Tal Shaked

Hw 4

1.

A.

(1)

In the class, ControlPlaybackManager, the information hiding principle is violated when access is given to a private member.  When the control playbacks are returned, a set of keys is returned without being cloned.  This gives the caller the chance to manipulate the keySet, which can change the private HashMap which could be bad.  The javadoc for keySet() in HashMap says

Returns a set view of the keys contained in this map. The set is backed by the map, so changes to the map are reflected in the set, and vice-versa.

This exposes a private object.  Instead the set could be cloned for safety.

ControlPlaybackManager

29

private static Map controlPlaybacks = new HashMap();
68


public Set listAllControlPlaybacks()
{

return controlPlaybacks.keySet();
}

(2)

In JukeXTrackStore, JukeXTrackStore is a public class, and JukeXTrackLoader is a private class.  Within the private class, a reference to JukeXTrackStore is asked for and then casted after being returned from a factory (that seems strange since the idea of a factory is not to have to know this).

730

JukeXTrackStore trackStore = (JukeXTrackStore) TrackStoreFactory.getTrackStore();
Later behavior specific to the JukeXTrackStore (protected members) is used that is not in the TrackStore interface which is returned from the getTrackStore() method.

The following two examples are protected members accessed by the private class, which does not look good.

741

currTrack = (JukeXTrack) trackStore.getCachedTrack( currID.longValue() );
747

trackStore.cacheTrack( currTrack );
Generally these caching functions are not defined in the interface returned so they should not be used.  In other words, there are assumptions made between the classes that goes outside of the interface which is bad design and violates the information hiding principle.  However, the private class cannot be used elsewhere so perhaps it is not so bad.  Probably the programmer was lazy and figured this was the quickest way to get things to work given the current interfaces and didn’t want to go through the overhead of fixing things just for design.
B.

The PoolManager appears to not violate the information hiding principle.  This class has several public methods that allow the connections to be configured, as well as get an instance to this Singleton class as well as ask for connections.  It only has private fields and the only public methods that return values return either the singleton instance, or a connection after which the caller is responsible for using and finally closing.  This class abstracts the complications of dealing with connections and connection pools.  It maps names to connections, and then in response to a request for a specific connection, it asks the corresponding connectionPool to get a connection and returns it.  The ConnectionPool deals with storing specific connections and giving them out or taking care of timeouts.  The implementation of ConnectionPool can change and as long as the interface stays the same the PoolManager will work fine.  Examples of how the PoolManager are used can be seen in the crosscutting concerns described 3.  The private fields are not exposed and the ConnectionPools are hidden from other classes.

C.

(ControlPlaybackManager)

This is just a map.  It is cohesive since all it does is wrap a map.  It has low coupling (Data Coupling) since its functional interface consists of just asking for something in the map given a string (the data).  The method that violates the information hiding is never called.

(JukeXTrackStore)

Generally this class seems cohesive in the sense that it is a collection of functions that access the database, each doing slightly different things, but all related in terms of the information they get (Informational Cohesion).  However, the extra class, JukeXTrackLoader, confuses things, at least initially.  This is a private class that is returned on a method call, and provides methods for adding and removing tracks.  This makes the module less cohesive since clients now have to deal with the list of functions plus this object that has more functions, perhaps grouped by relatedness.  In terms of coupling, the JukeXTrackStore and JukeXTrackLoader are highly coupled because the JukeXTrackLoader relies on methods within JukeXTrackStore and is supposed to know about them to perform what it needs.  However, externally JukeXTrackStore is better coupled since it is mostly Data Coupling, since the interface takes parameters and returns the corresponding data.

(PoolManager)

This seems mostly cohesive although the documentation didn’t make it clear why the drivers and connection pools were done together.  Perhaps the config files contain all this information in one place and it was easier to have this class process the whole config file rather than have one class for connections, and a separate class for drivers.  I think the pool part is cohesive, and so is the drivers, and maybe it was simplest to combine the two for cohesion in terms of dealing with config files.  In this sense the cohesion might be functional since everything seems related and broken up into clear pieces.  The coupling with ConnectionPool seems good since they communicate by passing parameters to control which connections to get.  The rest of the program uses the PoolManager to get connections, also by passing parameters specifying the connection, which also seems like good coupling.  Many examples of this can be found in question 3 showing how these constant accesses create a crosscutting concern.

