Languages for
High-Performance Computing

Announcements

* Homework 1 due next Monday at 11pm
— Submit your code on dropbox

* Andre will have office hours today at 2:30 in
CSE 615

* Project midpoint report due on May 5

Course Qutline

Static analysis

Language design

— High-performance computing <—— We are here
— Parallel programming

— Dynamic languages

Program Verification

Dynamic analysis

New compilers

Today

* High-performance computing

* Languages for writing HPC applications
— What are the design issues?

* Implementations of HPC languages

— Using stencils as an example

Making Everything Easier!”

Learn to:

* Pick out hardware and software
* Find the best vendor to work with

* Get your people up to speed on
HPC

N

@Sun

sssssssssss

High Performance Computing

* Application domains

— Physical simulations
* Heat equation, geo-modeling, traffic simulations

— Scientific computations

* Genomics, physics, astronomy, weather forecast, ...
— Graphics

* Rendering scenes from movies

— Finance
* High-frequency trading

High Performance Computing

 Hardware characteristics
— Dedicated clusters of compute and storage nodes

— Compute nodes:

e Ultra-fast CPUs
e Large cache

— Dedicated interconnect network
* Nodes arranged in a torus / ring

— Separated physical storage from compute nodes

Example: Titan

* Built by Cray

e 18688 AMD 16-core CPUs, Tesla GPUs

* 8.2MW
* 4352 Ft?

* 693.5 TB memory
* 40 PB disk storage

e 17.59 P-FLOPS
e S97 million

Not your typical desktop machine

How to program HPC clusters?

* Highly (embarrassingly) parallel programs

— Fortran, C, C++
— Now using high performance DSLs

e Utilize both GPU and CPUs
e Batch job submission model

e Goal: utilize as many cores at the same time
as possible

Stencil Programs

Stencils Programs

* Definition: For a given point, a stencil is a fixed
subset of nearby neighbors.

* A stencil code updates every point in an d-
dimensional spatial grid at time t as a function of
nearby grid points at times t-1, t-2, ..., t-k, for T
time steps.

e Used in iterative PDE solvers such as Jacobi,

multigrid, and adaptive mesh refinement, as well as
for image processing and geometric modeling.

Stencil Programs
* Discretize space and time

* Typical program structure:

for (t = 0; t < MAX_TS; ++t) {
for (x = 0; x < MAX_X; ++x) {
for (y = 0; y < MAX_Y; ++y) {
arraylt, x, y] =
f(arrayl[t-1, x, yl, array[t-1, x-1, y-11, ..);
J
J
J

Stencil Programs

* Some terminology:

— A stencil that updates a given point using N
nearby neighbor points is called a N-point stencil

— The computation performed for each stencil is
called a kernel

— Boundary conditions describe what happens at
the edge of the grid

* Periodic means that the edge wraps around in a torus

Example: 2D Heat Diffusion

Let a[t, X,y] be the temperature at time t at point (x,y).

Heat equation

% - a_za n a_za a is the thermal
ot x> 9y’ diffusivity.
Update rule

a[tJXJy] = a[t_l)XJy]
+ CX-(a[t-1,x+1,y] - 2-a[t-1,x,
+ CY-(a[t-1,x,y+1] - 2-a[t-1,x,

2D 5-point stencil

-

O OO O OO0
O OO O OO0
% @)
O
O

More Examples

1D 3-point stencil

thoooooooo0

OOO’%OOOO
O O O OO

3D 19-point stencil

o

O

==

.\O

AN

/

%

R~

S=1

Z/Ng

O

Classical Looping Implementation

Implementation tricks 2606666
* Reuse storage for even and odd o O 09%-@ O
ti t O O O O O
me steps. S e oo oo

* Keep a halo of ghost cells around ©00O0O0O0
the array with boundary values. $eesse

O O O O OO0

For s ((EM="y Eec=r Towttt) ™ 000 0 O

J]O O OO OO OO0

©O OO0 O0O0OO0O0O0

o Al (X =185 X T X))
for (y =0; y <Y; ++y) { // do stencil Rernel
a[t®2, x, y]
= a[(t-1)%2, x, y]

+ CX*(a[(t-1)%2, x+1, y] - 2.0*a[(t-1)%2, x, Y]

+ a[(t-1)%2, x-1, y)]
+ CY*(a[(t-1)%2, x, y+1] - 2.0*a[(t-1)%2, x, VY]

+ a[(t_l)%z: X, y_l)];

e i

Conventional cache optimization: loop tiling.

