
Solving Sha~e-Analysis Problems in Languages with Destructive Updating

Mooly Sagiv”t and Thomas Repst Reinhard Wilhelm$

University of Wisconsin Universitat des Saarlandes

Abstract

This paper concerns the static analysis of programs that per-

form destructive updating on heap-allocated storage. We

give an algorithm that conservatively solves this problem

by using a finite shape-graph to approximate the possible

“shapes” that heap-allocated structures in a program can

take on. In contrast with previous work, our method M even
accurate for certain programs that update cyclic data struc-

tures. For example, our method can determine that when
the input to a program that searches a list and splices in
a new element is a possibly circular list, the output is a
possibly circular list.

1 Introduction

This paper concerns the static analysis of programs that

perform destructive updating on heap-allocated storage. It
addresses problems that can be looked at — depending on

one’s point of view — as pomter-analyszs problems, alias-

analysis problems, storage-analysts (shape-analysis) prob-
lems, or type-checking problems. The information obtained

is useful, for inst ante, for generating efficient sequential or
parallel code.

Throughout most of the paper, we will emphasize the ap-
plication of our approach to shape-analysis problems. The

goal of shape analysis is to give, for each program point,
a (finite) characterization of the possible “shapes” that the

program’s heap-allocated data structures can have at that,
point. We will illustrate our approach by means of a running

example in which we apply our analysis technique to a pro-
gram that uses destructive updating operations to reverse

a list. This example also illustrates the connection between

shape analysis and type checking: It demonstrates how a

sufficiently precise shape-analysis algorithm is able to ver-
ify that the destructive-reverse program does indeed return
a list whenever its argument is a list. The application of

*On leave from the IBM Israel Scientific Center. Part of this re-

sewcll was dose while visiting tile Universit5t des Saarls,ndes, pw-
tirdly supported by SFi3 124-VLSI-Design Methods and Parallelism

of tile Deutsclle Forscl]ul]gsgelllei]lscllaft.
ts”pported by a David and Lucile Packard FeHowshlp for Sci-

ence and Engineering, by tile National Science Foundation under

grant CCR-91OO424, and by tile Defense Advanced Research Projects

Agency under ARPA Order No. 8856 (monitored by tile Office of

Naval Research under contract NOO014-92-J-1937) Address Com-

puter Science Department; 1210 West Dayton Stteet; Madison, WI

53706; USA. Enmil: {sagiv,reps}Qcs.wise.edu.
tAddre~~: Facllbereicll 14 Illforlllatik; 66123 Saarbrii~kel~; Ger.

many. Enmil: willlelm@cs. uni-sb de.

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for pro$t or commercial advantage, the copy-
right notice, the title of the pubhcatlon and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
POPL ’96, St. Petersburg FLA USA
@1996 ACM 0-89791-769-3195101. .$3.50

our work to pointer-analysis and alias-analysis problems is
discussed in Section 5.2.

This paper develops a new shape-analysis algorithm that

provides conservative information about the possible “shapes”

that heap-allocated structures in a program can take on.
For certain programs — including ones in which a signifi-

cant amount of destructive updating takes place -– our al-

gorithm is able to verify shape-preservation properties. Ex-
amples of such properties include: (i) when the input to the
program is a list, the output is (still) a list; (ii) when the

input to the program is a tree, the output is (still) a tree;
and (iii) when the input to the program is a circular list,
the output is a circular list. For instance, our method can

determine that “list-ness” is preserved by (i) a list-reversal
program that performs the reversal by destructively updat-

ing the input list, and (ii) a list-insert program that searches

a list and splices a new element into the list. Furthermore,

our method can determine that the list-insert program also

preserves “circular list-ness”.