2.

A.

JukeXAttributeValue

36

private static final Category log = Category.getInstance(JukeXAttributeValue.class.getName());
private static final boolean logDebugEnabled = log.isDebugEnabled();
private static final boolean logInfoEnabled = log.isInfoEnabled();

105  (init/constructor)

if ( !newEntryId.next() )
{

log.error("Something awful happened.  An INSERT somehow failed to appear in the database");
}
else
{

this._attrenumid = newEntryId.getLong( 1 );
}

115 (init/constructor)

catch ( Exception e )
{

log.error( "Encountered an exception whilst trying to create a String AttributeValue" , e );
}

182 (setString())

catch ( Exception e )
{

log.error("Encountered an exception attempting to change an AttributeValue string value");
}

JukeXPlaylist

53

private static final Category log = Category.getInstance(JukeXPlaylist.class.getName());
private static final boolean logDebugEnabled = log.isDebugEnabled();
private static final boolean logInfoEnabled = log.isInfoEnabled();
129  (getNextTrack())

} else {

if (logDebugEnabled) log.debug("I'm spent, delegating...");

retVal = delegateGetNextTrack();
}

158  (peekTracks(int))

if (logDebugEnabled) log.debug("Peeking ahead for " + count + "tracks, remainder " + rem);

250  (persist())

catch ( SQLException se )
{
try { conn.rollback(); } catch ( SQLException ignore ) { }

log.error( "Encountered an error persisting a playlist" , se );
}

200  (readTrackListing())

catch ( SQLException se )
{

log.error( "Failed due to an exception reading a Track listing into a playlist" , se );
} catch (Exception e) {

log.warn("Encountered exception while reading track listing: ", e);
}

JukeXTrack

46

private static final Category log = Category.getInstance(JukeXTrack.class.getName());
private static final boolean logDebugEnabled = log.isDebugEnabled();
private static final boolean logInfoEnabled = log.isInfoEnabled();
119  (AddAttributeValue(Attribute, AttributeValue))

else
{
log.error( "JukeXTrack encountered an attribute with an unknown type ["+attribute.getType()+"]" );
}

128  (AddAttributeValue(Attribute, AttributeValue))

catch ( Exception e )
{

log.error( "JukeXTrack encountered an exception whilst attempting to add an AttributeValue" , e );
}

152  (clearAttribute(Attribute))

catch ( Exception e ) 

{

log.error("Exception encountered attempting to clear attribute values",e);
}

300  (getAttributeValue(Attribute))

log.warn("No values for attribute "+attribute.getName());

317  (getAttributeValue(String))

log.warn("Cannot find attribute name " + attributename);
210  (readAttributesFromDB())

catch (Exception e)
{

log.error( "Encountered an exception whilst reading attributes from the database" , e );
}

254  (setUpdatedDate(Date))

log.error( "Updating track "+_id+" date to: " + newdate + " ["+newdate.getTime()+"]" );

267  (setUpdatedDate(Date))
catch ( SQLException se )
{

log.error( "Exception whilst changing modified date on track with id="+this._id , se );
}

JukeXTrackStore

53

private static final Category log = Category.getInstance(JukeXTrackStore.class.getName());
private static final boolean logDebugEnabled = log.isDebugEnabled();
private static final boolean logInfoEnabled = log.isInfoEnabled();
424  (createAttribute(String, int))

if ( getAttribute( name ) != null )
{

log.error( "Skipping duplicate addition of attribute ["+name+"]" );

return getAttribute( name );
}

450 (createAttribute(String, int))
catch ( SQLException se )
{
log.error( "Encountered an exception whilst creating an attribute in the database" , se );
}

