On the Automatic Detection of Loop Invariants

Nicholas Deibel

February 25, 2002

Abstract

Loopinvariants play a pivotal role in software verification. Sincenat all programs and the loops
therein are aandated with their invariants, systems for automaticdly extrading loop invariants
have been developed. In this paper, we will discussthe problem of finding loop invariants and
the various methods that have been used for this problem. We will also propcse patentia
avenues for future research in thisarea

1 Introduction

Dijkstra once stated, “ Testing can oy show the presence of bugs, na the absence.” This quae
highlights the inherent difficulty of software verificaion. Simply throwing one test suite dter
another at a program might increase one's belief that a program is error-free bu it will never
form a conclusive proof. The only exception is if the test suites completely cover al possble
inpus. Thisisoften too costly or outright impassble.

Instead, proving software @rrect is done (to some degree automatically. In general, proving
software corred is an undeddable problem (does a program halt is a potential correctness
question ore @wuld ask). In an idea situation, the verificaion pocessis smi-automatic. The
programmer annaates the mde with what he or she asumes to be crred method spedficaions
and loop invariants. A program involving a theorem prover then checks these aandations.
Whil e this methodis sound and works, the adual annaation processmakes it impradical. One,
the processof annaating code is tedious and time-consuming. Most programmers are hesitant to
spend their time on such atask. In fad, most managers, for purely ecnomicd reasons, would
prefer their employees to be ading rather than adding spedalized comments to code. Anacther
downside to annaation is how does one hande legacy code? Anndating urfamiliar code will
catanly pose agreater challenge and will take time.

With this in mind, there is an increasing interest in discovering loop invariants, pre-condtions,
post-condtions, etc. automaticdly. Various methods have been developed and applied for this
task with varying levels of success Interestingly enough, there has been a serious gap in the
research of deteding loop invariants. Significant work was dore in the 1970s for compil er
techndogy. In oder to opimize dficiency, compilers wanted to identify loop invariant code
and move it outside of loop bodes. At thistime, theorem provers and artificial intelli gence work
was dill relatively young. Significant strides have been made in these aeas, but it is not clea to
what degree, if any, these advancements have been appli ed to system verification.

In this paper, we will focus on the methods, both past and current, used for deteding and
verifying loopinvariants. In Sedion 2,we will discussimportant background material regarding
this subjed. Sedions 3-6 will ead cover an invariant-finding processthat has shown successin
pradice. While this represents only a subset of the methods (currently and in the past) explored,
we hope to show that succesful detection can be adieved through ndicedle different
tedhniques. Finaly, in section 7,we will propcse ideas more &in to artificial intelli gence search
methods.

2 Core Concepts of Loop Invariant Detection

A loop invariant for a loop in a program is a propasition composed o variables from the

program that is true before the loop, duing ead iteration d the loop, and after the loop

completes (if it completes). For example, in figure 1,

one can show that the statement (t >=0) is an invariant {/_ZRE: >0 & j>0

for the loop. Similarly, the statement (i=div*j+t) is div := 0

also an invariant. Intrinsicdly, ore shoud seethat the Whéls(f;i 1) do

|latter invariant delivers more knowledge eou the loop. eng =

Neither invariant aone, though, is enough to provethe ~ // POST: i=div¥j+t && 0<=t<j

correctness of this smple division algorithm; both are . .
] Figure 1: A simple loop program

required.

To show that bath invariants must be included, we will first introduce a formal logic system

known as Hoare logic. Developed in 1969by Hoare for proving programs corred, statementsin

this logic ae of the form {P} S {Q}, where P and Q are predicaes and S is a program. This

statement reads as if P istrue, then after the exeaution d S, Q will betrue. A loopinthislogicis

written as: {P} while C do S {Q}, where C is the loop condtiona (which we will sometimes

refer to as the loop's guard). In Hoare logic, the three requirements of a loop invariant | are

P . I // I is true when the Tloop starts
{Cc && 1} s {1} // I is true after a loop 1iteration

(c & I)- Q // If the loop finishes, Q is true

Figure 2. The requirements of a loop invariant I for

the Hoare statement: {P} while C do S {Q}
shown in figure 2. Under these rules, one shoud seethat the proper loopinvariant for the code
infigurelmuste 1={t>=0 & & i=div*j+t}.