These are rather surprising capabilities. None of the pre-

viously developed methods that use graphs to solve shape-

analysis problems are capable of determining that ‘(list-ness”

is preserved on these examples (or examples of similar com-
plexity) [JM81, JM82, LH88, CWZ90, Str92, PCK93]. Pre-

vious to this paper, it was an open question whether such
precision could ever be obtained by any method that uses

graphs to model storage usage. Furthermore, as far as we

know, no other shape-analysis/type-checking method (whether

based on graphs or other principles [HN90, Hen90, LR91,
Deu92, CBC93, Deu94]) has the ability to determine that

“circular Iist-ness” is preserved by the list-insert program.
What does our method do that allows it to obtain such

qualitatively better results on the above-mentioned programs

than previous methods? A detailed examination of the dif-

ferences between our algorithm and previous algorithms is

deferred to Section 6; however, a brief characterization of
some of the differences is as follows:

. Previous methods have used allocation sites to name shape-
nodes [JM82, CWZ90, PCK93]. Allocation-site informa-
tion imposes a fixed partition on the memory. In con-
trast, our approach deliberately drops information about
the concrete locatzons. There is only an indirect connec-
tion to the run-time locations: Shape-graph nodes are
named using a (possibly empty) set of vartables. The

variable set of a shape-graph node in the shape-graph for
program-point v consists of variables that, for some exe-
cution sequence ending at v, must all point to the same
run-t ime 10cation.

e Like other shape-analysis methods, our method clusters

collections of run-time locations into summary nodes. In
our approach, nodes that are not pointed to by vari-
ables are clustered into a single node. Chase, Wegman,
and Zadeck observed that their analysis method cannot

handle programs such as the list-reversal program be-

16

cause it lacks a wav to materialize (nun-summarize”) sum-

●

●

●

mary nodes at cer~ain key points ;f the analysis [CWZ90,

pp. 309]. Our shape-node naming scheme allows our method

to materialize copies of the summary node (as non-summary

nodes) whenever a pointer variable is assigned a previ-

ously summarized run-time location.

In the analysis of an assignment to a component, say

z. cdr := nil, our method always removes x‘s cdr edges.

Previous methods either never remove these edges [Str92]
or have some heuristics to remove such edges under cer-
tain conditions [JM81, LH88, CWZ90, PCK93]. (This un-

usual characteristic of our method is enabled by both the
node-naming scheme and the rnaterialization technique.)

We use sharing information to increase the accuracy of the
primitive operations used by our method. More specifi-

cally, we keep track of shape-nodes that may be the target

of more than 1 pointer from the heap. For example, when

a linked data structure is traversed, say via a loop con-

taining an assignment x := x. cdr, the sharing information

is used to improve the precision of the materialization op-
eration, which allows our algorithm to determine that z

points to a list element on every iteration. The limited
form of sharing information used in [JM81, CWZ90] does
not allow these met hods to determine this fact.

The shape-node names also provide information that some-
times p~rmits our method-to determine that a shared-
node becomes unshared (e.g., this occurs in the program

that performs an insertion into a list). With the Chase-

Wegman-Zadeck method, once a node is shared it re-

mains shared forever thereafter. For programs that op-

erate on lists and trees, the non-graph-based method of

Hendren [Hen90] is sometimes able to determine that a

shared-node becomes unshared. However, this method

does not handle data structures that contain cycles.

An experimental implementation of the analysis method
has been created; the examples presented in the paper have
been prepared with the aid of this implementation.

The remainder of the paper is organized as follows: Sec-
tion 2 introduces the terminology and notation used in the

rest of the paper. Section 3 presents a concrete seman-
tics for a language with destructive updating, in terms of
“shape-graphs” in which nodes represent run-time locations.

Section 4 introduces an abstract domain of “static shape-
graphs” and shows how they can be used to approximate

the sets of shape-graphs that arise in the collecting seman-

tics. Section 5 summarizes a few extensions to our basic

approach. Section 6 discusses related work. Due to space
constraints, we have omitted discussions of (i) other elab-

orations and extensions of our basic approach, (ii) a proof
that our abstract semantics of static shape-graphs is safe
wit h respect to the concrete semantics. This material can

be found in [SRW95].

