and philosophers

p = new Philosophers;

f = new Forks;

// Allocate the individual fork and philosopher objects

i = 0;

while (i < sizeof(Philosophers)) {

p[i] = new Philosopher;

f[i] = new Fork;

i = i + 1;

}

// Associate the philosophers with their forks and let them begin

i = 0;

while (i < sizeof(Philosophers)) {

p[i].leftFork = f[i];

p[i].rightFork = f[(i+1) % sizeof(Philosophers)];

async p[i].Run();

i = i + 1;

}

}

}

};
C.2 Alternating-bit protocol

class Msg {

 bool body;

 bool bit;

};

class Ack {

 bool bit;

};

chan MsgChan Msg;

chan AckChan Ack;

chan BoolChan bool;

class Sender {

 static MsgChan xmit;

 static AckChan recv;

 static void TransmitMsg(bool body, bool bit)

 {

 Msg m;

 select {

 wait(true) -> {

 assume(sizeof(xmit) < Main.QueueSize);

 m = new Msg;

 m.body = body;

 m.bit = bit;

 send(xmit, m);

 }

 wait(true) -> /* lost message */ ;

 }

 }

 static void Run()

 {

 bool currentBit = false;

 Ack a;

 bool body;

 bool gotAck;

 while (true) {

 atomic {

 body = choose(bool);

 send(Main.reliableChan, body);

 TransmitMsg(body, currentBit);

 gotAck = false;

 }

 while (!gotAck) {

 atomic {

 select first {

 receive(recv, a) -> gotAck = (a.bit == currentBit);

 timeout -> TransmitMsg(body, currentBit);

 }

 }

 }

 currentBit = !currentBit;

 }

 }

};

class Receiver {

 static MsgChan recv;

 static AckChan xmit;

 static void TransmitAck(bool bit)

 {

 Ack a;

 select {

 wait(true) -> {

 a = new Ack;

 a.bit = bit;

 send(xmit, a);

 }

 wait(true) -> /* lost ack */ ;

 }

 }

 static void Run()

 {

 bool expectedBit = false;

 bool trueBody;

 Msg m;

 // Loop forever consuming messages

 while (true) {

 select { receive(recv, m) -> ; }

 atomic {

 // Always send an ack with the same bit

 TransmitAck(m.bit);

 if (expectedBit == m.bit) {

 // Consume the message here and verify it's body matches

 // what we received through the reliable channel

 select { receive(Main.reliableChan, trueBody) -> ; }

 assert(trueBody == m.body);

 expectedBit = !expectedBit;

 }

 }

 }

 }

};

class Main {

 static int QueueSize = 2;

 static BoolChan reliableChan;

 activate static void Run()

 {

 atomic {

 reliableChan = new BoolChan;

 Sender.xmit = Receiver.recv = new MsgChan;

 Sender.recv = Receiver.xmit = new AckChan;

 async Sender.Run();

 async Receiver.Run();

 }

 }

};

� Some interleavings are not considered useful in that they cannot result in the discovery of additional errors or behaviors. The theory behind this determination is beyond the scope of this document.

� It’s convenient to think of this as a random selection, but in reality, the Zing model-checker will fully consider each of the alternatives.

� Note than the infinite loop is not troubling here because the state-space of the model remains finite.

� In addition to “bool”, any enumeration or range type may be specified.

� The model would still work correctly if the “first” modifier was omitted, but its state-space would be unnecessarily large. The simple interleaving of execution between the sender and receiver will insure that the timeout case is considered.

Copyright SYMBOL 211 \f "Symbol" Microsoft Corporation 2002-2004IF DATE \@ "yyyy" = "1998" "1998-" . All Rights Reserved.

Copyright SYMBOL 211 \f "Symbol" Microsoft Corporation 2002-2004IF DATE \@ "yyyy" = "1998" "1998-" . All Rights Reserved.
Please send corrections, comments, and other feedback to zing@microsoft.com