This example, while smple, properly illustrates the dallenges facing any loop invariant
detedor. The shear enormity of possble loop invariants to consider is enormous. Even if we
limit ourselves to working with integers, a propasition like {t > ? } has infinitely possble
settings. Furthermore, there might be variables in the mde not required in the invariant.
Pluggng and checking every possble invariant is severely nat feasible. We need, in general, an
algorithm that easily cut its way through this large solution space This is unfortunately
impossble.

Blassand Gurevich, recently proved, [1], that as a consequence of Cook s completenesstheorem
there eists a program whose loop invariants are undeddable. Speaficdly, letting N be the set
of natura numbers as well as the functions S(x)=x+1, D(x)=2x, and H(x)=x/2 (integer division),
then there exists a program S with a single loop wsing the three variables x, y, and z such that
{x =y=z=0} S{ false} is corred in N but any proof uses an uncecidable loopinvariant. Their

proof uses an interesting (in at least a theoretical asped) reduction invalving reaursive functions
on strings.

In one light, thisis a very serious result. The program involved in this proof is smple in that it
only uses threevariables. Furthermore, the structure these programs work onis very simple. It
only invalves integers and the basic functions of successorship, doulling, and helving. With
these two pdnts, it is reasonable to surmise that there exist more cmplex programs whose loop
invariants will also be undeddable.

These results, though, shoud be viewed in much the same way as an NP-completeness proof
oftenis. While it istrue that we will never have a perfect loopinvariant finder for any program,
this does not rule out the possbility of a large number of deddable invariants. In particular,
consider the program considered in [1]. While the premndtion is rather commongace the
postcondtionis drictly false, asituation nd likely to occur in pradice Trueimplies faseisthe
“odd man” of condtional logic and dten leads to some avkward situations in proofs. The
undeddability of this particular loop invariant might just be astrange consequence of having a

strictly fase premndtion. Withou further evidence we shoud probably view this is an
extremely pathoogicd case that is unlikely to occur in pradice.

3 The Induction-Iteration Method

In the previous dion, we saw the inherent difficulty in finding proper loopinvariants. Thus, it
comes as a surprising fact that there exists a purely iterative method that works well. Propased
originally by Suzuki and Ishihata for checking array programs, [7], this methodis known as the
induction-iteration method. The key concept to this method is finding the “weakest liberal
precondtion.” We will notate @& wlp(S,Q), where S is a program and Q a postcondtion. A
condtion R = wip(S,Q) if (i) Q is aways true after S terminates (if S terminates) and (ii) no
condtion we&er than R satisfies (i). The key difference between the wlp and a weakest
precndtionisthat we have no guaranteewith awlp that S halts.

The cdculation d awlp for a single loopis performed through back-substitution, starting with
the postcondtion d the loop. Formally, areaursive predicate W(i) is defined as

W(0) =wlp(loopbady, Q)

W(i+1) =wlp(loop-body, W(i))
The wilp o the loop is then defined as the wnjunction o all W(i)’s. To cdculate the wip, ore
iterates over i till a W(i) is constructed that is grong enough to meet the wilp condtions. Further
iterations are unnecessary as we are only looking for the weakest precondition. In [7], Suzuki
and Ishihata proved that this would med the threerequirements for aloopinvariant.

Figure 3 shows the pseudocode for their algorithm. The genera ideais to find an L(j), where
L() = Aj>i>0W(i), such that L(j) is true on entry into the loopand L(j) implies W(j+1). From
the pseudocode, one can seethat this approach dces suffer from some inherent inefficiencies.
Withou the limit on the number of iterations, we have no guarantee that the dgorithm will ever

1: Induction_Iteration() : SUCCESS | FAILURE {

2: i=0; Create formula W(0);

3: while ('i < MAX_NUMBER_OF_ITERATIONS) {

4: switch (Theorem_prover((Ai-1skso0W(k)) - wW(@))) {
5: TRUE: return SUCCESS;

6: OTHERWISE:{ // try L(i)

7: switch (Theorem_prover(wlp(<on-entry-to-Tloop>,W(i)))) {
8: TRUE: W(i+1)=wlp(loop-body, wW(i));

9: i=i+1;

10: OTHERWISE: return FAILURE;

11: }

12:

13: }

14:%}

15:}

Figure 3. Pseudacode for the basic induction-iteration algorithm. From [8].

halt. Suzuki and Ishihata discovered that with severely flawed programs, the dgorithm could
potentially enter an infinite loop. Ancther problem is that depending on the design o the
theorem prover, the set of anded W(i)’'s could creade an exporentially large set of clauses. In
pradice Suzuki and Ishihata were ale to reduce this potential problem by cleverly designing
their theorem prover. They were still limit ed to relatively simple programs, however.

