CSE 501

Principles and Applications
of Program Analysis

Welcome to CSE 501!

The Cast

Instructor

Alvin Cheung
CSE 530

[(Q,D,o,h),e] - (Q,D,o,H),(c,€)
force(Q’, D/, (o/, €)) — Q", D", False
[[(Q//, D/I,O-, hl>’ 82]] N <O///’ DH,OJ, h//>

[(Q, D, o, h), if(e) then s; else sp] — (Q", D", o', h")

[(Q,D,o,h),s] - (Q,D,o',)

[{Q, D, o, hy, while(True) do s — (Q’, D', o', h’)

[(Q,D,o,hy,e] — (Q,D,o,h),(c,€)
force(Q', D, (o', €)) - Q",D", v
update(D”, v) — D"’

. v oA S DQ7[id].s] if Q"[id].rs = ()
vid € Q7. Q7id] = {Q"[id].rs otherwise

[(Q. D, o, h), W(e)] — (Q", D", 0, H)

3 24 rpyAHA

- ”
y X
P 1
48 K
p

TA Extraordinaire

Andre Baixo
Office hours: TBD

Course Communication

* Discussion board
— HW help
— Find project partners

* Course website:
courses.cs.washington.edu/501

 Email: cse501-staff@cs.washington.edu

Course Goals

* What are the techniques used to
understand programs?

— Mix of classical and recent advances

» What can we use these techniques for?

— Variety of applications across different
domains

« How do we build tools that utilize such
techniques?

Course Goals

« How to do research?
— How to choose problems
— How to devise solutions
— How to evaluate
— How to report results

Course Non-Goals

« How to build a compiler from scratch
— Check out CSE 401

» What are all the compiler optimizations
out there?

— Check out list of references on website

 Cover all research topics in program
analysis
— 35 years of PLDI but we only have 10 weeks!

Class Format

* Two class meetings per week
— Tuesday and Thursday 11am — 12:20 pm
— Here!

 Occasional HW help and project feedback
sess1ions

Class Format

« We will discuss 1-2 research papers during
each class meeting

— Please read them beforehand

— We ask you to write a small commentary
before class to share with everyone

— Be prepared to ask questions!

Grading

« Programming assignments (30%)
— Get to know available tools out there
— No late days

* Project (50%)
— Open-ended: find problems in your research area
— Work with a partner
— We will provide you with potential ideas
— Project milestones, end-of-quarter presentation, final
report
» Paper summaries (20%)
— Submit paper summary 24-hrs before lecture
— See details on course website

Course Topics

* Dataflow frameworks

* Abstract interpretation

* Domain-specific languages
* Program verification

* Dynamic analysis

Course Topics

* Dataflow frameworks & abstract interpretation
— Pointer analysis
— Compiler optimizations
— Information flow
— Detecting malware

* Domain-specific languages
— Parallel programming
— High-performance computing
— New hardware

Course Topics

* Program verification
— Finding program invariants
— Provably-correct compilers

* Dynamic analysis
— Program testing
— Model checking

» Compiler construction

Prerequisites

* Coding

 Data structures
» Mathematical logic

» [Optional] Knowledge about compilers

Now the fun begins...

Why understand programs?

We all write code!

It's good to get some understanding about
what we are coding

It's good to develop a formal framework for
understanding programs

It's good to have somebody else do this for
us, perhaps automatically

List of software bugs

From Wikipedia, the free encyclopedia

Many software bugs are merely annoying or inconvenient but some can have extremely serious consequences
— either financially or as a threat to human well-being. The following is a list of notable software bugs with
significant consequences:

Space exploration

In 1997, the Mars Pathfinder mission was jeopardised by a bug in concurrent software shortly after the

rover landed, which had not been found in preflight testing because it only occurred in certain
unanticipated heavy-load conditions.!>! The problem, which was identified and corrected from Earth,

was due to computer resets caused by priority inversion.[017]
Medical

= A bug in the code controlling the Therac-25 radiation therapy machine was directly responsible for at
least five patient deaths in the 1980s when it administered excessive quantities of X-rays.[13][14][15]

» A Medtronic heart device was found vulnerable to remote attacks in March 2008.[16]

Video gaming

The Corrupted Blood incident was a software bug in World of Warcraft that caused a status ailment,
that was supposed to be locally restricted to a certain level of the game, to be set free, affecting all
players everywhere in the virtual game world. This caused players to avoid crowded places in-game,
just like in a "real world" epidemic, and the bug became the centre of some academic research on the

spread of infectious diseases.133!

PROGRAMMING

You're DoiNG It CompLeTely WRONG.

A Classical Example: Compilers

A 50,000 ft view:
Source X C 1 , Tlarget
Language OMplet Language

A Classical Example: Compilers

A 10,000 ft view:
Java | Intermediate JVM
Representation bytecode
Lexer Optimizer Runtime
system
Parser Bytecode JIT
Selector compiler

[See CSE 401 for details]

Optimizations
Dataflow
Analysis!!

* Dead code elimination
* Partial redundancy elimination

* Function inlining
* Strength reduction
* Loop transtormations

— Hoisting Intermediate
— Unrolling Representation
— Vectorizing

 Constant propagation Optimizer

Beyond compilers

* Program correctness
» Security breaches

» Have programs write themselves

Program representation

int pow (int a, int n) {
int p = 1;
for (int 1 = 0; 1 < n; ++1)
p *= a;
return p;

¥

Program representation

int pow (int a, int n) {
int p = 1;
for (int 1 = 0; 1 < n;
++1)
p *= a;
return p;

}

p:p*a

return p

Data-flow graph

int pow (int a,

int p = 1;
for (int 1 =
p *= a;

return p;

}

int n) {

Q; 1 < n; ++1)

return p

Control-flow graph

Enter
int pow (int a, int n) { D=1
int p = 1;
for (int 1 = 0; 1 < n; ++1) i =0
p *= a; |
return p; i <

} A

return p

Control-flow graph

Enter

* Directed graph o=

— Each node is a statement

— Edges represents possible i = o

flow of control
i<

e Statements

— Assignments A

— Branches return p
— Enter / return
— Declarations usually omitted

Basic blocks

Enter
* Sequence of statements 5=
with only one entry
and exit point i=0
i <

* Condensed representation /\
of statements =~

return p

Program point

* Every statement entry
and exit

* Program behavior at
each program point

-
/\ A 4

return p

Special edges

* Back edge * Critical edge
— Points to a block thathas ~ — Edge that is neither the
been traversed only edge leaving source
nor entering target
Enter
p =1 1 <n X < n
. /\/
) i=25 i =1+ 1
1 <n

return p

Il
+
—

Summary

We will study techniques to understand
code

Not (just) a compiler class!

Many connections to programming
languages, systems, security, architecture
etc

|[Programming systems quals for grad students]

Next time: dataflow!