Parallelizing Loops

for (t = 1; t <=T; ++t) {
@i Tile " FOrR-Y (O =R Ok X ™ <& XEMEE e T

cilk for (y = 0; y < Y; ++y) { // do stencil kernel
a[th2, x, y]

= a[(t-1)%2, x, y]
+ CX*(a[(t-1)%2, x+1, y] - 2.0*a[(t-1)%2, x, y]
+ a[(t_l)%z: x-1, y)]
+ CY*(a[(t-1)%2, x, y+1] - 2.0*a[(t-1)%2, X, Y]
+ a[(t-1)%2, x, y-1)];
e,
 All the iterations of the spatial loops are
independent and can be parallelized

straightforwardly.

Intel Cilk Plus provides a cilk for construct that
performs the parallelization automatically.
OpenMP is another framework for doing this

Issues with Looping

Example: 1D 3-point stencil

N
COHONORCRONONONONORONONORONONCORONONONONONC

COHONORCRONONONONORONONORONONCORONONONONONC
COHONONCRONONONONORONONORONONCRONONONONONG
TOOOO OO0OO0OO0OO0OO0OOOOOOOOOOO
O OO 6 ONONONCRONORONONCORONONCORONONS
OO0OO0OO0O0O0OO0OO0O0O00O00 00000000 O

B

M

Issue: Looping is memory intensive and uses
caches poorly. Assuming data-set size N, cache-
block size B, and cache size M < N, the number
of cache misses for T time steps is ©(NT/B).

Cache-Oblivious Stencil Code

Divide-and-conquer cache-oblivious techniques, based on
trapezoidal decompositions, are asymptotically efficient,
achieving O(NT/M®B) cache misses.

void trapezoid(int t@, int t1, int x@, int dx@, int x1, int dx1) {
1t = t1 - to;
if (2 * (x1 - x0) + (dx1 - dx@) * 1t >= 4 * 1t) {
int xm = (2 * (x0 + x1) + (2 + dx@ + dx1) * 1t) / 4;
trapezoid(te, t1, x0, dx@, xm, -1);
trapezoid(te, t1, xm, -1, x1, dx1);
} else if (1t > 1) {
int halflt = 1t / 2;
trapezoid(t@, t0 + halflt, x@, dx@, x1, dx1);
trapezoid(t@ + halflt, tl, x0 + dx@ * halflt, dx@, x1 + dx1 * halflt, dx1);
} else {
for (int t = t0; t < t1; ++t) {

for (int x = x0; Xx < x1; ++X) h 5 .
kernel(t, x); 1-dimensional trapezoidal-
X0 += dx0; o .
X1 += dx1; decomposition stencil code

i e B

Do you want to write this code?

Pochoir Stencil Compiler

 Domain-specific compiler programmed in Haskell that
compiles a stencil language embedded in C++, a
traditionally difficult language in which to embed a
separately compiled domain-specific language.

* Implements stencils using cache-oblivious algorithm
that can be parallelized using Cilk.

* Easy to express both periodic and non-periodic
boundary conditions.

 There are many DSLs for expressing stencils
— Pochoir is one of them

Pochoir
(the Language)

2D Heat Equation

1 Pochoir_Boundary_2D(zero bdry, arr, t, x, y)

2

return 0;

3 Pochoir_Boundary_ End
4 int main(void) {

5

O 00N O

10
11

12

13
14
15

16

17
18
18

19
20 }

Pochoir_Shape_2D 2D five pt[6]

5 {{@,@,@}, {'1:1:@}: {'11919}1 {'1:'1:@}: {'1:@)'1}: {'1:@:1}}3

Pochoir_2D heat(2D_five pt);

Pochoir_Array_2D(double) a(X,Y);
a.Register_Boundary(zero_bdry);
heat.Register Array(a);

Pochoir_Kernel _2D(kern, t, x, y)
a(t,x,y) = a(t-1,x,y)
+ 0.125%(a(t-1,x+1,y) - 2.0%a(t-1,
+ 0.125*%(a(t-1,x,y+1) - 2.0*a(t-1,
Pochoir_Kernel_ End

for (int x = @; X < X; ++Xx)
for (int y = 0; y < Y; ++y)

a(@,x,y) = rand();
heat.Run(T, kern);

for (int x = @; X < X; ++Xx)
for (int y = 0; y < Y; ++y)
cout << a(T,x,y);

return 0;

