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Abstract 

Loop invariants play a pivotal role in software verification.  Since not all programs and the loops 

therein are annotated with their invariants, systems for automatically extracting loop invariants 

have been developed.  In this paper, we will discuss the problem of f inding loop invariants and 

the various methods that have been used for this problem.  We will also propose potential 

avenues for future research in this area. 

 

1 Introduction 

Dijkstra once stated, “Testing can only show the presence of bugs, not the absence.”  This quote 

highlights the inherent diff iculty of software verification.  Simply throwing one test suite after 

another at a program might increase one’s belief that a program is error-free, but it will never 

form a conclusive proof.  The only exception is if the test suites completely cover all possible 

inputs.  This is often too costly or outright impossible. 

 

Instead, proving software correct is done (to some degree) automatically.  In general, proving 

software correct is an undecidable problem (does a program halt is a potential correctness 

question one could ask).  In an ideal situation, the verification process is semi-automatic.  The 

programmer annotates the code with what he or she assumes to be correct method specifications 

and loop invariants.  A program involving a theorem prover then checks these annotations.  

While this method is sound and works, the actual annotation process makes it impractical.  One, 

the process of annotating code is tedious and time-consuming.  Most programmers are hesitant to 

spend their time on such a task.  In fact, most managers, for purely economical reasons, would 

prefer their employees to be coding rather than adding specialized comments to code.  Another 

downside to annotation is how does one handle legacy code?  Annotating unfamiliar code will 

certainly pose a greater challenge and will t ake time.   

 



With this in mind, there is an increasing interest in discovering loop invariants, pre-conditions, 

post-conditions, etc. automatically.  Various methods have been developed and applied for this 

task with varying levels of success.  Interestingly enough, there has been a serious gap in the 

research of detecting loop invariants.  Significant work was done in the 1970’s for compiler 

technology.  In order to optimize eff iciency, compilers wanted to identify loop invariant code 

and move it outside of loop bodies.  At this time, theorem provers and artificial intelli gence work 

was still relatively young.  Significant strides have been made in these areas, but it is not clear to 

what degree, if any, these advancements have been applied to system verification. 

 

In this paper, we will focus on the methods, both past and current, used for detecting and 

verifying loop invariants.  In Section 2, we will discuss important background material regarding 

this subject.  Sections 3-6 will each cover an invariant-finding process that has shown success in 

practice.  While this represents only a subset of the methods (currently and in the past) explored, 

we hope to show that successful detection can be achieved through noticeable different 

techniques. Finally, in section 7, we will propose ideas more akin to artificial intelli gence search 

methods. 

 

2 Core Concepts of Loop Invariant Detection 

A loop invariant for a loop in a program is a proposition composed of variables from the 

program that is true before the loop, during each iteration of the loop, and after the loop 

completes (if it completes).  For example, in figure 1, 

one can show that the statement ( t >=0 ) is an invariant 

for the loop.  Similarly, the statement  ) t  j*div  i ( += is 

also an invariant.  Intrinsically, one should see that the 

latter invariant delivers more knowledge about the loop.  

Neither invariant alone, though, is enough to prove the 

correctness of this simple division algorithm; both are 

required. 

 

To show that both invariants must be included, we will first introduce a formal logic system 

known as Hoare logic.  Developed in 1969 by Hoare for proving programs correct, statements in 

this logic are of the form { P} S { Q}, where P and Q are predicates and S is a program.  This 

statement reads as if P is true, then after the execution of S, Q wil l be true.  A loop in this logic is 

written as: { P} while C do S { Q}, where C is the loop conditional (which we will sometimes 

refer to as the loop’s guard).  In Hoare logic, the three requirements of a loop invariant I are 
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shown in figure 2.  Under these rules, one should see that the proper loop invariant for the code 

in figure 1 must e  } t  j*div  i   &&   0  t {  I +=>== . 

 

This example, while simple, properly ill ustrates the challenges facing any loop invariant 

detector.  The shear enormity of possible loop invariants to consider is enormous.  Even if we 

limit ourselves to working with integers, a proposition like { t > ? } has infinitely possible 

settings.  Furthermore, there might be variables in the code not required in the invariant.  