581  (createPlaylist(String))

catch ( SQLException se )
{

log.error( "Failed due to an Exception whilst creating a playlist" , se );
}
349  (getAttribute(String))

catch (SQLException se)
{

log.error( "Encountered an SQL error attempting to retrieve an attribute" , se );
}
386  (getAttributes())

catch ( SQLException se )
{

log.error( "Encountered an exception whilst fetching attributes from the database" , se );
}
537  (getPlaylist(String))

catch ( SQLException se )
{

log.error( "Encountered an exception whilst getting a playlist from the database" , se );
}
225  (getTrack(long))

catch ( Exception e )
{

log.error( "An exception was encountered whilst trying to retrieve a track with id: "+id , e );
}
165  (getTrack(URL))

catch ( Exception e )
{

log.error( "An exception was encountered whilst trying to retrieve a track with the URL ["+url+"]" , e );
}
129  (getTrackCount())

} catch ( Exception e ) {

log.error( "An exception was encountered whilst trying to count the number of tracks" , e );
} finally {
498  (getTrackIds())

catch ( SQLException se )
{

log.error( "Encountered an exception whilst getting track ids from the database" , se );
}
265  (getTracks(long[]))

else
{

log.warn( "Could not retrieve all tracks specified in a getTracks() call.  Track "+currID+" could not be found" );

resultList.add( y , null );
}
602  (loadPlaylists())

if (logDebugEnabled) log.debug( "Loading playlists from database..." );
617  (loadPlaylists())

catch ( SQLException se )
{

log.error( "Encountered an exception whilst reading the playlists from the database" , se );
}
308  (storeTrack(URL, Date))

if ( !id.next() )
{

log.fatal("Something went really badly wrong whilst trying to store a track.  Could not fetch the LAST_INSERT_ID().");
}
317  (storeTrack(URL, Date))

catch ( Exception e )
{

log.error( "Exception encountered whilst storing track with url ["+url+"]" , e );
}
JukeXTrackStore$JukeXTrackLoader

769  (getTracks())

catch ( SQLException se )
{

log.warn( "Batch getter encountered an exception whilst retrieving tracks" , se );
}
The class names are listed once and then all following examples come from that class until a new class is mentioned.  The method names are in parentheses following the line number where the code snippet starts.

I located all these examples using FEAT.  I created a logging concern, and then went through each file and adding the log to the concern if it existed.  Then using the Concern Perspective I did the fan-in for each concern added for each file, which automatically finds all occurrences of the concern in the file.  I went to each of these places and cut and pasted the code here.

B.

The logging concern seems to be a degenerate case of crosscutting or an aspect.  The code for logging is generally one line with a special string and call to a part of the logger (fatal, error, warn, etc.).  It might be possible to have some completely different class hierarchy based solely on the logging concern, but then all the other modules will be unorganized.  Although the programmer has to worry about the arguments and which methods within the logger to call, it is hard to define this mapping as an aspect in a cleaner way.  Its similar to saying that all addition or math operations in general are concerns, when usually the programmer has single lines of code all over the place that do math operations.

The primary design decisions in this code are to modularize the most important components of the programs.  Since the logger provides some general and simple functionality, but also plays a role in almost all the modules, it has its own module, which simplifies the crosscutting to usually a single function call that takes care of the logging concern.  If instead the logging was part of the hierarchy and specialized for each class to remove or lessen the concern, then the functionality of the modules would have to be split and spread over several classes causing new crosscutting concerns that would be much worse.

C.

I don’t think this can be written clearly in AspectJ.  AspectJ requires point cuts and advice.  Point cuts are descriptions of where the cross cutting concerns occur and mark where advice should be given.  They usually refer to parts of the code such as fields, method calls, or other markers.  Advice is the code that should execute at those point cuts.  The problem with logging is that the point cuts seem hard to define, and also the arguments to the logger seem hard to generalize based on the cuts.  As shown from the above snippets, the log has to know whether to choose between error, warn, or fatal, and usually has a slightly different error that is context specific.  The contexts, or potential point cuts also occur in many different places, based on different kinds of exceptions, and in different catch/try/finally blocks.  The logging crosscutting concern seems like a degenerate case which would take too much effort to turn into a modular aspect.

3.