X X

J

J

2D Heat Equation

1 Pochoir_Boundary_2D(zero bdry, arr, t, x, y)

2

return 0;

3 Pochoir_Boundary_ End
4 int main(void) {

5

O 00N O

10

12

13
14
15

16

17
18
18

19
20 }

Pochoir_Shape_2D 2D five pt[6]

III time

= {{@,@,@}, {'1:1:@}: {-1,@,@}, {'1:'1:@}: {_1)@J_1}J {'1)631}}3

Pochoir_2D heat(2D_five pt);

Pochoir_Array_2D(double) a(X,Y);
a.Register_Boundary(zero_bdry);
heat.Register Array(a);

Pochoir_Kernel 2D(kern, t, x, V)
a(t,x,y) = a(t-1,x,y)
+ 0.125%(a(t-1,x+1,y) -
+ 0.125*%(a(t-1,x,y+1) -
Pochoir_Kernel_ End

for (int x = @; X < X; ++Xx)
for (int y = 0; y < Y; ++y)
)

a(@,x,y) = rand();
heat.Run(T, kern);

for (int x = @; X < X; ++Xx)
for (int y = 0; y < Y; ++y)
cout << a(T,x,y);

return 0;

Pochoir _Shape dimD name[count]
= {cells};
*dim is the number of spatial
dimensions of the stencil.
*name is the name of the declared
Pochoir shape.
e count is the length of cells.
e cells is a list of the cells in the stencil.

Declare the 2-dimensional Pochoir shape
2D five pt asalist of 6 cells. Each cell
specifies the relative offset of indices
used in the kernel function, e.qg., for
a(t,x,y), we specify the corresponding
cell {0,0,0}, fora(t-1,x+1,y), we
specify {-1,1,0}, and so on.

2D Heat Equation

1 Pochoir_Boundary_2D(zero bdry, arr, t, x, y)

2

return 0;

3 Pochoir_Boundary_ End
4 int main(void) {

12

13
14
15

16

17
18
18

19
20 }

ape_2D 2D five pt[6]

time

a(t_l)x)y)

+ 0.125*%(a(t-1,x+1,y) -
+ 0.125*%(a(t-1,x,y+1) -
Pochoir_Kernel_ End

for (int x = @; X < X; ++Xx)
for (int y = 0; y < Y; ++y)
)

a(@,x,y) = rand();
heat.Run(T, kern);

for (int x = @; X < X; ++Xx)
for (int y = 0; y < Y; ++y)
cout << a(T,x,y);

return 0;

Pochoir _Shape dimD name[count]
= {cells};
*dim is the number of spatial
dimensions of the stencil.
*name is the name of the declared
Pochoir shape.
e count is the length of cells.
e cells is a list of the cells in the stencil.

Declare the 2-dimensional Pochoir shape
2D five pt asalist of 6 cells. Each cell
specifies the relative offset of indices
used in the kernel function, e.qg., for
a(t,x,y), we specify the corresponding
cell {0,0,0}, fora(t-1,x+1,y), we
specify {-1,1,0}, and so on.

2D Heat Equation

1 Pochoir_Boundary_2D(zero bdry, arr, t, x, y)

2

return 0;

3 Pochoir_Boundary_ End
4 int main(void) {

5

O 00N O

10

12

13
14
15

16

17
18
18

19
20 }

Pochoir_Shape_2D

time

Fla(t-1,x+1,y) -
+ 0. 125*(a(t 1,x y+1) -
Pochoir_Kernel_ End

for (int x = @; X < X; ++Xx)
for (int y = 0; y < Y; ++y)
)

a(@,x,y) = rand();
heat.Run(T, kern);

for (int x = @; X < X; ++Xx)
for (int y = 0; y < Y; ++y)
cout << a(T,x,y);

return 0;

Pochoir _Shape dimD name[count]
= {cells};
*dim is the number of spatial
dimensions of the stencil.
*name is the name of the declared
Pochoir shape.
e count is the length of cells.
e cells is a list of the cells in the stencil.

Declare the 2-dimensional Pochoir shape
2D five pt asalist of 6 cells. Each cell
specifies the relative offset of indices
used in the kernel function, e.qg., for
a(t,x,y), we specify the corresponding
cell {0,0,0}, fora(t-1,x+1,y), we
specify {-1,1,0}, and so on.