The induction-iteration algorithm was later enhanced by Xu, et a. as described in [8]. While the
main focus of their work was in performing safety chedking on machine @de, they foundthis
method to be easily adapted for working on machine language programs. In dang so, they
identified and addressed several potential drawbacks to the method. We will briefly mention a
few of these:

1. First, the method daes not naturally extend to working with nested loops. One caana
naively test that the W(i) of the inner loop is true upon entry into the inner loop.
Calculations occurring in the outer loop might lead to W(i)'s that passthistest but are not
invariant over the loop. Insteal, they use the aurrent L(j) of the outer loopand verify that
L(j) impliesW(i). Thisblocks bad W(i)'s from slipping by.

2. Condtionals within the loop baly can wred havoc with constructing L(j). In particular,
they can degrade L(j) enough that it can never converge to being a loop invariant. The
condtionals just add addtiona clauses. To work around this problem,
wlip(loop-body,W(i-1)) is written in digunctive normal form and each dsunct is

tried for W(i). At least one of these is guarantead to suffice To make this passover the
disjuncts more dficient, aheuristic, breadth-first strategy is used.

3. To limit the exporential blow-up in clauses that could occur in the theorem prover, L(j)'s
are ondensed and simplified as much as possble.

In pradice, Xu, et a. found that the loop invariant part of their verification algorithm performed
fairly well. It is an automatic process that works well in pradice on their problem domain.
Interestingly enough, they foundthat limiti ng the number of iterations to threesufficed for most
programs. This might just be unique to the programs they investigated. The loops in madcine
code might be significantly easier than those found in higher-level languages. Regardless their
work also foundthe induction-iteration method to be amajor bottlened in their verifier. They
propose several improvements for reducing the st of cdling the theorem prover, including
cadiing previous cdculation results in the theorem prover.

The iteration-induction method is an dd method for discovering loop invariants that is finding
new use. However, the iterative processof building the invariant is not an intelli gent seach. It
blindy searches for the next best potential solution. When an L(j) is found to na be an

invariant, there is information available. Using the knowledge & to why it failed could be used
to dred the search.

4 Using Critics and Failed Proof Attempts

As mentioned in the previous dion, ore passhble way to improve the search for invariantsis to
utilize knowledge leaned from failed attempts. Using falled proofs in this way has been
extensively studied in theorem-proving work. The general ideais known as proof planning. A
proof planisessentially atreerepresentation d aproof of aparticular theorem. Each nock of the
treeis me tadic or method to be used to prove the theorem. The plan essentially guides the
theorem prover towards the rred proof, sometimes making mistakes and having to corred
them. To improve the performance of proof plans, critics are used. Critics are alditional
methods that can “patch” a bad proof. For example, if a proof tries to use arule that requires
threeprecondtions to be true, bu only two are, an appropriate aiticiscdled. This critic will do
something to make the step valid, ether telling the prover it’s at a dead end or better, proving a
means for the prover to acquire the third precondtion.

Ireland and Stark have made cnsiderable steps in the gplicaion d proof planning to loop
invariant detedion, [6]. Their method dilizes a proof approach known as rippling, a heuristic
used dften in guiding induwctive proof plans. To undxstand rippling, assume you have a
statement (the target) and a rule that you want to apply to the statement. Currently, the rule
canna be gplied to target becaise target is not in some proper form (i.e., the rule insists on | eft-
first associativity: (A+B)+C and not A+(B+C)). This proper form is the goa statement.
Rippling takes advantage of syntadicd similarities between the target and goal statements to
apply allowed rewrite rulesto the target. These rewrite rules, sometimes cdled “waverules,” are
derived from given definitions and lemmas. Eventually, rippling propagates through the target,
resulting in the desired goal statement. This propagation hes often been described as a “wave-
front” moving aaossthe statement.