A. I identified crosscutting concerns by looking for things that would need to cut across the modules such as database accesses, similar to the logging concern.  The main problem is that the database accesses are complicated enough to warrant a query module, but also the setting up, construction of queries, error handling, and tearing down of connections are complicated and often slightly different in many places making it difficult to modularize.  As a result, there are tons of places in the code where a connection is created (sometimes in different code which is a resulting problem of the concern), followed by a statement object, followed by some code to generate a statement, followed by getting some results and then processing those results.  Also the error handling is very similar as well as the need to close the connection.  This confuses the code and complicates the task of the programmer.  Basically databases connections has been modularized as far as it can for most purposes, but the programmer still has to go the extra distance to make it work for each specific part of their program.  This highlights the areas where it is hard to factor more of the abstraction.

B.

JukeXAttributeValue

79  (init/constructor)

try
{

conn = PoolManager.getInstance().getConnection( JukeXTrackStore.DB_NAME );

PreparedStatement findValue = conn.prepareStatement( "SELECT id FROM AttributeEnum "+


"WHERE attributeid=? AND value=?" );

findValue.setLong( 1 , attributeID );

findValue.setString( 2 , s );

ResultSet existingEntries = findValue.executeQuery();

if ( existingEntries.next() )

{


this._attrenumid = existingEntries.getLong( 1 );

}

else

{


// Did not find an entry corresponding to this, so add a new one


PreparedStatement insertNewRecord = conn.prepareStatement( "INSERT INTO AttributeEnum (attributeid,value) " +



"VALUES ( ? , ? )" );


insertNewRecord.setLong( 1 , attributeID );


insertNewRecord.setString( 2 , s );


insertNewRecord.executeUpdate();


// Now find the generated id of the entry we added (this 


// shouldn't be necessary when the JDK1.4 SQL Extensions are 


// implemented in the MySQL driver)


ResultSet newEntryId = findValue.executeQuery( "SELECT LAST_INSERT_ID()" );


if ( !newEntryId.next() )


{



log.error("Something awful happened.  An INSERT somehow failed to appear in the database");


}


else


{



this._attrenumid = newEntryId.getLong( 1 );


}

}
}
172  (setString(String))

try
{

conn = PoolManager.getInstance().getConnection( JukeXTrackStore.DB_NAME );

PreparedStatement updateStatement = conn.prepareStatement( "UPDATE AttributeEnum SET value = ? WHERE id = ?" );

updateStatement.setString( 1 , newval );

updateStatement.setLong( 2 , this._attrenumid );

updateStatement.executeUpdate();

this._stringValue = newval;
}
JukeXExpression$Relop

201  (getSQL(StringBuffer))
try
{

conn = PoolManager.getInstance().getConnection( JukeXTrackStore.DB_NAME );

StringBuffer sql= new StringBuffer().append( "SELECT AttributeEnum.id, Attribute.name, Attribute.type, AttributeEnum.value FROM Attribute, AttributeEnum WHERE Attribute.id = AttributeEnum.attributeid AND " );

//TODO: Numeric value change op

if ( literal.val instanceof String )

{


sql.append( "( Attribute.name=" ).append( JukeXExpression.escapeString( variable.val ) ).append( " AND AttributeEnum.value ")/*LIKE " )*/.append(operator).append( JukeXExpression.escapeString( (String) literal.val ) ).append( " )" );

}

else

{


sql.append( "( Attribute.name=" ).append( JukeXExpression.escapeString( variable.val ) ).append( " AND AttributeEnum.value" ).append(operator).append( JukeXExpression.escapeString( (String) literal.val ) ).append( " )" );

}

ResultSet rs = conn.createStatement().executeQuery( sql.toString() );
JukeXPlaylist

221  (persist())

PoolManager pm = PoolManager.getInstance();
conn = pm.getConnection( JukeXTrackStore.DB_NAME );
conn.setAutoCommit( false );
Statement state = conn.createStatement();
state.executeUpdate( "DELETE FROM PlaylistEntry WHERE playlistid=" + this.id );
183  (readTrackListing())

PoolManager pm = PoolManager.getInstance();
TrackStore trackStore = TrackStoreFactory.getTrackStore();
conn = pm.getConnection( JukeXTrackStore.DB_NAME );
PreparedStatement ps = conn.prepareStatement( "SELECT trackid,position FROM PlaylistEntry WHERE playlistid=? ORDER BY position" );
ps.setLong( 1 , this.id );
ResultSet rs = ps.executeQuery();