Plugging and checking every possible invariant is severely not feasible.  We need, in general, an 

algorithm that easily cut its way through this large solution space.  This is unfortunately 

impossible. 

 

Blass and Gurevich, recently proved, [1], that as a consequence of Cook’s completeness theorem 

there exists a program whose loop invariants are undecidable.  Specifically, letting N be the set 

of natural numbers as well as the functions S(x)=x+1, D(x)=2x, and H(x)=x/2 (integer division), 

then there exists a program S with a single loop using the three variables x, y, and z such that 

} false { S } 0  z y  {x === is correct in N but any proof uses an undecidable loop invariant.  Their 

proof uses an interesting (in at least a theoretical aspect) reduction involving recursive functions 

on strings. 

 

In one light, this is a very serious result.  The program involved in this proof is simple in that it 

only uses three variables.  Furthermore, the structure these programs work on is very simple.  It 

only involves integers and the basic functions of successorship, doubling, and halving.  With 

these two points, it is reasonable to surmise that there exist more complex programs whose loop 

invariants will also be undecidable. 

 

These results, though, should be viewed in much the same way as an NP-completeness proof 

often is.  While it is true that we will never have a perfect loop invariant finder for any program, 

this does not rule out the possibili ty of a large number of decidable invariants.  In particular, 

consider the program considered in [1].  While the precondition is rather commonplace, the 

postcondition is strictly false, a situation not likely to occur in practice.  True implies false is the 

“odd man” of conditional logic and often leads to some awkward situations in proofs.  The 

undecidabili ty of this particular loop invariant might just be a strange consequence of having a 
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strictly false precondition.  Without further evidence, we should probably view this is an 

extremely pathological case that is unlikely to occur in practice. 

 

3 The Induction-Iteration Method 

In the previous section, we saw the inherent diff iculty in finding proper loop invariants.  Thus, it 

comes as a surprising fact that there exists a purely iterative method that works well .  Proposed 

originally by Suzuki and Ishihata for checking array programs, [7], this method is known as the 

induction-iteration method.  The key concept to this method is finding the “weakest liberal 

precondition.” We will notate as wlp(S,Q), where S is a program and Q a postcondition.  A 

condition R = wlp(S,Q) if (i) Q is always true after S terminates (if S terminates) and (ii ) no 

condition weaker than R satisfies (i).  The key difference between the wlp and a weakest 

precondition is that we have no guarantee with a wlp that S halts.   

 

The calculation of a wlp for a single loop is performed through back-substitution, starting with 

the postcondition of the loop.  Formally, a recursive predicate W(i) is defined as  

W( 0 ) = wlp( loop-body, Q )   

W( i+1 ) = wlp( loop-body, W(i) ) 

The wlp of the loop is then defined as the conjunction of all W(i)’s.  To calculate the wlp, one 

iterates over i till a W(i) is constructed that is strong enough to meet the wlp conditions.  Further 

iterations are unnecessary as we are only looking for the weakest precondition. In [7], Suzuki 

and Ishihata proved that this would meet the three requirements for a loop invariant.   

 

Figure 3 shows the pseudocode for their algorithm.  The general idea is to find an L(j), where 

L(j) = �j > i > 0 W(i), such that L(j) is true on entry into the loop and L(j) implies W(j+1).  From 

the pseudocode, one can see that this approach does suffer from some inherent ineff iciencies.  

Without the limit on the number of  iterations, we have no guarantee that the algorithm will ever 

���������������
	���
	��
������������������
����
�������������
��
���������������������!  �"�"$#"�"$#���%�'&�'&�(*)(*)���
+
 %,�#+
 %,�# -.0/�132�46587�9;:!<�=�:?>�@�9BA�C�D
<FEHG*4
IH5
JK/ML�N�1%D!:OG�1FPRQ�S%T�U�V�W!QYX%Z�[�U
\^]*U�_;`^Z![�S%`�_3\YV%a!I -
b / c�L�1
=
d�NOGe`�N!:�@�9;:
A�U^f$9B@!g$:�9�G Gih j k l m n m o EHGqp
I�I

