Synthesis-Enabled Translation

Announcements

e Office hour today 3-4, CSE 530

* Project presentations on Thursday
— 10 min presentation for each group
— 2 min for questions

* Project final report and HW 2 due on June 9th

Outline for today

* Synthesis background
* Using synthesis to build compilers

* Two domain studies
— Database applications
— Stencils

What is synthesis

The promise

Automate the task of writing programs

What do we mean by synthesis

* We want to get code from high-level specs
— Python and VB are pretty high level, why is that not synthesis?

e Support compositional and incremental specs

— Python and VB don’t have this property

 If | don’t like the way the python compiler/runtime is implementing my
program, | am out of luck.

— Logical specifications do
* | can always add additional properties that my system can satisfy

— Specs are not only functional
 Structural specifications play a big role in synthesis
* How is my algorithm going to look like.

The fundamental challenge

 The fundamental challenge of synthesis is dealing with an
uncooperative environment

— For reactive systems, people model this as a game

* For every move of the adversary (ever action of the environment), the
synthesized program must make a counter-move that keeps the system

working correctly.
* The game can be modeled with an automata

The fundamental challenge

 The fundamental challenge of synthesis is dealing
with an uncooperative environment

— If we are synthesizing functions, the environment
provides the inputs

— i.e. whatever we synthesize must work correctly for
all inputs

* This is modeled with a doubly quantified
constraint

— if the spec is given as pre and post conditions, then:

—@RVo.(oF {pre}) = (o= WP(P, {post})

 But what does it mean to quantify over the space
of programs??

Quantifying over programs

* Synthesis in the functional setting can be seen as curve
fitting
— i.e. we want to find a curve that satisfies some properties

* |t's very hard to do curve fitting when you have to consider
arbitrary curves

— Instead, people use parameterized families of curves

— This means you quantify over parameters instead of over
functions

* This is the first fundamental idea in software synthesis
— People call these Sketches, scaffolds, templates, ...
— They are all the same thing

Formalizing the synthesis problem

e dP.Vo.(oF {pre}) = (o= WP(P, {post})
e JP.Vin.P(in)F ¢

* ¢ represents the specification
e dc.Vin. Sk(c, in) = ¢
 Jc.Vin.Q(c, in)

* Many ways to represent Q
 Can model as a boolean predicate at the abstract level

Dealing with quantifiers

* Eliminate symbolically
— You can use an abstract domain

— You can use plain-vanilla elimination
(not recommended)

e Sample the space of inputs intelligently

Solving the synthesis problem

* Deductive synthesis

— Write rules to describe all possible derivations
from spec to actual program

— Provably correct since only semantic-preserving
programs are explored

— Requires axiomatization of domain and complete
spec from user

— Example: Denali

Solving the synthesis problem

* Inductive synthesis
— User gives examples of input / output of P

» Essentially a partial specification
— Requires no axioms
— Search can take significant amount of time

Inductive synthesis: example

Define parameterized programs explicitly

— Think of the parameterized programs as

“programs with holes”
Example: Hello World of Sketching

spec: sketch:
int foo (int x) int bar (int x) [implements| foo
{ {
return x + Xx; return x *|??
} }

Integer Hole

Solving inductive synthesis

Synthesize

in

This is known as CEGIS
(Counter-Example Guided Inductive Synthesis)

CEGIS in Detail

0(c in) —

in

Synthesizing function bodies

 Model each possible function using minterms
* Choose among candidates using multiplexers
 Example:

int ¢ = ?7;

1f (c == @) return foo();

else 1f (¢ == 1) return bar();
else 1f (c == 2) return baz();
else error;

e Can now use CEGIS as before to find value of ??

What does any of this has
to do with compilers?

Recall from last lecture

?

Source

Target | o
code '

code

* Source and target languages have well-
specified semantics

— Otherwise we don’t know what we are doing

 We need to do two things:

— Find code written in target language to convert
source into

— Verify that the found fragment is correct, i.e.,
semantic-preserving

Recall from last lecture

?