2 Terminology and Notation

2.1 The Language

We assume we are working with an imperative language that
meets the following general description: A program con-

sists of assignment statements, conditional statements, loops
(while, for, repeat), read statements, write statements, and
goto statements. 1 The language provides atomic data (e.g.,

lTlle treatment of procedures is discussed later, in Section 5.3.

integer, real, boolean, etc.) and constructor and selector

operations (e.g., nil, cons, car, and cdrz), together with

appropriate predicates (equal, atom, and null). We assume

that a read statement reads just an atom and not an entire

list, tree, or graph,

A program is represented by a control-flow graph G =

(V, .4), where V is the set of vertices and A ~ V x V is the set
of arcs. G has a unique start vertex, which we assume has
no predecessors. The other vertices oft he control-flow graph
represent the statements and predicates of the program in

the usual way; st(w) denotes the statement, or predicate of
vertex v.

Normalization Assumptions. For expository convenience,
we will assume that programs have been normalized to meet

the following conditions:

●

e

*

*

●

Only one constructor or selector is performed per state-
ment.

An expression cons(z, y) is executed in three steps: (i) al-

locate the cons cell and assign it to a new temporary

variable; (ii) assign z into the car component; (iii) assign
y into the cdr component.

In each statement, the same variable does not occur on
both the left-hand and right-hand side.

Each statement of the form 1 := r where r + nil is pre-

ceded by an assignment of the form 1 := nil.
All allocation statements are of the form z := new (as

opposed to x.sel := new).

Thus, for every vertex v c V in which a pointer manipu-

lation is performed, st(v) has one of the following forms:

x := nil, z.sel := nil, x := new, x := y, z := y.sel,

or x.sel := y, where y + z. (In our implementation, the

work of putting a program into a form that meets these as-

sumptions is carried out by a preprocessor.) Note that the
number of temporary variables that are introduced to meet

these restrictions is, in the worst case, linear in the size of
the original program. ❑

The normalization assumptions are not essential, but
simplify the presentation. For example, the last assump-

tion allows us to separate the “kill” aspects of a statement
(e.g., z := nil) from the “gen” aspects (e.g., x := y.selo,

assuming x points to nil) in the semantics. (See Figures 2

and 6.)

Example 2.1 Figure 1 shows (a) a program that performs

a list reversal via destructive updating, (b) the program in
normalized form, and (c) the control-flow graph of the pro-

gram in normalized form. The list initially pointed to by

variable x is transformed into its reversal. After each it era-

tion, y points to the reversal of a successively longer prefix
of the original list. ❑

To simplify the formulation of the analysis method, it

will be stated for a single fixed (but arbitrary) program.

The set of pointer variables in this program will be denoted
by P Var.

2.2 Shape-Graphs

Both the concrete and abstract semantics are defined in

terms of a single unified concept of “shape graph”, which

2Tlmougllout tbe paper, our presentation is couched in terme of tile

Lisp primitives for manipulating heap-allocated storage. However,
tl]is m not due to any basic limitation of our metl~ocl; our sllape-

analysis algoritlml extends readily to tile case of pointers to user-

defined types tl~at nave more than two fields.

17

/“ x points to an unshared list “/ VI
4

~ := nil
y := nil
while z # nil do

i ,,
?>0 I
.4

t:=y” I M’-

Jy:=~
?J3 t := nil

x := x.cdr
y.cdr := t

V4 I
t:=y

od
1

t ;= nil
1

V5 / y := nil

(a) V6 Y:ix

/“ x Points to an unshared list */ ‘7 I

J
tl := nil

y := nil ‘OS 1 tl := z.cdr
while z # nil do

1

t:= nil w
t:=y

z := nil

y := nil ’010 [
x :=71

y:=x

tl := nil
J

VII
tl := z.cdr

y,cdr := nil

x := nil
1

VIZ y. cdr~~
~ := t~

y.cdr := nil V13

E

tI:= nil
y.cdr := t

od
tl:= nil

7J14 t:= nil

t := nil ’015

(b)
(c)

Figure 1: A program, the program in normalized form, and

the program’s labeled control-flow graph.

is defined as follows:

Definition 2.2 A shape-graph IS a finzte directed graph

that consists of nodes, called shape-nodes, and two kinds

of edges: variable-edges and selector-edges. A shape
graph is represented by a pair of edge sets, (EV, E,), where

e EU is the graph’s set of variable-edges, each of whzch M

of the form [x, n], where x ~ PVar and n is a shape-node.
e Es is the graph’s set of selector-edges, each of whzch is

of the form (s, sel, t), where s and t are shape-nodes, and

sel c {car, cdr}

We overload the symbol Ev to also mean the function
that returns a varzable ’s Eu successors. That as, for z c

PVarj we dejine Ev(x) to be E.(x) ‘~f {n I [x, n] c Eo}.