→
EHG�1!I%I�I -r / `�[!W
ZK/s9;:�=
C$93t?a!W
7%7$Z�a�au5

v0/ \�`$w
Z�[;E�_�a�ZK/ -yx�x =�9*z|{�G�1!I
} / c�L�1
=
d�NOGe`�N!:�@�9;:
A�U^f$9B@!g$:�9�GiL�D�f^G~P%@�t � :%t
=^9*z � =!@ � D�@�@�f3����EHG�1!I�I%I�I -�H/ `�[!W
ZK/�EHG�1��Y�!I�2
L�D�f^G�D�@�@$f � ��@%��z���EHG�1�I�IH5
�H/ 132Y1��Y��5
��4�/ \�`$w
Z�[;E�_�a�ZK/s9;:�=
C$93t�]*S�_�{
W%[�ZK5
����/ �
�!.0/ �
�%JK/��
� b /��
� r /��

 

Figure 3.  Pseudocode for the basic induction-iteration algorithm.  From [8]. 



halt.  Suzuki and Ishihata discovered that with severely flawed programs, the algorithm could 

potentially enter an infinite loop.  Another problem is that depending on the design of the 

theorem prover, the set of anded W(i)’s could create an exponentially large set of clauses.  In 

practice, Suzuki and Ishihata were able to reduce this potential problem by cleverly designing 

their theorem prover.  They were still limit ed to relatively simple programs, however. 

 

The induction-iteration algorithm was later enhanced by Xu, et al. as described in [8].  While the 

main focus of their work was in performing safety checking on machine code, they found this 

method to be easily adapted for working on machine language programs.  In doing so, they 

identified and addressed several potential drawbacks to the method.  We will briefly mention a 

few of these: 

1. First, the method does not naturally extend to working with nested loops.  One cannot 

naively test that the W(i) of the inner loop is true upon entry into the inner loop.  

Calculations occurring in the outer loop might lead to W(i)’s that pass this test but are not 

invariant over the loop.  Instead, they use the current L(j) of the outer loop and verify that 

L(j) implies W(i).  This blocks bad W(i)’s from slipping by. 

2. Conditionals within the loop body can wreck havoc with constructing L(j).  In particular, 

they can degrade L(j) enough that it can never converge to being a loop invariant.  The 

conditionals just add additional clauses.  To work around this problem, 

) ) 1-i  W(body,-loop lp(w  is written in disjunctive normal form and each disjunct is 

tried for W(i).  At least one of these is guaranteed to suff ice.  To make this pass over the 

disjuncts more eff icient, a heuristic, breadth-first strategy is used. 

3. To limit the exponential blow-up in clauses that could occur in the theorem prover, L(j)’s 

are condensed and simpli fied as much as possible.  

 

In practice, Xu, et al. found that the loop invariant part of their verification algorithm performed 

fairly well .  It is an automatic process that works well i n practice on their problem domain.  

Interestingly enough, they found that limiti ng the number of iterations to three suff iced for most 

programs.  This might just be unique to the programs they investigated.  The loops in machine 

code might be significantly easier than those found in higher-level languages.  Regardless, their 

work also found the induction-iteration method to be a major bottleneck in their verifier.  They 

propose several improvements for reducing the cost of calli ng the theorem prover, including 

caching previous calculation results in the theorem prover.   

 

The iteration-induction method is an old method for discovering loop invariants that is finding 

new use.  However, the iterative process of building the invariant is not an intelli gent search.  It 

blindly searches for the next best potential solution.  When an L(j) is found to not be an 



invariant, there is information available.  Using the knowledge as to why it failed could be used 

to direct the search. 