2D Heat Equation

1 Pochoir_Boundary_2D(zero bdry, arr, t, x, y)

2

return 0;

3 Pochoir_Boundary_ End
4 int main(void) {

5

O 00N O

10
11

12

13
14
15

16

17
18
18

19
20 }

Pochoir_Shape_2D 2D five pt[6]

B {{@,@,9}, {'1:1:@}: {-1,@,@}, {'1:'1:@}: {'1:63'1}: {'1)@:1}}3

Pochoir 2D heat(2D five pt);
Pochoir_Array_2D(do Y);

a.Register_Boundary(zero_bdry);
heat.Register Array(a);

Pochoir_Kernel 2D(kern, t, x, V)
a(t,x,y) = a(t-1,x,y)
+ 0.125%(a(t-1,x+1,y) -
+ 0.125*%(a(t-1,x,y+1) -
Pochoir_Kernel_ End

for (int x = 0; x < X; ++x)
for (int y = 0; y < Y; ++y)
a(@,x,y) = rand();
heat.Run(T, kern);
for (int x = 0; Xx < X; ++X)
for (inty = 0; y < Y; ++y)
cout << a(T,x,y);

return 0;

Pochoir _dimD name (shape);

*dim is the number of spatial
dimensions in the stencil computation.
*name is the name of the Pochoir
object being declared.

*shape is the name of a Pochoir shape.

Declare a 2-dimensional Pochoir object
heat whose kernel function will conform
to the Pochoir shape 2D _five pt. The
Pochoir object will contain all the data
and operating methods to perform the
stencil computation.

2D Heat Equation

1 Pochoir_Boundary_2D(zero bdry, arr, t, x, y)

2
3

4
5

O 00N O

10
11

12

13
14
15

16

17
18
18

19
20

return 0;
Pochoir_Boundary_End

int main(void) {
Pochoir_Shape_2D 2D five pt[6]
= {{0,0,0}, {-1,1,0}, {-1,0,0},
Pochoir_2D heat(2D_five pt);
Pochoir_Array_2D(double) a(X,Y);
a.Register_Boundary(zero_bdry);
heat.Register Array(a);
Pochoir_Kernel 2D(kern, t, x, V)
a(t,x,y) r a(t_l)x)y)

+ 0.125*%(a(t-1,x+1,y) -
+ 0.125*%(a(t-1,x,y+1) -

Pochoir_Kernel End
for (int x = @; X < X; ++Xx)
for (int y = 0; y < Y; ++y)
a(0,x,y) = rand();

heat.Run(T, kern);

for (int x = @; X < X; ++Xx)
for (int y = 0; y < Y; ++y)
cout << a(T,x,y);

return 0;

¥

1]

Pochoir_Array_dimD(type)
array(size,,. ., ...,Size;,size,) ;
* type is the type of the Pochoir array.
*dim is the number of dimensions.
*array is the name of the declared
Pochoir array.
*sizey, ., ..., Size,, size, , are the
number of grid points along each
spatial dimension, indexed from ©.

Declare a 2-dimensional Pochoir array a
of type double with spatial dimensions
X grid points by Y grid points. The
Pochoir array contains both underlying
storage and requisite operating methods.

r

2D Heat Equation

Pochoir_Boundary 2D(zero bdry, arr, t, X,

y)

return 0;

int main(void) {

1
2
3 Pochoir_Boundary_End
4
5

12

13
14
15

16

17
18
18

19
20 }

Pochoir_Shape_2D 2D five pt[6]

A {{e)@Je}J {'1:1)@}) {_1)@J6}J {'1:'
Pochoir_2D heat(2D_five pt);
Pochoir_Array_2D(double) a(X,Y);
a.Register_Boundary(zero_bdry);
heat.Register_Array(a);

Pochoir_Kernel_2D(kern, t, x, y)
a(t)XJy) i a(t_l)XJy)
+ 0.125*%(a(t-1,x+1,y) - 2
+ 0.125%(a(t-1,x,y+1) - 2
Pochoir_Kernel End
= 0; X < X; ++X)
for (int 'y = 0; y < Y; ++y)
a(0,x,y) = rand();

for (int x

Pochoir_Boundary_ dimD(name,
array, time, Xy, 1s--» X715 Xp)
<definition>
Pochoir_Boundary_ end

*dim is the number of dimensions.