Similarly, for a shape-node s and sel E {car, cdr}, we de-

jine E.(.s, sel) to be Es(s, sel) ~f {t I (s, sel, t) E Es}.
(The intended meaning of a use of E, or E. wdl always be
clear, accordzng to whether arguments am supplied or not.)
Gzven SG = {Eu, E.), we define shape. nodes(SG) as fol-

lows: shape-nodes(SG) ‘~f {n I [*, n] ~ Eu} U {n I (*,*, n) c

E,} U {n I (n,*,*) c E,}. The class of shape-graphs zs

denoted by S~. ❑

Note that for a given shape-graph SG, shape_nodes(SG)
is uniquely defined: it consists of the set of non-isolated
nodes in SG (i.e., the nodes that are touched by at least

one edge). It is for this reason that we do not explicitly list
the node set when specifying a shape-graph.

The shape-graphs that arise in the concrete semantics for

the language have somewhat different characteristics from

the ones that arise in the abstract semantics. However,
the fact that both are defined from a shared root concept
(namely Definition 2.2) helps in defining the abstraction re-

lation that relates them (see Definitions 4.4 and 4.5).

In the concrete semantics, which is given in Section 3,

the result of an execution sequence is a shape-graph that

represents the state of heap-allocated storage in memory.
In this case, each shape-node represents a unique run-time
location, and for each variable x, either Eu (z) is a singleton

set (say {n}) or it is empty. Furthermore, E. (n, car) and
E, (n, cdr), which represent the run-time locations pointed
to by the car and cdr fields of n, are also either singleton

sets or empty (depending on whether these fields point to

allocated locations or not), Such properties are captured in
the following definition:

Definition 2.3 A shape-graph as deterministic zf (i) for
every x c Pvar, lEo(x)/ < 1 and (ZZ) for every shape-node

n and sel ~ {car, cdr}, [Es(n, sel)l < 1. The class of deter-

mznistzc shape-graphs M denoted by DS~. ❑

Finally, in several places we make use of a “garbage-
collection” operation to eliminate shape-nodes that are not
reachable from any of the program variables.

Definition 2.4 The functzon gc: S~ + S~ zs defined by

gc((Eu, E.)) ‘~f (IL, Ej), where (s, sel, t) = E: ijf(s, sel, t) G
E,, and there ezzsts [x, r] G E. such that there is a path of

selector-edges zn Ea from r to s. ❑

3 The Concrete Semantics

In this section, we present a concrete semantics in which

deterministic shape-graphs are used to represent the mem-
ory state (i.e., I)SG shape-nodes represent “cons-cells”), and

the meaning of an assignment statement is a deterministic

shape-graph transformer. This concrete semantics is used to
define a concrete collecting semantics that associates a set
of possible shape-graphs with each point in the program.

Figure 2 contains the semantic equations of the concrete

semantics. The meaning of a statement st is a function

[st]mg: DSG + DS’i7. (When examining the last four
equations in Figure 2, bear in mind that, because of the
Normalization Assumptions of Section 2.1, before each of
the statements executes it is known that the left-hand side
evaluates to nil. Thus, the last four equations need only
handle the “gen” aspects of the statements’ semantics. The
“kill” aspects are handled by the first two equations of Fig-
ure 2.) The DSG transformers listed in Figure 2 cover the six
kinds of pointer-manipulation statements; all the other DSG
transformers — for predicates and for assignment state-
ments that do not perform any pointer manipulations —
are the identity function.