 

4 Using Critics and Failed Proof Attempts  

As mentioned in the previous section, one possible way to improve the search for invariants is to 

utili ze knowledge learned from failed attempts.  Using failed proofs in this way has been 

extensively studied in theorem-proving work.  The general idea is known as proof planning.  A 

proof plan is essentially a tree representation of a proof of a particular theorem.  Each node of the 

tree is some tactic or method to be used to prove the theorem.  The plan essentially guides the 

theorem prover towards the correct proof, sometimes making mistakes and having to correct 

them.  To improve the performance of proof plans, critics are used.  Critics are additional 

methods that can “patch” a bad proof.  For example, if a proof tries to use a rule that requires 

three preconditions to be true, but only two are, an appropriate criti c is called.  This criti c will do 

something to make the step valid, either telli ng the prover it’s at a dead end or better, proving a 

means for the prover to acquire the third precondition.   

 

Ireland and Stark have made considerable steps in the application of proof planning to loop 

invariant detection, [6].  Their method util izes a proof approach known as rippling, a heuristic 

used often in guiding inductive proof plans.  To understand rippling, assume you have a 

statement (the target) and a rule that you want to apply to the statement.  Currently, the rule 

cannot be applied to target because target is not in some proper form (i.e., the rule insists on left-

first associativity: (A+B)+C and not A+(B+C)).  This proper form is the goal statement.  

Rippling takes advantage of syntactical similarities between the target and goal statements to 

apply allowed rewrite rules to the target.  These rewrite rules, sometimes called “wave rules,” are 

derived from given definitions and lemmas.  Eventually, rippling propagates through the target, 

resulting in the desired goal statement.  This propagation has often been described as a “wave-

front” moving across the statement.   

 

Ireland and Stark’s work showed that rippling loop invariant proofs are syntactically similar 

enough to inductive proofs to allow the application of rippling.  This is important in that previous 

work on rippling created a large family of criti cs associated with this method.  These criti cs that 

can guide and enhance a proof plan for inductive proofs can thus do the same for invariant 

proofs.  This all falls naturally in line with the idea of proof planning.  Each time an incorrect 

invariant is found, criti cs are called that use this failed attempt to correct the invariant.  Ireland 

and Stark showed that the way rippling operates allows the discovery of invariants from incorrect 

invariants.  Essentially, to find a loop invariant, a guess is made and rippling is applied.   



In applying this approach to relatively simple loops (i.e. exponentiation and summation 

programs), this rippling approach performs quite well.  Significant improvement was made when 

they used the postcondition as the initial guess for the invariant.  Using the postcondition is a 

likely first guess for a human trying to find the invariant, so this is intuitively good.  One 

important observation they noted was that multiple critics could often discover the invariant, but 

certain critics required less overhead (branching, number of rewrite rules, etc.) in the theorem 

prover.  This opens up the new question of deciding which critics to apply when. 

 

While this method has shown initial promise, it needs to be applied to larger programs.  In 

particular, their work does not appear to consider dealing with nested loops.  It does seem 

reasonable that rippling could be applied from the innermost loops out.  Regardless of how future 

tests perform, their work is important.  Ireland and Stark, researchers in artificial intelligence, 

utilize a well-known technique in theorem proving instead of just generically throwing a theorem 

prover at the problem.  While there are no statistics as of yet to compare the runtime costs of 

their method to the induction-iteration method, their invariant discovery search is more 

intelligent. 

 

5 Predicate Abstraction 

Another example of recent work in inferring loop invariants that uses advanced AI techniques is 

the predicate abstraction work from Flanagan and Qadeer, [5].  One of the driving initiatives of 

their work was to improve upon ESC/Java.  ESC/Java checks statically for  programming errors 

that normally occur at runtime.  Several of these errors, such as array bound errors, involve 

testing for loop invariants.  ESC/Java requires a programmer to essentially annotate the loop 

invariants prior to checking, especially in the case of universally-quantified invariants.  As 

discussed before, this is a long, tedious process that most programmers do not want to do.  One 

goal of their research then was to create a system that automatically infers any type of loop 

invariant.  Previous work by others had  produced predicate abstraction-based invariant finders, 

but none of these approaches could handle universally-quantified loop invariants.  In other 

words, they could not generate correct loop invariants for unbounded data like arrays or vectors.  

These programs also had only mediocre performance due to the fact that the number of calls to 

the theorem prover was exponential in practice.  Despite the seeming mutual exclusiveness of 

inferring all types of loop invariants and getting good performance in practice, Flanagan and 

Qadeer managed to meet both of these goals. 