Source

Target | o
code '

code

* Traditional compilers solve this using semantic-
preserving transformation passes

— Or so you hope

e Superoptimizers solve this using targeted search

— Treat source code as specification
— Still need to axiomatize possible transforms

Recall from last lecture

Source ? Target | o

code code

* |nsight 1: given a target code fragment, we
can check whether it satisfies spec or not

— At least semi-automatically, cf. HW?2
* |Insight 2: we can generate candidate source-

target code fragments and use verifier to
check its validity

— This is now an inductive synthesis problem!
— We search for both target code and proof

Recall from last lecture

Source ? Target | 5

code code

* |ssue 1: searching for target code fragments
given concrete syntax Is very expensive
— Translate from x86 assembly to SPARC

* |ssue 2: Hoare-style verification requires
finding loop invariants
— Problem is undecidable in general

Recall from last lecture

Source ? Target | o

code code

* |ssue 1: searching for target code fragments
given concrete syntax Is very expensive

— We first “lift” source code to a higher level
representation before searching
* |ssue 2: Hoare-style verification requires
finding loop invariants

— We only need to find invariants that is “strong
enough” to validate the postconditions

Synthesis-Enabled Translation

VC Computation

Code Target

" N Postcondition d
ragmgn Synthesizer code
Identifier

—_—

Original
source

Formal Verifier

Kernel translator

VC Computation

Code
Fragment
Identifier

Postcondition
Synthesizer

Formal Verifier

24

Kernel Translator #1: Java to SQL

SET

Proof of
Java < Equivalencejl> SQL

Kernel Translator

Application

Methods

<

>

Objects

ORM

libraries

SQL Queries
>

~

Relations

1: Java to SQL

Database

26

Java to SQL

List getUsersWithRoles () { SELECT * FROM user
List users = User.getAllUsers(); >
List roles = Role.getAllRoles(); >

List results = new ArrayList(); SELECT * FROM role
for (User u : users) {
for (Role r : roles) {
if (u.roleld == r.id)
results.add(u); }}

return results; }
List getUsersWithRoles () {
return executeQuery(
|:> “SELECT u FROM user u, roler
convert WHERE u.roleld ==r.id
to ORDER BY u.roleld, r.id”;

Java to SQL

List getUsersWithRoles () {
List users = User.getAllUsers();

List roles = Role.getAllRoles(); [outerInvariant(users, roles,

List results = new ArrayList(); u, results, ..)
for (User u : users) { (A

innerInvariant(users, roles,

for (Role r : roles) { — u, r, results, ..))

if (u.roleld == r.id)
results.add(u); }}

\

return results; }
--=====:::{ results = outputExpr(users, roles)

precondition 2
Verification outerlnvariant(users/query(...), results/[], ...)
conditions outerlnvariant(...) A outer loop terminates =2

results = outputExpr(users, roles) ...

Expressing invariants

* Theory of Ordered Relations (TOR)
* Similar to relational algebra
* Model relations as ordered lists

L := program var e := L[i]
[] e ope
L:L|L:e max(L) | min(L)
top.(L) sum(L) | avg(L)
L X L| O(L) size(L)
7t (L) | order(L)

Java to SQL

List getUsersWithRoles () {
List users = User.getAllUsers();

List roles = Role.getAllRoles();

List results =

r .
outerInvariant(users, roles,]

new ArrayList(); u, results, ..)
for (User u : users) { 4

for (Role r :

roles) { results ;,, = results ; :

if (u.roleld == r;ig)’,,———‘ usersli] X, o142 iq Foles [0..j]

results.add(u); }} \
return results;

Verification
conditions

by
results = users X ., q-iqroles

precondition 2

outerlnvariant(users/query(...), results/[], ...)

outerlnvariant(...) A outer loop terminates 2>

results = outputExpr(users, roles) ...