By design, the ‘(concrete” semantics is somewhat non-

standard. The only part of the store that the concrete se-

mantics keeps track of is the heap-allocated storage; fur-
thermore, it does not interpret predicates, read statements,
and assignment statements that do not perform pointer ma-
nipulations. These assumptions build a small amount of ab-

straction into the “concrete” semantics. The consequence of

18

Figure 2: The concrete semantics [st]m~: DSG -+ DS~.

The shape-graph transformer associated with all predicates

and all assignment statements that do not perform any

pointer manipulations is the identity function. The term
nne~ denotes an operation that generates a new shape-node
(i.e., a new run-time location).

these assumptions is that the collecting semantics may asso-

ciate a control-flow-graph vertex with more concrete shape-

graphs (i.e., DSL7S) than would be the case were we to start

with a conventional concrete semantics. (Our assumptions

are patently safe, and so we will not take the space here to

justify them further.)

For simplicity, we do not introduce any “garbage-collection

operations “ in the concrete semantics to eliminate nodes

from 21S~s that are not reachable from any of the program
variables. Also, dereferences of nil pointers are ignored.
They are handled in [SRW95].

We now turn to the collecting semantics. For a control-
flow-graph vertex w E V, let paths To (v) be the set of paths

in the control-flow graph from start to predecessors of v.

Definition 3.1 The collecting semantics cs: V + 2Dsg

is defined as follows:

Cs(v) ‘:f { [St(wk)]nsg(. ‘ “ ([st(w)lns~((o, 4)))) I

[v,,... , v~] C paths To(v) }

❑

4 The Abstract Semantics

In this section, we present a shape-analysis technique that

uses a restricted subset of shape-graphs, called statzc shape-

graphs, to summarize the possible shapes that heap-allocated
storage can take on.

Example 4.1 Suppose x points to a five-element list at the

beginning of the list-reversal program. Column two of Fig-

ure 3 shows the DSGS that arise at vertex V2. The abstract
(summarized) representations for the six DSGS are shown in

column three. The abstract value that is computed by the
abstract semantics is the graph shown in the iteration-4 row
of column four. (In this example, this graph is exactly the
union of the six graphs shown in column three.) El

Static shape-graphs are defined in Section 4.1, the ab-
straction function is defined in Section 4.2, and the abstract
semantics is given in Section 4.3. The reverse program is

used as a running example. Section 4.4 explains the reasons
for the accuracy of the analysis method, and shows that the
method is capable of handling the insertion of an element at

an arbitrary point in a linked list.

4.1 Static Shape-Graphs

Unlike the concrete shape-graphs of the collecting senlan-

tics, the static shape-graphs of the abstract semantics are

non-deterministic: E“ (x), Es (n, car), and E, (n, cdr) may
each yield a set with more than one shape-node. In ad-

dition, static shape-graphs are of bounded size. This is

achieved by our naming scheme for shape-nodes: the name
of a shape-node is a (possibly empty) set of program vari-

ables; in general, the abstraction function clusters multiple
concrete shape-nodes into a single static shape-node.

Definition 4.2 A static shape-graph is a pair

(SG, is-shared), where

● SG is a shape-graph.

● The set shape. modes(SG) is a subset of {n.x I X C

PVar}.

● zs.shared is a functaon of type shape-nodes(SG) --+
{fake, true}.

The class of stattc shape-graphs is denoted by SS~. ❑

In the following definition, we impose an order on SSGS

where SG ~ SG’ if SG1 contains more edges than SG.

Definition 4.3 Let SG = ((E., E.), is-shared) and SG’ =

((E;, El), is.shared’). We dejine the following ordering on

SSG: SG ~ SG’ if and only t.f

● For every n ~ shape-nodes(SG),

zs.shared(n) + is_shared’(n).

❑

The domain SS~ is a complete join semi-lattice with a

join operator U defined by:

SG U SG’ ‘~f ((EU U E;, E. U E:), is-shared V zs-shared’).