Ireland and Stark’s work showed that rippling loop invariant proofs are syntacticaly similar
enough to inductive proofs to al ow the goplicaion o rippling. Thisisimportant in that previous
work onrippling creaed alarge family of critics associated with this method. These criti cs that
can guide and enhance aproof plan for inductive proofs can thus do the same for invariant
proofs. This all fals naturaly in line with the ideaof proof planning. Eacd time an incorrect
invariant is found critics are @led that use this fail ed attempt to corred the invariant. Ireland
and Stark showed that the way rippling operates all ows the discovery of invariants from incorrect
invariants. Esentialy, to find aloopinvariant, aguessis made and rippling is applied.

In applying this approach to relatively simple loops (i.e. exponentiation and summation
programs), this rippling approach performs quite well. Significant improvement was made when
they used the postcondition as the initial guess for the invariant. Using the postcondition is a
likely first guess for a human trying to find the invariant, so this is intuitively good. One
important observation they noted was that multiple critics could often discover the invariant, but
certain critics required less overhead (branching, number of rewrite rules, etc.) in the theorem
prover. This opens up the new question of deciding which critics to apply when.

While this method has shown initia promise, it needs to be applied to larger programs. In
particular, their work does not appear to consider dealing with nested loops. It does seem
reasonabl e that rippling could be applied from the innermost loops out. Regardless of how future
tests perform, their work is important. Ireland and Stark, researchers in artificial intelligence,
utilize awell-known technique in theorem proving instead of just generically throwing a theorem
prover at the problem. While there are no statistics as of yet to compare the runtime costs of
their method to the induction-iteration method, their invariant discovery search is more
intelligent.

5 Predicate Abstraction

Another example of recent work in inferring loop invariants that uses advanced Al techniquesis
the predicate abstraction work from Flanagan and Qadeer, [5]. One of the driving initiatives of
their work was to improve upon ESC/Java. ESC/Java checks statically for programming errors
that normally occur at runtime. Several of these errors, such as array bound errors, involve
testing for loop invariants. ESC/Java requires a programmer to essentially annotate the loop
invariants prior to checking, especially in the case of universally-quantified invariants. As
discussed before, this is along, tedious process that most programmers do not want to do. One
goal of their research then was to create a system that automatically infers any type of loop
invariant. Previous work by others had produced predicate abstraction-based invariant finders,
but none of these approaches could handle universally-quantified loop invariants. In other
words, they could not generate correct loop invariants for unbounded data like arrays or vectors.
These programs also had only mediocre performance due to the fact that the number of cals to
the theorem prover was exponential in practice. Despite the seeming mutual exclusiveness of
inferring all types of loop invariants and getting good performance in practice, Flanagan and
Qadeer managed to meet both of these goals.

As mentioned aready, their approach involved predicate abstraction. Predicate abstraction is
basically what it sounds like. Predicates are abstracted from a problem to another universe

where they are treated as bodean variables. Formally, consider a set of predicaes py, ... , @
and a matching set of boolean variables by, ... , b,. An abstrad domain element f is a bodean
function over these bodean variables. To bring the predicaes bad into the “concrete” universe,
a oncretization function y(f) is used where: y(f)=f(b, ~ p,,...,b, < p,). Themanideais

that by abstracting, one has to manipulate only a finite number of bodean variables as oppcsed
to predicates with paentially infinite values. Furthermore, it is easy to incorporate universally-
guantified loop invariants using predicate abstradion by allowing the predicaes to refer to
skolem constants (variables nat used in the program but added by us to aid ou verificaion
proofs). Sincethe nstants are not used in the program but are fixed to some unknown value,
there is no lossin rigor or corredness when they are universally quantified in the final loop
invariant. The earlier predicate astradion approaches could have dore this approach as well but
would have suffered with the burden of significantly more overhead.