*name is a boundary function.

earray is a Pochoir array.

*time is the time coordinate.

*Xyim-1s --» X3, Xo @re the coordinates of
each spatial dimension.

* <definition> is C++ code that returns
values for array when it is indexed by
spatial coordinates that fall outside
the declared dimensions.

heat.Run(T, kern);

for (int x = @; X < X; ++Xx)
for (inty = 0; y < Y; ++y)
cout << a(T,x,y);

return 0;

Declare a boundary function
zero_bdry on the 2-dimensional
Pochoir array arr indexed by time
coordinate t and spatial coordinates x
and y, which always returns @.

ol

2D Heat Equation

1 Pochoir_Boundary_2D(zero bdry, arr, t, x, y)

2

return 0;

3 Pochoir_Boundary_ End
4 int main(void) {

5

O 00N O

10
11

12

13
14
15

16

17
18
18

19
20 }

Pochoir_Shape_2D 2D five pt[6]

5 {{@,@,9}, {'1:1:@}: {-1,@,9}, {'1:'1:@}: {'1:61'1}: {_1J@J1}};

Pochoir_2D heat(2D_five pt);

Pochoir_Array_2D(double) a(X,Y);
a.Register_ Boundary(zero bdry);
heat.Register Ar

Pochoir_Kernel 2D(kern, t, X;

a(t)ny) r a(t_l)x)y)
+ 0.125*%(a(t-1,x+1,y)
+ 0.125*%(a(t-1,x,y+1) -
Pochoir_Kernel_ End

for (int x

= 0; X < X; ++X)
for (int y
)

O; y < Y; ++y)
rand();

| array.Register_ Boundary(bdry)

earray is a Pochoir array.

* bdry is the name of a boundary
function to return a value when array
is indexed by spatial coordinates that
fall outside array’s declared bounds.

heat.Run(T, kern);

for (int x = @; X < X; ++Xx)
for (int y = 0; y < Y; ++y)

Register the boundary function
zero_bdry with the Pochoir array a.

cout << a(T,x,y);
return 0;

2D Heat Equation

1 Pochoir_Boundary_2D(zero bdry, arr, t, x, y)

2

return 0;

3 Pochoir_Boundary_ End

4 int main(void) {

5

O 00N O

10
11

12

13
14
15

16

17
18
18

19
20 }

Pochoir_Shape_2D 2D five pt[6]

& {{@J@JQ}J {_1:1:@}) {'1) }J {_]
Pochoir_2D heat(2D_five 5
Pochoir_Array_2D(le) a(X,Y);
a.Register_Boundary(zero bdry);
heat.Register Array(a);

Pochoir_Kernel 2D(kern, t, x, V)

name.Register Array(array)
*name is a Pochoir object.
earray is a Pochoir array to register with
name. Several Pochoir arrays can be
registered with the same Pochoir
object.

a(t)ny) F a(t_l)x)y)
+ 0.125*%(a(t-1,x+1,y) -

+ 0.125*%(a(t-1,x,y+1) -

Register the Pochoir array a with the
Pochoir object heat.

Pochoir_Kernel_ End

for (int x = @; X < X; ++Xx)
for (int y = 0; y < Y; ++y)

a(@,x,y) = rand();
heat.Run(T, kern);

for (int x = @; X < X; ++Xx)
for (int y = 0; y < Y; ++y)
cout << a(T,x,y);

return 0;

2D Heat Equation

Pochoir_Boundary_2D(zero_bdry, arr, t, x

\l\

return 0;

int main(void) {

1
2
3 Pochoir_Boundary_ End
4
5

12

13
14
15

16

17
18
18

19
20 }

Pochoir_Shape_2D 2D five pt[6]

= {{0,0,0}, {-1,1,0}, {-1,0,0}, {f1,-
Pochoir_2D heat(2D_five pt);
Pochoir_Array_2D(double) a(X,Y);
a.Register_Boundary(zero bdry);
heat.Register Array(a);

Pochoir Kernel 2D(kern, t, x, V)
a(thJy) = a(t_l)XJy)
+ 0.125*%(a(t-1,x+1,y) - 2
+ 0.125*%(a(t-1,x,y+1) - 2
Pochoir_Kernel_ End

for (int x = @; X < X; ++Xx)
for (int y = 0; y < Y; ++y)

a(0,x,y) = rand();
heat.Run(T, kern);

Pochoir_kernel dimD(func, time,
Xgim-13 -3 X15 Xp)

<definition>
Pochoir_kernel end

*dim is the number of dimensions.