4.2 The Abstraction Function

Our task in this section is to define the abstraction function
that relates the domains 2Vsa and SSg. However, before
formally defining the abstraction function in Definition 4.5,

we first illustrate some of the semantic properties of SSGS.

Column two of Figure 3 shows the DSGS that arise at
vertex V2 for all five iterations of the loop in the list-reversal

program when input-list z is a five-element list. Column
three shows their corresponding abstract values (i.e., SSGS).

We note the following:

(i) In each SSCJ in column three, a shape-node nz, where

Z # #, represents a unique run-time location in the
corresponding DSG in column two — the location pointed

to by every one of the variables in Z. However, across
the collection of SSGS that are the abstractions of the
(several different) DSGS that arise on different loop it-
erations, nz will, in general, denote different run-time
locations. For example, shape-node n{z ,L, } represents
the run-time locations 12, [3, t4, and 15 in the DSGS
that arise on iterations 1, 2, 3, and 4, respectively.

19

Iter. DSG a(DSG) Approx. sequence for SGU2

x
++ 1°1 -m+cE7

((4, d), An.falw)

o 11 12 13 14 15 n{.}

x

tl

12 13 14 154 1“] :- x-

-co

n{z, tl}

Y* e

1 11
{v}

x

tl

14 15

t

,&

‘% ii
n{z,il}

0 Y a

2 11 n{u} nit} ~’ ‘~ ‘“

EL

z

tl

n{z, il}

y&

+ ‘+no’ ‘d] :*
n{r, tl} n~

e Y
t Y * t

3 1,9, 12 11 n{v} n{t}
{?/} n{t}

x

=111tl * =ml I + x ,+y\, ,,

15 n{z,tl} n~

t
x

tl
e--- +

n{z, f ~} n4

Y Y ●

t Y e--- --+ e +-t

4 14 13 12 11 n{v} n{t}
n{v} n{t}

+,~ +13EE

n~ The fixed point

t
has been
reached.

Y
Y e

e t

n{Y} nit}
5 15 14 13 12 11

Figure 3: Columns two and three show the DSGS and the corresponding SSGS, as mapped by ~, that arise at vertex V2 for
the five iterations of the loop in the list-reversal program, when the input r is a five-element list. Column four shows the SSG
values that SGti2 takes on during the process of finding the solution to the equations of the abstract semantics. For each of
the shape-nodes in all of the SSGS, the value of Zs-shw-ed is false.

(ii) In contrast, shape-node nd can represent multzple mm- time locatzom of a single DSG. For example, in the

20

(iii)

SSG in column three of the iteration-O row, no rep-
resents the run-time locations 12, 13, 14, and lE, of the

DSG in column two. In the SSG in column three of

the iteration-5 row, no represents the run-time loca-

tions 13, 12, and 11.

In different SSGS, the same run-time location may be
represented by different SSG shape-nodes. For in-
stance, consider the SSGS in column three of Figure 3
in top-to-bottom order. Location 11 is represented by

shape-nodes n{n}, n{g}, nftl, no, n~, and n~; location

13 is represented by nd, no, n{~,tll, n{y}, n{t},andw;
location 15 is represented by no, n~, no, n~, n{~,tl },

and n{y}.

There is an important conclusion to draw from these ex-

amples: It is incorrect to think of a shape-node as represent-

ing a fixed partition of memory. Instead, the ideas to keep
in mind are the following:

The variable set of a shape-node in the shape-
graph for program-point u consists of variables
that, for some execution sequence ending at v,

must all point to the same run-time location. By

going from DSGS to SSGS, we deliberately drop
information about the concrete locations, but we

keep information that indicates, for some ezecu-

tton sequence ending at v, what variables must
all point to the same location.

A consequence of this abstraction is that two different

shape-nodes nx and ny such that .X n Y # ~ represent
incompatilde configurations of variables; that is, na- and ny
cannot possibly represent information from the same DSG.
This means that the following structural invariants hold for
the SSGS that arise in the abstraction process:

Invariant (i) (“Equality-or-disjoin tness of edge end-points”)

For all (nX, sei, nY) E E,, either X = Y or X n Y =

q5. For example, in the SSG in column four of the
iteration-4 row, the selector-edge (niul, cdr, nfil) sat-

isfies {y} n {t} = ~. This SSG could not contain a

selector-edge such as (n{ Z}, cdr, nf~,il }).