JukeXTrack

103  (addAttributeValue(Attribute attribute, AttributeValue value))

conn = _poolmanager.getConnection( JukeXTrackStore.DB_NAME );
PreparedStatement addEnumeration = conn.prepareStatement( "INSERT INTO AttributeValue (trackid,attributeid,attributeenumid,numericvalue) VALUES (?,?,?,?)" );
addEnumeration.setLong( 1 , this._id );
addEnumeration.setLong( 2 , ((DatabaseObject)attribute).getId() );
145  (clearAttribute(Attribute attribute))
conn = _poolmanager.getConnection( JukeXTrackStore.DB_NAME );
PreparedStatement ps = conn.prepareStatement( "DELETE FROM AttributeValue WHERE trackid = ? AND attributeid = ?" );
ps.setLong( 1 , _id );
ps.setLong( 2 , ((DatabaseObject)attribute).getId() );
ps.executeUpdate();
ps.close();
180  (readAttributesFromDB())
String sql = "SELECT Attribute.name, Attribute.type, AttributeValue.numericvalue, AttributeEnum.value FROM Track, Attribute, AttributeValue LEFT JOIN AttributeEnum ON AttributeValue.attributeenumid = AttributeEnum.id WHERE Track.id = AttributeValue.trackid AND AttributeValue.attributeid = Attribute.id AND Track.id = ?";
PreparedStatement ps = conn.prepareStatement( sql );
ps.setLong( 1 , _id );
ResultSet rs = ps.executeQuery();
258  (setUpdatedDate( java.util.Date newdate ))
conn = _poolmanager.getConnection( JukeXTrackStore.DB_NAME );
PreparedStatement ps = conn.prepareStatement( "UPDATE Track SET updated = ? WHERE id = ?" );
ps.setLong( 1 , newdate.getTime() );
ps.setLong( 2 , this._id );
ps.executeUpdate();
updated = newdate;
ps.close();
JukeXTrackStore

422  (createAttribute(String, int))

conn = _poolmanager.getConnection( DB_NAME );
if ( getAttribute( name ) != null )
{

log.error( "Skipping duplicate addition of attribute ["+name+"]" );

return getAttribute( name );
}
else
{

// Add a record to the database

PreparedStatement ps = conn.prepareStatement( INSERT_ATTRIBUTE_SQL );

ps.setString( 1 , name );

ps.setInt( 2 , type );

ps.executeUpdate();

// Retrieve it's autonumbered ID

PreparedStatement ps2 = conn.prepareStatement( RETRIEVE_ATTRIBUTE_SQL );

ps2.setString( 1 , name );

ps2.setInt( 2 , type );

ResultSet rs = ps2.executeQuery();

rs.next();

newAttributeID = rs.getInt( 1 );

ps.close();

ps2.close();
}
567  (createPlaylist(String))

conn = _poolmanager.getConnection( this.DB_NAME );
PreparedStatement ps = conn.prepareStatement( "INSERT INTO Playlist (name) VALUES ( ? )" );
ps.setString( 1 , name );
ps.executeUpdate();
ResultSet rs = conn.createStatement().executeQuery( "SELECT LAST_INSERT_ID()" );
338  (getAttribute(String))

conn = _poolmanager.getConnection( DB_NAME );
PreparedStatement ps = conn.prepareStatement( "SELECT id,name,type FROM Attribute WHERE name=?" );
ps.setString( 1 , name );
ResultSet rs = ps.executeQuery();
376  (getAttributes())

conn = _poolmanager.getConnection( DB_NAME );
Statement st = conn.createStatement();
ResultSet rs = st.executeQuery( "SELECT name FROM Attribute" );
525  (getPlaylist(String))

conn = _poolmanager.getConnection( this.DB_NAME );
PreparedStatement ps = conn.prepareStatement( "SELECT id FROM Playlist WHERE name=?" );
ps.setString( 1 , name );
ResultSet rs = ps.executeQuery();
211  (getTrack(long))

conn = _poolmanager.getConnection( DB_NAME );
PreparedStatement ps = conn.prepareStatement( "SELECT url,updated FROM Track WHERE id=?" );
ps.setLong( 1 , id );
ResultSet rs = ps.executeQuery();
152  (getTrack(URL))