*func is the name of the kernel
function being declared.

*time is the time coordinate.

*Xyim-1s --» X1, Xo @re the coordinates of
the spatial dimension.

e <definition> is C++ code that defines
how each each grid point (as
represented by Pochoir arrays at a
given coordinate) should be updated
as a function of neighboring
gridpoints earlier in time.

for (int x = @; X < X; ++Xx)
for (int y = 0; y < Y; ++y)
cout << a(T,x,y);

return 0;

Declare a kernel function kern with
time parameter t and spatial
parameters X and y.

2D Heat Equation

Pochoir_Boundary_2D(zero bdry, arr, t, x, y)

return 0;

int main(void) {

1
2
3 Pochoir_Boundary_ End
4
5

12

13
14
15

16

17
18
18

19
20 }

Pochoir_Shape_2D 2D five pt[6]

5 {{@,@,9}, {'1:1:@}: {-1,@,9}, {'1:'1:@}: {'1:61'1}: {'1)@:1}}3

Pochoir_2D heat(2D_five pt);

Pochoir_Array_2D(double) a(X,Y);
a.Register_Boundary(zero_bdry);
heat.Register Array(a);

Pochoir_Kernel 2D(kern, t, x, V)
a(t,x,y) = a(t-1,x,y)
+ 0.125%(a(t-1,x+1,y) -
+ 0.125*(a(t-1,x,y+1) /-
Pochoir_Kernel_ End

for (int x = 0; x < X; ++x)
for (int y = 0; y < Y; ++y)
a(0,x,y) = rand();
heat.Run(T, kern);
for (int x = 0; Xx < X; ++X)
for (inty = 0; y < Y; ++y)
cout << a(T,x,y);

return 0;

The Pochoir arrays can be initialized in
whatever manner the programmer
wishes . Time coordinates 9, 1, ...,
depth must be initialized, where depth
is the shape depth: the zero-based time
dimension of the Pochoir shape
(usually 1).

Initialize all points of the grid at time ©
to a random value.

2D Heat Equation

1 Pochoir_Boundary_2D(zero bdry, arr, t, x, y)

2

return 0;

3 Pochoir_Boundary_ End
4 int main(void) {

5

O 00N O

10
11

12

13
14
15

16

17
18
18

19
20 }

Pochoir_Shape_2D 2D five pt[6]

5 {{@,@,9}, {'1:1:@}: {-1,@,@}, {'1:'1:@}: {'1:63'1}: {'1)@:1}}3

Pochoir_2D heat(2D_five pt);

Pochoir_Array_2D(double) a(X,Y);
a.Register_Boundary(zero_bdry);
heat.Register Array(a);

Pochoir_Kernel 2D(kern, t, x, V)
a(t)ny) 7 a(t_l)x)y)
+ 0.125*%(a(t-1,x+14) -
+ 0.125*(a(t-1,xA4+1) -
Pochoir_Kernel_ End

for (int x = ©; x < X; ++
for (int y = 0; y < Y}/ ++y)
a(@,x,y) = rand();
heat.Run(T, kern);
for (int x = 0; Xx < X; ++X)
for (inty = 0; y < Y; ++y)
cout << a(T,x,y);

return 0;

name .Run(steps, func)

*name is the name of a Pochoir object.

*steps is the number of time steps to
run the stencil computation.

*func is a defined kernel function.
compatible with the Pochoir shape
registered with name.

Run a stencil computation on the Pochoir
object heat for T time steps using kernel
function kern. The Run method can be
called multiple times.