Invariant (ii) lf is-shared(n) = true for a node n,, then

one or more of the following conditions must hold:
(a) There exists a selector edge from no ton. Since nd
can represent multiple locations, this single edge can
represent two or more selector edges in a given DSG.
(b) There exist two selector edges from different shape
nodes, say, n.zl and nzz where Z1 n Z2 = # to n. In

this case, there may exist a DSG that includes two se-
lector edges: one from the run-time location pointed

to by the set of variables Z1 and one from the run-

time location pointed to by the set of variables Z2.

(c) There exist two selector-edges (with different se-

lectors) from a single shape-node. (Figure 3 does not

illustrate these conditions because none of the shape-
nodes are shared.)

Because the converse of Invariant (ii) need not hold, shar-
ing information must be stored explicitly in SSGS. For ex-

ample, in the SSG in column three of the iteration-O row,
w_shared(n4) = false even though there exists a selector
edge from nd to itself and a selector edge from n{z} to no. In
this case, the fact that w-shared(nd) = false indicates that

n+’s incoming edges represent DS G edges that can never
simultaneously point to the same DSG node.

The abstraction function a is defined in Definition 4.5;

a makes use of several auxiliary functions whose definitions

are given in Definitions 4.4 and 4.5. Definition 4.4 defines

an operation for renaming shape-nodes. (This function will

be used both in the abstraction function and in the abstract

semantics.)

Definition 4.4 Let SG = (EV, E,) be a shape-graph, and
let p: shape-nodes(SG) + {false, true} and

f: shape.nodes(SG) + {nx I X ~ PVar} be functions. We
define four projection operations wtih respect to f as follows:

(Ev$f) ~f {[z, f(n)] I [z, n] c Eu}

(E,.Jf) ~f {(f(s), sel, f(t)) I (s, sel, t) ~ Es}

{~lf(~)=nx}

Finally, ((EU, E.), p)J f ‘~f ((EoJf, Es Jf), pJf). ❑

Definition 4.5 (The Abstraction Function) The func-
tzon as [DSG]: shape_ nodes(DSG) --+ {nx I A’ ~ PVar} M

defined as follows: o+SIDSG] ‘~f ~r.n{ze PVarl[z,r]e E,,}

The functton tnduced_is_shared [DSG] from shape_nodes(DSG)

to {false, true} is defined as follows:

induced. is.shared[DSG] (t)‘~f[{(*,*,t)E Es} I >2

The abstraction function a: 2DSQ -+ SS~ is defined by:

DSGGS

where

&(DSG) ‘~f letDSG’ = gc(DSG) in

{DSG’, mduced_is_shared[DSG’]) JQ~[DSG’]

•1

The core of Definition 4.5 is the operation of projection

(~) with respect to a. [DSG’]. The function CYS[DSG’] es-
tablishes the relationship between the nodes of a DSG and
their corresponding nodes in the SSG. For example, con-
sider the iteration-1 row of Figure 3. In column two, DSG
node 12 is pointed to by program variables z and tl and
is mapped by a~[DSG’] to SSG node n{z,tl) (see column

three). DSG nodes 1s, 14, and 15, which are not pointed to
(directly) by any variables, are mapped to SSG node no. In
general, as [DSG’] generates a finite set of SSG nodes from

the a priori unbounded number of DSG nodes in DSG’.
The projection operation then collapses the DSG onto the

smaller set of nodes, while preserving aspects of its structure.

We say that a shape-node nx represents a shape-node n
in DSG’ if o+ [DSG’] (n) = nx.