The pseudocode for inferring loop invariants is foundin Figure 4. We refer the reader to [5] for
complete understanding of this function as we want to focus on the astradion function a(Q),
where Q is a predicae. this function returns the strongest bodean function such that
Q - y(a(Q)). The basic ideaof the infer function can be seen online 10 in figure 4. A new

invariant is cdculated by a(Q) and aed with the old version. If the two remain the same, which
happens sncea(Q) isthe strongest function, then they have foundtheir invariant.

The majority of [5] is dedicaed to howv Flanagan and Qadee optimized the cdculation d a(Q).
One, they analyze loops in-order. This comes from the insightful observation that the invariant
of one loop will constrain the posgbleinitial states of a subsequent loop. This will | ead to faster

<Formu1a, stmt> infer (stmt C, stmt S) {
: let “{P,I} while e do B end = S;

: Stmt H = havoc(targets(B));

: AbsbDomain r = _(Norm(true; C));

: while (true) {

Formula 1 = y(r);

Stmt A = “assume e JI OJ1”;

stmt B’ = traverse(“C ; H ; A", B);
Formula Q = Norm(true, “C ; H ; A ; B’ ");
AbsDomain next = r 0O a(Q);

10: if (next = r) return <J,B’>;

11: r = next;

O ONOYW -bwr\u—\

Figure 4. Theinfer function used by Flanagan and Qadee. Traverseisa
function that traverses over a statement and returns an inferred invariant for
ead loopin that statement. From [5].

convergence to an invariant due to the smaller solution space that has to be searched. In
cdculating a(Q) itself, the basic idea is to identify the relationship between the predicate Q and
the predicaes pi. In terms of the astrad domain, this entails finding all maxima clauses
(clauses that contain n literals of the bodean variables b, through k) that imply Q and then
anding them together. The simplistic goproach isto just try every possble maximal clause, bu
this would require 2" queries on “long” clauses to the theorem prover. Instead, they simplify this
procedure in threeways:

1. One optimization invalves the calculation d r Oa(Q). Dueto logical consequence,
one only needs to consider maximal clauses that are implied by r.

2. This optimization is a heuristic based onthe observation that in pradice a(Q) can
often be expressd as a omnjunct of small, nonmaximal clauses. By observation, it
was nated that three generally worked. With this in mind, they greedily strip off
literals from a valid maximal clause m to get a smaller clause ¢ The previous idea
can be used to improve the quality of what is gripped as well.

3. Ancther optimization is to use adivide-and-conquer approach that works to shrink a
maximal clause m to astronger clause csuch that r — ¢ and Q - y(c). Thisclause

c can then be further stripped greedily as mentioned before. Caling this an
optimization is not fully accurate. It is possble to have O(n-2") queries to the
theorem prover in the worst-case. However, according to Flanagan and Qadeer, this
rarely ocaurs in practice In fad, ore can look at their divide-and-conguer procedure
and seethat such aloopwould be avery pathologicaly unfriendy loop.
These threeoptimizations sgnificantly reduce the number of clauses that need to be enumerated.
Furthermore, the sizes of the dauses are significantly reduced, thus improving the performance
for the theorem prover when it is cdl ed.

There is one problem with this predicate astradion approach that Ireland’s and Stark’s work
from the previous ®dion dd na suffer from: where do the predicates come from? Recdling
part of Flanagan’'s and Qadeer’s godls, they wanted to avoid having programmers anndate the
code. Listing predicates is a time-consuming task on the same order of determining the loop
invariants themselves. Thus, they present aso in [5] a series of heuristics that generate
predicaes from the mde itself. These heuristics are designed to work in ESC/Java, and are thus
limited by the annatation language therein.

When tested, the predicate-finding heuristics and the predicate astradion loopinvariant inferer
performed qute well compared to ancther tod. In particular, the reduction in theorem prover
gueries was quite significant. In terms of correctness the modified version d ESC/Java was
pitted against an ummodified version ona program with 520 loops spreal ou over 2418routines.

The unmodified version could na verify 326 of these routines, most of which contained nan-
trivial loops. The modified version improved the verification to all but 31 routines. Upon
human inspedion, the loops invaved in these routines invalved subtle invariants and/or
predicaes the heuristics could nd generate.