Java to SQL

Program
+
Unknown VC SkEtCh Unroll
Postcondition Generator C-!lke language Inline
+ with holes and Enumerate
Unknown assertions
Invariants /

VC Computation

Ali
> — Fracgor(rjlznt Postcondition -I;ac:g:t
Original Dataflow Identifier Synthesizer
source

Formal Verifier

Kernel translator

31

Join Query

1000K .
=¢=original
<“@inferred .
100K
E Nested-loop join —=> Hash join!
v
E10K - O(n?) O(n)
©
©
3 4
8 1K P
e L
100 | | | | |

0 20K 40K 60K 80K 100K

Number of roles / users in DB
32

Kernel Translator #2: Fortran to Halide

Legac .
Fo?trax IC++ Proof of Stencil DSL
Code Equivalence (Halide)

Legacy Fortran to Halide

for (k=y_min-2;k<=y_max+2;k++) {
for (j=x_min-2;j<=x_max+2;j++) {
post_vol[((x_max+5)*(k-(y_min-2))+(j)-(x_min-2))]
= volume[((x_max+4)*(k-(y_min-2))+(j)-(x_min-2))]
+ vol_flux_y[((x_max+4)*x(k+1 -(y_min-2))+(]j)-
(x_min-2))1]
- vol_flux_y[((x_max+4)*(k-(y_min-2))+(j) —
(x_min-2))1;

Postcondition:
post_vol[j,k] = volume[j,k] + vol_flux[j,k+1] + vol_flux[j,k]

Expressing invariants
V (i,j) € Dom. A[j, j] = expr({B,[expr(ij), expr(ij)] })

out = 0;
for(int i=0Q; i<n-1; ++i){
out[i+1] = in[il;

* Big invariants

}
0<i<n—1 * Complex floating point

Vje[Li] out[j]=in[j—1] . .
Vjé&[1,i] out[i]=0 arlthmEth

| J
I

Loop invariant Universal Quantifiers

Example

out = 0
for(int 1=0; i<n-1; ++i){
out[i+1] = in[i];

}

O=t=n—1 infidx] idx € [1,n)
Vi, n,out, in, idx Vj€[1,i] out[j]=in[j—1] A i>n—1 - out[idx] = Xpaxe L
e . 0 otherwise
Vj&[1,i] out[i]=0

\] | J \ J
I | I

Loop invariant —loopCond out=expr

Example

out = 0
for(int 1=0; i<n-1; ++i){
out[i+1] = in[i];

}

0<is<n-1

/\ out[j] = in[j — 1]
V i, n, out, in, idx J€iaxn[L] A i>n—1 > out[idx] = in[idx] idx € [1,n)
q 0 otherwise
out[j]=0

je{idx}n[1,i]
\] | J
|] |

! —loopCond out=expr

Loop invariant

Synthesis time

18000

14400

10800

7200

3600 | I
. IIlII_ III

Synthesis Time (s)

\q\ro\@’o\‘»g@? QQ\&Q\’ Q’”\,\/Q" (3@@@"@@?’ <> ®’§®%§®
I -2 Ny AN
'b((\ S '2§° S fb*o v R

Benchmark

Synthesis time with parallel synthesis on 24 cores

Speedup

Speedup

14

S

Kernel Speedup Relative to Original Serial Code

12

10

ackl91
ackl92
ackl94

openmp —

Ty] o — o) Ty] I~ - s8] 0)] o -] o I}
® © o ©6 ©o o o o o > T T 5
¥ = - - - - X X X © ¢ 8 ¢
o ¥ X X X X E E E £ O
© £ E E E E @ @© ®
) © m) ©
poly M halide m— halide(tuned) m—

Speedups on 24 cores

Summary

* Automatic translation from source to target
language is hard

* Use synthesis to bridge the gap

e Future work:
— Cost-based translation

— Language for developers to express invariants

Course Qutline

e Static analysis
* Language design
* Program Verification
* Dynamic analysis
* New compilers
— superoptimizers

— synthesis-based translation

Other PL classes of interest

* 503: Software Engineering

* 505: Programming Languages

* 507: Computer-Aided Reasoning for Software
* 504: Advanced Topics in Software Systems

* 599: Verifying Software Systems

Thank you for taking this class
Have a great summer!