 

As mentioned already, their approach involved predicate abstraction.  Predicate abstraction is 

basically what it sounds like.  Predicates are abstracted from a problem to another universe 



where they are treated as boolean variables.  Formally, consider a set of predicates p1, … ,  pn 

and a matching set of boolean variables b1, … , bn.  An abstract domain element f is a boolean 

function over these boolean variables.  To bring the predicates back into the “concrete” universe, 

a concretization function γ(f) is used where: ),,()( 11 nn pbpbff ←←= !γ .  The main idea is 

that by abstracting, one has to manipulate only a finite number of boolean variables as opposed 

to predicates with potentially infinite values.  Furthermore, it is easy to incorporate universally-

quantified loop invariants using predicate abstraction by allowing the predicates to refer to 

skolem constants (variables not used in the program but added by us to aid our verification 

proofs).  Since the constants are not used in the program but are fixed to some unknown value, 

there is no loss in rigor or correctness when they are universally quantified in the final loop 

invariant.  The earlier predicate abstraction approaches could have done this approach as well but 

would have suffered with the burden of significantly more overhead. 

 

The pseudocode for inferring loop invariants is found in Figure 4.  We refer the reader to [5] for 

complete understanding of this function as we want to focus on the abstraction function α(Q), 

where Q is a predicate.  this function returns the strongest boolean function such that 

))Q((Q αγ→ .  The basic idea of the infer function can be seen on line 10 in figure 4.  A new 

invariant is calculated by α(Q) and ored with the old version.  If the two remain the same, which 

happens since α(Q) is the strongest function, then they have found their invariant.   

 

The majority of [5] is dedicated to how Flanagan and Qadeer optimized the calculation of  α(Q).  

One, they analyze loops in-order.  This comes from the insightful observation that the invariant 

of one loop will constrain the possible initial states of a subsequent loop.  This will l ead to faster 
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Figure 4.  The infer function used by Flanagan and Qadeer.  Traverse is a 
function that traverses over a statement and returns an inferred invariant for 
each loop in that statement.  From [5]. 



convergence to an invariant due to the smaller solution space that has to be searched.  In 

calculating α(Q) itself, the basic idea is to identify the relationship between the predicate Q and 

the predicates pi.  In terms of the abstract domain, this entails finding all maximal clauses 

(clauses that contain n literals of the boolean variables b1 through bn) that imply Q and then 

anding them together.  The simplistic approach is to just try every possible maximal clause, but 

this would require 2n queries on “ long” clauses to the theorem prover.  Instead, they simpli fy this 

procedure in three ways: 

1. One optimization involves the calculation of )Q(r α∨ .  Due to logical consequence, 

one only needs to consider maximal clauses that are implied by r.  

2. This optimization is a heuristic based on the observation that in  practice, α(Q) can 

often be expressed as a conjunct of small , non-maximal clauses.  By observation, it 

was noted that three generally worked.  With this in mind, they greedily strip off 

literals from a valid maximal clause m to get a smaller clause c.  The previous idea 

can be used to improve the quali ty of what is stripped as well . 

3. Another optimization is to use a divide-and-conquer approach that works to shrink a 

maximal clause m to a stronger clause c such that cr →  and )c(Q γ→ .  This clause 

c can then be further stripped greedily as mentioned before.  Calli ng this an 

optimization is not fully accurate.  It is possible to have O(n·2n) queries to the 

theorem prover in the worst-case.  However, according to Flanagan and Qadeer, this 

rarely occurs in practice.  In fact, one can look at their divide-and-conquer procedure 

and see that such a loop would be a very pathologically unfriendly loop.  

These three optimizations significantly reduce the number of clauses that need to be enumerated.  

Furthermore, the sizes of the clauses are significantly reduced, thus improving the performance 

for the theorem prover when it is called. 