Flanagan and Qadeer’ s approacdh to loopinvariant inferenceis another good example of using an
advanced artificia intelligence tedhnique on this problem. Aside from the improved
performance and their capability of handing universally-quantified invariants, the important
contribution d this work is that they did na strive for perfection, instead focusing on giving a
good enough answer most of the time. As the author’s point out, their method significantly
reduces the annaation burden onthe programmer.

6 Dynamic Invariant Detection

In step with the ideaof not generating every loop invariant, we now turn to the ideaof dynamic
invariant detection. This invalves running a program over atest suite of inpus and examining
what the program computes. Then, this datais analyzed for patterns and rel ationships among the
variables. Potential program invariants are then proposed and validated. Note that this
procedure is not just for loop invariants, other program invariants, like premndtions and
postcondtions, can aso be generated. Furthermore, any invariant found is only an invariant
over the test suite. An inpu not in the test suite might invalidate adynamicdly determined
invariant. However, these guessed invariants can be useful to a programmer. Confidence dou
the program’s corredness can beraised, and the validity of the test suiteitself can be judged.

Daikon, a prototype tool using this approach creded by Mike Ernst and ahers, [2,3,4, has
shown initial success at using this dynamic detedion method. This program works in three
stages. The first stage manipulates the program to record data traces. The seand stage then
runs the dtered program over the provided test suite and records the data trace Finaly, in the
third stage, invariants are propcsed based onthis data. To boundthe search, Daikon limits itself
to cheding for only speafic types of invariants:
* Invariantsfor upto threenumeric variables:
Examples:x >2, y=3x-1, x+y=3mod5
* Invariantsfor upto two sequence variables:
Examples. element ordering, minimum sequence values, subsequences

The seach itself is fairly efficient. Each pdentia invariant is chedked ower each data sample
colleded. One an invariant is foundto be invalid on ore data sample, no further tests on that

invariant will occur. For the more complicated invariants, like x =ay+ bz+c, wherex, y, z are

variables and a, b, ¢ are unknowvn constants, full theorem prover queries are not redly needed.
Threedata samples will usually be enough to determine g b, and ¢ using standard linea algebra,
and then ather samples can be chedked onthis equation with simple aithmetic. Daikon dces not
return al invariants found, though. Through a probability analysis, it gives a confidence
estimation onead invariant and orly returns an invariant if the confidence is high enough.

In the aurrent version of Daikon, loop invariants are not dynamically tested for. Part of the
motivation d creaing Daikon was to ad programmers in software evolution. When making
changes to code, loopinvariants are likely to na have & far-reating dependencies as compared
to pre and pastcondtions. Furthermore, when the normal data tracemethods are used in stage 2
on loops, an enormous amourt of repedaed data is returned. [2] discusses me means of
reducing the anourt of information returned. Not only can this easily become unmanageale, it
could paentially skew the loop invariants returned. With lots of instances of a particular data
sample, Daikon will view the probability of it occurring by chance & very small, therefore
assgning it ahigh confidence This effect is smilar to the over training problems that can occur
with neural networks, dedsion trees, and aher macdine learners. Despite this current design
dedsion, it shoud be noted that in ealy tests of Daikon, [3], loop invariant detedion was
explored. On a series of small test programs, Daikon successully detected loopinvariants. The
overconfidence and data glut did na occur with these small programs. Of particular note is that
Daikon found some nealed loop invariants that were left out of the test programs original
spedficdions.

Rating Daikon's ahilities on inferring loop invariants is difficult withou tests on more complex
programs. Thetoadl, however, introduces ancther approach to guessng probably loop invariants:
datamining. Getting adatatrace of aloop ower many iterations over many inpus shoud provide
a mnsiderable anount of information from which a goodinitia guesscan mined. It is often the
case that searching for a solution proceels faster if one can start the search relatively near the
solution.

7 Further Artificial Intelligence Approaches

In the course of this literary review, we were abit surprised to find the gparent ladk of papers
using artificial intelligence gproadies to find loop invariants. As we have previoudy
mentioned, the first work in loop invariant detedion took dacein the ealy 1970s in compil er
research. Sincethen, there gpeas to have been little research in the area despite avy advances
in artificial intelligence While we a&nowledge the work in [5] and [6], we believe that Al

tedniques have great potential in inferring loopinvariants. In the foll owing paragraphs, we will
briefly brainstorm the possble pros and cons of using two standard Al approadhes. macine
leaning and randamized search.