2D Heat Equation

1 Pochoir_Boundary_2D(zero bdry, arr, t, x, y)

2
3

4
5

O 00N O

10
11

12

13
14
15

16

17
18
18

19
20

return 0;

Pochoir_Boundary_End

int main(void) {
Pochoir_Shape_2D 2D five pt[6]

5 {{@,@,9}, {'1:1:@}: {-1,@,@}, {'1:'1:@}: {'1:63'1}: {'1)@:1}}3

Pochoir_2D heat(2D_five pt);

Pochoir_Array_2D(double) a(X,Y);
a.Register_Boundary(zero_bdry);
heat.Register Array(a);
Pochoir_Kernel 2D(kern, t, x, V)
a(t)ny) r a(t_l)x)y)

+ 0.125*%(a(t-1,x+1,y)/ -

+ 0.125*%(a(t-1,x,y+1
Pochoir_Kernel_End
for (int x = 0; x < X; ++x)
for (int y = 0; y < Y; ++y)
a(@,x,y) = rand();
heat.Run(T, kern);
for (int x = 0; x < X; ++x)
for (inty = 0; y < Y; ++y)
cout << a(T,x,y);
return 0;

¥

Elements of the Pochoir array can be
read out anytime after the computation
by indexing elements with time
coordinate time+depth-1, where time is
the number of steps executed and depth
is the shape depth. The << operator is
overloaded for Pochoir arrays to pretty-
print their contents.

Print the elements of the Pochoir array a
to standard out. The statement

cout << a;
would pretty-print the results.

Expressing Boundary Conditions

Nonperiodic zero boundary

Pochoir_Boundary 2D(zero_bdry, arr, t, x, y)
return 0;
Pochoir_Boundary_End

Periodic (toroidal) boundary

#define mod(r,m) (((r) % (m)) + ((r)<0)?(m):0)
Pochoir_Boundary_2D(periodic, arr, t, x, y)
return arr.get(t,
mod(x, arr.size(1)),
mod(y, arr.size(Q)));
Pochoir_Boundary_End

Pochoir
(the Compiler)

Two-Phase Compilation Strategy

Phase 1 goal:

Check functional

correctness

Pochoir
Spec.

/[

Pochoir
Template
Library

Pochoir
Spec.

Pochoir
Compiler

Postsource
Cilk Code

Phase 2 goal:
Maximize
performance

Intel C++
Compiler

GG —><Serial Loo s>
Compiler P

.

Optimized
arallel Cod

)

Pochoir
Template
Library

Pochoir Guarantee

If a stencil program ‘ o ——

compiles and runs with el G-
. Pochoir 4

the Pochoir template Template |

Librar

library during Phase 1,

Pochoir | [“pochoir | [Postsource
then no errors E [leomalew| SRS |
will occur during __ 'c”;i'FfE
Phase 2 when it is /“ﬁ{;}f’;i‘je
compiled with the Pochoir
compiler or during the subsequent
running of the optimized binary.

Why is this important?

Impact of the Pochoir Guarantee

* The Pochoir compiler can parse as much of the
programmer’s C++ code as it is able without
worrying about parsing it all.

* If the Pochoir compiler can “understand” the code,
which it can in the common case, it can perform
strong optimizations.

e If the Pochoir compiler cannot “understand” the
code, it can treat the code as correct
uninterpreted C++ text and rely on base C++
compiler

Pochoir
(the Implementation)

Optimizations

e Two code clones

* Unifying the handling of periodic and
nonperiodic boundary conditions

* Automatic selection of optimizing strategy

* Coarsening of base cases

Two Code Clones

* The slow clone handles regions that contain boundaries and
checks for out-of-range grid points.

* The fast clone handles the larger interior regions which
require no range checking.

Two Code Clones

* The slow clone handles regions that contain boundaries and
checks for out-of-range grid points.

* The fast clone handles the larger interior regions which
require no range checking.

During the recursive
algorithm, the fast clone is
used whenever possible.

Two Code Clones

* The slow clone handles regions that contain boundaries and
checks for out-of-range grid points.
* The fast clone handles the larger interior regions which

require no range checking.

During the recursive
algorithm, the fast clone is
used whenever possible.

Once the fast clone is used for
a region, the fast clone is
always used for its subregions.

Two Code Clones

* The slow clone handles regions that contain boundaries and
checks for out-of-range grid points.

* The fast clone handles the larger interior regions which
require no range checking.

During the recursive
algorithm, the fast clone is
used whenever possible.

Once the fast clone is used for
a region, the fast clone is
always used for its subregions.

Two Code Clones

* The slow clone handles regions that contain boundaries and
checks for out-of-range grid points.

* The fast clone handles the larger interior regions which
require no range checking.

During the recursive
algorithm, the fast clone is
used whenever possible.

Once the fast clone is used for
a region, the fast clone is
always used for its subregions.

Lessons Learned

* Design specific constructs for domain

* Constructs need to easily map to underlying
target language

* Exposing high-level structure allows domain-
specific optimizations