 

There is one problem with this predicate abstraction approach that Ireland’s and Stark’s work 

from the previous section did not suffer from: where do the predicates come from?  Recalli ng 

part of Flanagan’s and Qadeer’s goals, they wanted to avoid having programmers annotate the 

code.  Listing predicates is a time-consuming task on the same order of determining the loop 

invariants themselves.  Thus, they present also in [5] a series of heuristics that generate 

predicates from the code itself.  These heuristics are designed to work in ESC/Java, and are thus 

limited by the annotation language therein. 

 

When tested, the predicate-finding heuristics and the predicate abstraction loop invariant inferer 

performed quite well compared to another tool.  In particular, the reduction in theorem prover 

queries was quite significant.  In terms of correctness, the modified version of ESC/Java was 

pitted against an unmodified version on a program with 520 loops spread out over 2418 routines.  



The unmodified version could not verify 326 of these routines, most of which contained non-

trivial loops.  The modified version improved the verification to all but 31 routines.  Upon 

human inspection, the loops involved in these routines involved subtle invariants and/or 

predicates the heuristics could not generate. 

 

Flanagan and Qadeer’s approach to loop invariant inference is another good example of using an 

advanced artificial intelli gence technique on this problem.  Aside from the improved 

performance and their capabili ty of handling universally-quantified invariants, the important 

contribution of this work is that they did not strive for perfection, instead focusing on giving a 

good enough answer most of the time.  As the author’s point out, their method significantly 

reduces the annotation burden on the programmer.   

 

6 Dynamic Invariant Detection 

In step with the idea of not generating every loop invariant, we now turn to the idea of dynamic 

invariant detection.  This involves running a program over a test suite of inputs and examining 

what the program computes.  Then, this data is analyzed for patterns and relationships among the 

variables.  Potential program invariants are then proposed and validated.  Note that this 

procedure is not just for loop invariants; other program invariants, li ke preconditions and 

postconditions, can also be generated.   Furthermore, any invariant found is only an invariant 

over the test suite.  An input not in the test suite might invalidate a dynamically determined 

invariant.  However, these guessed invariants can be useful to a programmer.  Confidence about 

the program’s correctness can be raised, and the validity of the test suite itself can be judged. 

 

Daikon, a prototype tool using this approach created by Mike Ernst and others, [2,3,4], has 

shown initial success at using this dynamic detection method.  This program works in three 

stages.  The  first stage manipulates the program to record data traces.  The second stage then 

runs the altered program over the provided test suite and records the data trace.  Finally, in the 

third stage, invariants are proposed based on this data.  To bound the search, Daikon limits itself 

to checking for only specific types of invariants: 

• Invariants for up to three numeric variables:  

Examples: 5 mod 3 y   x1,-3x y   2, x ≡+=>  

• Invariants for up to two sequence variables:  

Examples: element ordering, minimum sequence values, subsequences 

 

The search itself is fairly eff icient.  Each potential invariant is checked over each data sample 

collected.  One an invariant is found to be invalid on one data sample, no further tests on that 



invariant will occur.  For the more complicated invariants, li ke cbzayx ++= , where x, y, z are 

variables and a, b, c are unknown constants, full theorem prover queries are not really needed.  

Three data samples will usually be enough to determine a, b, and c using standard linear algebra, 

and then other samples can be checked on this equation with simple arithmetic.  Daikon does not 

return all i nvariants found, though.  Through a probabili ty analysis, it gives a confidence 

estimation on each invariant and only returns an invariant if the confidence is high enough. 

 

In the current version of Daikon, loop invariants are not dynamically tested for.  Part of the 

motivation of creating Daikon was to aid programmers in software evolution.  When making 

changes to code, loop invariants are likely to not have as far-reaching dependencies as compared 

to pre and postconditions.  Furthermore, when the normal data trace methods are used in stage 2 

on loops, an enormous amount of repeated data is returned.  [2] discusses some means of 

reducing the amount of information returned.  Not only can this easily become unmanageable, it 

could potentially skew the loop invariants returned.  With lots of instances of a particular data 

sample, Daikon will view the probabili ty of it occurring by chance as very small , therefore 

assigning it a high confidence.  This effect is similar to the over training problems that can occur 

with neural networks, decision trees, and other machine learners.  Despite this current design 

decision, it should be noted that in early tests of Daikon, [3], loop invariant detection was 

explored.  On a series of small test programs, Daikon successfully detected loop invariants.  The 

overconfidence and data glut did not occur with these small programs.  Of particular note is that 

Daikon found some needed loop invariants that were left out of the test programs’ original 

specifications.   