In al aduality, we do not exped macdine learning to be of much value in this problem domain.
Some of the Daikon papers, [2] and [3], devote asedion to this point of view. One view of
madhine learning is the aedion of a speda widget for making dedsions. After training the
widget on a variety of examples (some of which might be erroneous, i.e. noise in the training
set), the widget can then make usually acairate predictions for future situations. How can this be
applied to finding loopinvariants? Due to the incredible variety of loops that exist in programs,
we would need a training set that covers a significant number of these to properly train the
widget! This does nat sean pradica or even remotely feasible. Another reason against using
machine learners is that we really do nd have asituation that requires learning. Consider our
widget again. The widget looks at loop L1 from program A, makes a guessat an invariant, and
leans that it was wrong (or right). Will this help at all when we want to find the invariant for
loop L2 from program B? The answer is probably nat if the programs are significantly different
in structure. While we would suggest keegping an open mind, we do theorize that madine
leaning islikely not aviable source of ideas for finding loopinvariants.

Despite the above comments, there is one patential use for madcine learning that is related to
loopinvariant finding. In Sedion 4,we mentioned Ireland and Stark’ s observation that diff erent
critics performed more efficiently on dfferent loop invariant proofs. It is reasonable to surmise
that alearner could be developed that upan being gven aloop to analyze, it would determine the
appropriate critic to use. Thisisnot adired applicaion d Al to the loopinvariant problem but
does propacse one way of improving the efficiency of invariant finders.

Randam seach, as oppcsed to madiine leaning, appears to have promise for finding loop
invariants. For notorioudly difficult problems where deterministic gpproaches can orly do so
well, such as satisfiability, intelligent randam search has been shown to be anazingly accurate
under most situations. The anphasis on intelligent is important. Let us consider the problem

spacewe have:
Given: aset of variables X /I finite
aset of values'Y that the variables can take on Il potentiadly infinite

the Hoare statement H: { P} while C do S{Q}
Goal: A loopinvariant | for H that is compased of predicaes derived from X and Y
One can exped a randamly chosen set of predicates derived from X and Y will be aloop
invariant with extremely low priority. Thus, pure randam search is unlikely to produce

invariants within ressonable time. Intuitively, though, ore can start from a poar first choice and
incrementally improve it till it becomes an invariant. This locd repair strategy has been used
succesdully on dfficult problems like satisfiability. With this in mind, we now look at more
guided randam searches like hill climbing and genetic dgorithms instead of pure randam seach.

In order to use these intelli gent search methods, we will require ametric to assessthe quality of
different potential invariants. We neal some way of saying potential invariant 11 is better than
patential invariant 12. Furthermore, we need this metric to work incrementally. Continuing the
example, we dhange 12 to get 12" and find that 12’ is better than bah 12 and 11. Determining a
good metric would likely be the most difficult (and likely the most interesting) task in designing
arandam seach based invariant finder. One patential sourcefor ametric would be to look at the
proof plans or trees used to prove an “invariant” as faulty. One can reason that the longer the
disproof takes, the more acairate the invariant was.

Let’s asaume now that we have such a metric. For the sake of this though experiment, we will
loosen ou requirements and make our loop invariant finder part of an interadive discovery
system that uses a genetic dgorithm to find invariants. The programmer writes down a list of
what he or she thinks are the invariants for the code. These predicates form the basis for al the
individuals in the popuation. Some individuals are subsets of this basis, while others include
statements about variables from the mde not mentioned in the basis. Some individuals might
also contain mutations of what the programmer entered, e.g. x < 3 instead of x < 10. The
mutation and crossover operators for this popuation are fairly obvious. The genetic dgorithm
then runs, breeding potentia invariantstill it finds an adual invariant. Essentially, it isdoing in
parall e what a human would doin trying to find invariants: guess correct, guess corred, ... until
an invariant is found.