conn = _poolmanager.getConnection( DB_NAME );
PreparedStatement ps = conn.prepareStatement( "SELECT id,updated FROM Track WHERE url=?" );
ps.setString( 1 , url.toString() );
ResultSet rs = ps.executeQuery();
122  (getTrackCount())

conn = _poolmanager.getConnection( DB_NAME );
PreparedStatement ps = conn.prepareStatement("SELECT count(*) FROM Track");
ResultSet rs = ps.executeQuery();
486  (getTrackIds())

conn = _poolmanager.getConnection( this.DB_NAME );
PreparedStatement ps = conn.prepareStatement( "SELECT id FROM Track" );
ResultSet rs = ps.executeQuery();
607  (loadPlaylists())

conn = _poolmanager.getConnection( this.DB_NAME );
Statement st = conn.createStatement();
ResultSet rs = st.executeQuery( "SELECT id,name FROM Playlist" );
301  (storeTrack(URL, Date))

conn = _poolmanager.getConnection( DB_NAME );
PreparedStatement ps = conn.prepareStatement( "INSERT INTO Track ( url , updated ) VALUES ( ? , ? )" );
ps.setString( 1 , url.toString() );
ps.setLong( 2 , modifiedTime.getTime() );
ps.executeUpdate();
ResultSet id = conn.createStatement().executeQuery( "SELECT LAST_INSERT_ID()" );
JukeXTrackStore$JukeXTrackLoader

710  (getTracks())

conn = PoolManager.getInstance().getConnection( JukeXTrackStore.DB_NAME );
Statement state = conn.createStatement();
// Make a comma separated list for the SQL query
StringBuffer csList = new StringBuffer();
int size = this.ids.size();
Iterator idIter = this.ids.iterator();
if ( idIter.hasNext() ) csList.append( idIter.next() );
while ( idIter.hasNext() )
{

csList.append( ',' ).append( idIter.next() );
}
String query = sql+csList.toString()+endsql;
System.out.println( query );
ResultSet rs = state.executeQuery( query );
Query

116  (getTracks())

conn = _poolmanager.getConnection( JukeXTrackStore.DB_NAME );
Statement state = conn.createStatement();
System.out.println( this.getSQL() );
ResultSet rs = state.executeQuery( this.getSQL() );
169  (getAttributeValues())

conn = PoolManager.getInstance().getConnection( JukeXTrackStore.DB_NAME );
Statement state = conn.createStatement( ResultSet.TYPE_SCROLL_INSENSITIVE , ResultSet.CONCUR_READ_ONLY );
//ResultSet rs = state.executeQuery( this.getSQL() );
CachedRowSet cs = new CachedRowSet();
cs.populate( state.executeQuery( this.getSQL() ) );
retval = new AttributeValueResultSet( cs , this.selectAttributes );
state.close();
C.

Although the crosscutting concern of database accesses and query formulations is different and generally more complicated than logging, I still do not see a clean way to express this concern as an aspect in AspectJ.  The pattern, open connection, create statement, get results, process results, report errors, and close connection, seems to occur in just about every concern listed above (sometimes skipping a few of those steps depending on what exactly the code is supposed to do).  However, as before, the points are not well defined for all of these cases, and the construction of statements and processing of results is often complicated enough and tied to the implementation of the current module that writing the advice for all the cases would be tricky too.  Perhaps trying to do this all at once is too hard, while making the concern small enough such as closing a connection “after everything is done with it” will be not worthwhile.

As a side note, these concerns (logging and database accesses) look different from the examples in some papers I read like tracing code or other debugging techniques where the goal is to follow specific program points and store them in an aspect module rather than try to fit specific program points into a module.

4.

A. 