 

Rating Daikon’s abili ties on inferring loop invariants is diff icult without tests on more complex 

programs.  The tool, however, introduces another approach to guessing probably loop invariants: 

data mining.  Getting a data trace of a loop over many iterations over many inputs should provide 

a considerable amount of information from which a good initial guess can mined.  It is often the 

case that searching for a solution proceeds faster if one can start the search relatively near the 

solution.   

 

7 Further Artificial Intelligence Approaches 

In the course of this literary review, we were a bit surprised to find the apparent lack of papers 

using artificial intelli gence approaches to find loop invariants.  As we have previously 

mentioned, the first work in loop invariant detection took place in the early 1970’s in compiler 

research.  Since then, there appears to have been little research in the area despite any advances 

in artificial intelli gence.  While we acknowledge the work in [5] and [6], we believe that AI 



techniques have great potential in inferring loop invariants.  In the following paragraphs, we will 

briefly brainstorm the possible pros and cons of using two standard AI approaches: machine 

learning and randomized search. 

 

In all actuali ty, we do not expect machine learning to be of much value in this problem domain.  

Some of the Daikon papers, [2] and [3], devote a section to this point of view.  One view of 

machine learning is the creation of a special widget for making decisions.  After training the 

widget on a variety of examples (some of which might be erroneous, i.e. noise in the training 

set), the widget can then make usually accurate predictions for future situations.  How can this be 

applied to finding loop invariants?   Due to the incredible variety of loops that exist in programs, 

we would need a training set that covers a significant number of these to properly train the 

widget!  This does not seem practical or even remotely feasible.  Another reason against using 

machine learners is that we really do not have a situation that requires learning.  Consider our 

widget again.  The widget looks at loop L1 from program A, makes a guess at an invariant, and 

learns that it was wrong (or right).  Will t his help at all when we want to find the invariant for 

loop L2 from program B?  The answer is probably not if the programs are significantly different 

in structure.  While we would suggest keeping an open mind, we do theorize that machine 

learning is li kely not a viable source of ideas for finding loop invariants.   

 

Despite the above comments, there is one potential use for machine learning that is related to 

loop invariant finding.  In Section 4, we mentioned Ireland and Stark’s observation that different 

criti cs performed more eff iciently on different loop invariant proofs.  It is reasonable to surmise 

that a learner could be developed that upon being given a loop to analyze, it would determine the 

appropriate criti c to use.  This is not a direct application of AI to the loop invariant problem but 

does propose one way of improving the eff iciency of invariant finders. 

 

Random search, as opposed to machine learning, appears to have promise for finding loop 

invariants.  For notoriously diff icult problems where deterministic approaches can only do so 

well , such as satisfiabilit y, intelligent random search has been shown to be amazingly accurate 

under most situations.  The emphasis on intelli gent is important.  Let us consider the problem 

space we have: 

Given:  a set of variables X     // finite  

 a set of values Y that the variables can take on   // potentially infinite  

 the Hoare statement H: { P} while C do S { Q}  

Goal: A loop invariant I for H that is composed of predicates derived from X and Y 

One can expect a randomly chosen set of predicates derived from X and Y wil l be a loop 

invariant with extremely low priority.  Thus, pure random search is unlikely to produce 



invariants within reasonable time.  Intuitively, though, one can start from a poor first choice and 

incrementally improve it till it becomes an invariant.  This local repair strategy has been used 

successfully on diff icult problems like satisfiabil ity.  With this in mind, we now look at more 

guided random searches like hill climbing and genetic algorithms instead of pure random search.   