There are some patential downsides to this approach. One, during ead generation, we will have
to do something to determine the quality of each individual in the popuation. This might be
computationally expensive, particularly if numerous theorem prover cals are required. If thisis
the case, we might need to explore some the optimization tedhniques, like aching in the prover,
proposed in [8]. Ancther problem isthat we've theaed and hed a user guess the initia invariant.
While this might be perfedly reasonable for some software development situations, guessng
invariants for a program containing thousands of loops would be tedious. However, we have
several options for automating the guess One, similar to the induction-iteration method and
Ireland and Stark’s work, we can start from the loog s postcondtion. Ancther optionis to use
the heuristic predicate finder from [5] and then just randaomly assgn values as needed. A third
approach would be to do data mining off of trace data from a test suite as Daikon daes. It is

difficult to say which approadch would be best. Also, it opens the interesting research question of
how much dces the quality of the initial guess affect the conwvergence rate of the genetic
algorithm?

However, we are till ignaing ore problem with using these randamized searches: sometimes
they fail to ever converge. If we run a search x times withou generating a solution, we have no
guarantee that there is no solution. Sometimes, we can use the search to say that the dance of
there still being a solution is sme probability p(x). At this paint, we can adopt the phil osophy
used by Flanagan and Qadeer. If we have managed to improve the seach time for a large
number of problem instances, but some problems dill remain dfficult to solve, then that is good
enough. And if we are lucky, the cases that appea most often in pradice will be the ones our
new methodworks well on.

Randamized seaches, like we mentioned with macdiine learning, might also be useful for
problems related to invariant finding. For example, we surmised that Flanagan and Qadee’s
predicae abstradion approad faled to find all invariants partially becaise their heuristic
predicate generator could nat generate all the predicates needed. Consider alarge set of potential
heuristic rules for generating predicates. Some of these are probably unreeded and a few
probably contradict each other. What one really wants is the subset of these that generates the
“best” predicates. Defining what is “best” returns to the issue of finding a metric, bu search
methods could be goplied aswell to this problem.

These gproaches seem promising on this first-glance, intellecual level. However, it bothers us
that we could na find any literature that described any attempt even remotely simil ar to the ideas
we just proposed. It might be the cae that software engineas have not considered these
approadies and that Al reseachers have not yet focused onthis problem domain. Unfortunately,
this might be an example of where researchers attempted an idea foundit didn’'t work, and oped
not to pubi sh the negative results.

8 Conclusion

The automatic finding of loop invariants will continue to expand and evolve from the ideas
presented in this paper. Due to the gap in reseach, dd idea need to be investigated and
improved upon. While improvements in the field of theorem provers will enhance the
performance of the invariant finders, it is the author’s belief that future work will rely more on
heuristic and potentially randam approaches. Furthermore, the focus will move avay from
perfectly finding loopinvariants to improving the performancefor alarge number of cases.

Bibliography

(1]

(2]

(3]

[4]

(5]

6]

(8]

A. Blass and Y. Gurevich. Inadequacy of Computable Loop Invariants. ACM Transactions on
Computational Logic. 2(1):1-11, January 2001.

M. Ernst. Dynamically Detecting Likely Program Invariants. PhD Dissertation, University of Washington,
Department of Computer Science and Engineering, August 2000.

M. Ernst, J Cockrell, W. Griswold, and D. Notkin. Dynamically Discovering Likepy Program Invariants to
Support Program Evolution. 1EEE Transactions in Software Engineering, 27(2):1-25, February 2001.

M. Erngt, A. Cseizler, W. Griswold, and D. Notkin. Quickly Detecting Relevant Program Invariants.
Proceedings of the 22™ International Conference on Software Engineering (ICSE 2000), Limerick, Ireland,
June 7-9, 2000, pp. 449-458.

C. Flanagan and S. Qadeer. Predicate Abstraction for Software Verification. Proceedings of the 29™
Annual ACM S GPLAN-SIGACT Symposium on Principles of Programming Languages. ACM Press,
2002.

A. Ireland and J. Stark. On the Automatic Discovery of Loop Invariants. Fourth Nasa Langley Formal
Methods Workshop, 1997.

N. Susuki, and K. Ishihata. Implementation of an Array Bound Checker. 4th ACM Symposium on
Principles of Programming Languages. Los Angeles, CA. (January 1977).

Z. Xu, T. Reps, and B. Miller. Safety Checking of Machine Code. S GPLAN Conference on Programming
Language Design and Implementation (PLDI 2000), Vancouver, B.C., June 2000.