Singleton: PoolManager

Relevant code snippets:

53  (single instance of the class)

/**
 * The single instance of this class.
 */
private static PoolManager instance = null;
getInstance()

71  (how to get a reference to the class)

/**
 * Return the static instance of this class.
 *
 * @return The single instance of this class, or <code>null</code> if there was a problem reading the properties file, setting up the connection pools and registering drives..
 */
static synchronized public PoolManager getInstance()
{

if (instance == null)
    // If the singleton instance hasn't been initialised yet

{


try


{



instance = new PoolManager();


}


catch (Exception e)


{



instance = null;



e.printStackTrace();


}

}

return instance;
}
124  (private constructor)

private PoolManager() throws IOException, ClassNotFoundException, InstantiationException,IllegalAccessException, SQLException
Below are some examples of how this Singleton is used.  The rest can be seen in question 3.

JukeXAttributeValue

81 conn = PoolManager.getInstance().getConnection( JukeXTrackStore.DB_NAME );

174 conn = PoolManager.getInstance().getConnection( JukeXTrackStore.DB_NAME );

JukeXTrack

65 _poolmanager = PoolManager.getInstance();

Here is another example of a Singleton class, although it is done more poorly as pointed out earlier with the interface and casting within the private class in the same file.

JukeXTrackStore

getInstance()

B.

1) Strategy

2) Participants:

Strategy: Playlist

ConcreteStrategy: InMemoryPlaylist, JukeXPlaylist

Context: JukeXTrackStore  (explanation follows)

3) code snippets

Here is the interface of the strategy.

38  (Playlist)

public interface Playlist extends List, TrackSourcePipelineElement
{

/**

 * Get the next available Track

 *

 * @return The next available Track object

 */

public Track getNextTrack();

/**

 * Get the Track at the specified index

 *

 * @param index The index of the Track to get

 * @return The Track at the specified index

 */

public Track getTrack( int index );

/**

 * Get the name of the Playlist

 *

 * @return The name of the playlist

 */

public String getName();
}
Here are examples of the concrete strategy.  The first is not persistent, and the simpler one, while the second is persistent to the database and must make queries for many of the methods.

34  (InMemoryPlaylist)

/**
 * A Playlist implementation that is not persisted to the database
 *
 * @author Nick Vincent (<a href="mailto:nick@neoworks.com">nick@neoworks.com</a>)
 */
public class InMemoryPlaylist extends LinkedList implements Playlist
Here is the second implementation that persists.

45  (JukeXPlaylist) 

/**
 * Implementation of a Playlist
 *
 * @author Nigel Atkinson (<a href="mailto:nigel@neoworks.com">nigel@neoworks.com</a>)
 * @author Nick Vincent (<a href="mailto:nick@neoworks.com">nick@neoworks.com</a>)
 */
public class JukeXPlaylist extends TrackSourcePipelineElementSkeleton implements Playlist
Here is the context.

JukeXTrackStore

65

private static Map _playlists = null;
This map stores Playlists.  Actually it is a little confusing because it is hard to define how exactly the Playlists are used.  In this class, JukeXTrackStore, they are stored in a map and accessed by other classes.  Since the Context is specified as the class configured with the ConcreteStrategy object and that maintains a reference, then this makes sense.  However, other classes like the PlaylistBrowser have a reference to the TrackStoreFactory which gets a reference to the JukeXTrackStore which has the references to the Playlists.  Thus these classes could be considered as part of the Context too.

5.

1) Eclipse, FEAT, and Metrics

2) Eclipse was useful since it makes it easy to search for declarations, method uses, and many other things that helped complete this assignment.  It also provides plugins to help with other aspects of visualizing the code and interaction between objects.

FEAT allows one to collect concerns for crosscutting and identify aspects.  I used it to collect all the logging places and pool manager instances and resulting database accesses.  It has a Concern view/graph that lets one add concerns and then later view all of them in one unified view which helps organization.

Metrics allows one to compute metrics over the code (such as lines of code, coupling metrics, and more).  It also has a dependency graph although I couldn’t get it to view anything.

3) Eclipse has a bit of a learning curve and since this was my first time using it, it took several hours to get familiar with it and the options I was interested in.

FEAT also has a learning curve, so I just used the first things I found that seemed to do what I wanted.  However, it was a pain to have to manually find all concerns when I did that by searching for certain strings and then adding them one at a time.  It would be nice if this can be done more automatically or logically describe how to collect the concerns.

It would be nice if the dependency graphs actually displayed themselves in the Metrics view, or at least it was easier to understand what was not working.