 

In order to use these intelli gent search methods, we will require a metric to assess the quali ty of 

different potential invariants.  We need some way of saying potential invariant I1 is better than 

potential invariant I2.  Furthermore, we need this metric to work incrementally.  Continuing the 

example, we change I2 to get I2’ and find that I2’ is better than both I2 and I1.  Determining a 

good metric would likely be the most diff icult (and likely the most interesting) task in designing 

a random search based invariant finder.  One potential source for a metric would be to look at the 

proof plans or trees used to prove an “ invariant” as faulty.  One can reason that the longer the 

disproof takes, the more accurate the invariant was.   

 

Let’s assume now that we have such a metric.  For the sake of this thought experiment, we will 

loosen our requirements and make our loop invariant finder part of an interactive discovery 

system that uses a genetic algorithm to find invariants.  The programmer writes down a list of 

what he or she thinks are the invariants for the code.  These predicates form the basis for all the 

individuals in the population.  Some individuals are subsets of this basis, while others include 

statements about variables from the code not mentioned in the basis.  Some individuals might 

also contain mutations of what the programmer entered, e.g. x < 3 instead of x < 10.  The 

mutation and crossover operators for this population are fairly obvious.  The genetic algorithm 

then runs, breeding potential invariants till it finds an actual invariant.  Essentially, it is doing in 

parallel what a human would do in trying to find invariants: guess, correct, guess, correct, ... until 

an invariant is found. 

 

There are some potential downsides to this approach.  One, during each generation, we will have 

to do something to determine the quali ty of each individual in the population.  This might be 

computationally expensive, particularly if numerous theorem prover calls are required.  If this is 

the case, we might need to explore some the optimization techniques, li ke caching in the prover, 

proposed in [8].  Another problem is that we’ve cheated and had a user guess the initial invariant.  

While this might be perfectly reasonable for some software development situations, guessing 

invariants for a program containing thousands of loops would be tedious.  However, we have 

several options for automating the guess.  One, similar to the induction-iteration method and 

Ireland and Stark’s work, we can start from the loop’s postcondition.   Another option is to use 

the heuristic predicate finder from [5] and then just randomly assign values as needed.  A third 

approach would be to do data mining off of trace data from a test suite as Daikon does.  It is 



diff icult to say which approach would be best.  Also, it opens the interesting research question of 

how much does the quali ty of the initial guess affect the convergence rate of the genetic 

algorithm? 

 

However, we are still i gnoring one problem with using these randomized searches: sometimes 

they fail to ever converge.  If we run a search x times without generating a solution, we have no 

guarantee that there is no solution.  Sometimes, we can use the search to say that the chance of 

there still being a solution is some probabili ty p(x).   At this point, we can adopt the philosophy 

used by Flanagan and Qadeer.  If we have managed to improve the search time for a large 

number of problem instances, but some problems still remain diff icult to solve, then that is good 

enough.  And if we are lucky, the cases that appear most often in practice will be the ones our 

new method works well on.   

 

Randomized searches, like we mentioned with machine learning, might also be useful for 

problems related to invariant finding.  For example, we surmised that Flanagan and Qadeer’s 

predicate abstraction approach failed to find all i nvariants partially because their heuristic 

predicate generator could not generate all the predicates needed.  Consider a large set of potential 

heuristic rules for generating predicates.  Some of these are probably unneeded and a few 

probably contradict each other.  What one really wants is the subset of these that generates the 

“best” predicates.  Defining what is “best” returns to the issue of f inding a metric,  but search 

methods could be applied as well to this problem. 

 

These approaches seem promising on this first-glance, intellectual level.  However, it bothers us 

that we could not find any literature that described any attempt even remotely similar to the ideas 

we just  proposed.  It might be the case that software engineers have not considered these 

approaches and that AI researchers have not yet focused on this problem domain.  Unfortunately, 

this might be an example of where researchers attempted an idea, found it didn’ t work, and opted 

not to publish the negative results. 

8 Conclusion 

The automatic finding of loop invariants will continue to expand and evolve from the ideas 

presented in this paper.  Due to the gap in research, old ideas need to be investigated and 

improved upon.  While improvements in the field of theorem provers will enhance the 

performance of the invariant finders, it is the author’s belief that future work will rely more on 

heuristic and potentially random approaches.  Furthermore, the focus will move away from 

perfectly finding loop invariants to improving the performance for a large number of cases.   
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