The function mduced..is_shared[DSG] checks whether a
node has 2 or more predecessors in DSG. Because of the
projection performed with respect to a, [DSG’], an SSG

node’s sharing value is true if any of the DSG nodes it rep-
resents has 2 or more predecessors in DSG’. (This aspect of

as [DsG’] is not illustrated by the example presented in Fig-
ure 3.) On the other hand, if projection-function a, [DSG’]
sets the sharing value of SSG-node nz to false, this means
that the DSG node (or nodes) that n,z represents all only
have at most one predecessor. For example, consider the

21

iteration-O row of Figure 3. In the SSG in column three, n~

represents the run-time locations 12, 13, 14, and 15, each of

which has exactly one predecessor in the DSG (see column

two). Consequently, w-shared(nd) = jalse.

Note one role of the gc operation that appears in the

definition of~: if DSG’contains agarbage shape-node that

has 2 or more predecessors, this will be filtered out by the

gcoperation and will not affect thevalue ofzs_shared(n4).

Example 4.6 Definition 4.5 provides a way of identifying

a shape-graph with a data type. Figure 5 shows the shape-
graphs that represent five kinds ofdata types. Foreach DSG

SGinone of the five indicated classes, ~(SG) approximates
(~) thecorresponding graph shown in Figure5. (For the

moment, ignore graph (f).)

The reason why approximates (~) is used here is that

the shape-analysis algorithm is a conservative algorithm and

thus the shape-graphs produced may have superfluous edges.

Therefore, when the algorithm reports that a variable points

to a circular list, it may actually point to a non-circular list;

however, when the algorithm reports that a variable points

to a non-circular list, it will never point to a circular list.
This kind of conservative approximation is appropriate for
use, for example, in parallelizing compilers [HNH92, HG92].
(An extension of our basic technique allows dejinttely circu-
lar structures to be identified. See Section 5,4,) o

4.3 The Abstract Interpretation

The abstract meaning function [].ss G:SSL7 + SSfJ for the

pointer-manipulation statements is given in Figure 6. The

operations presented in Figure 6 manipulate variable-edges,

selector-edges, and sharing information, as well as the alias
information that is maintained in the shape-node names of

SSGS. It has been shown that these SSG transformers are
conservative with respect to the concrete semantics defined
in Figure 2 (see [SR\V95]).

The key property of the abstract semantics is that each
abstract assignment operation crest es an SS G that conser-
vatively covers all the possible new configurations of variable

sets whose members all point to the same run-time location
(i.e., DSG shape-node). This permits an unusual treatment

(for a static-analysis algorithm, that is) of statements of the
form z.selo := nil. When the algorithm processes such a

statement, it always removes the selo edges emanating from
what x points to. We call this operation strong nullification.

Example 4.7 Figure 4 shows a simple example that illus-

trates strong nullification. Note that after statement y := z
in the then-branch of the conditional, z and y point to the

same run-time location. This is reflected in SG2 by the fact
that x and y point to a single shape-node, n{z,v}. SG3 is the

union of SGZ with SGI; x and y each point to two shape-
nodes in SG3. Because n{z,y} in SG3 represents only run-

time locations that are pointed to by both x and y (which
occurs only on some execution sequences), it is safe for the
abstract semantics for statement y. cdr := nil to eliminate
the edge from n{z,v} to n{~} (see SGA).

Note that if rs{z} and n{z,y} were merged into one shape-
node in SG3, then it would not be possible to perform a
strong nullification because a run-time location pointed to
by x alone does have a cdr-edge emanating from it (i.e., to
the node that t points to). ❑

x := new
y := new

t:= new

x.cdr := t

SGI ==z t
! I I

q.} n{t}EEi
n{v}

if

fi

then
y:=z

SG2 =; t

n{z,v} n{t}

‘G3”-E3mt
;2 141 I“I-y——

n{z>v} n{Y}

y.cdr := nil

SG4 =X t

n{z} n{t}
——

x 1 I ●?/ II I ● k-Y—u
n{z>Y} n{Y}

Figure 4: A program that illustrates strong nullification.

We now discuss the individual cases of the abstract mean-
ing function (Figure 6), illustrating the most important fea-

tures using Figure 7, which shows the final SSGS computed
for each program point by abstract interpretation of the de-

structive list-reversal program. Each block of Figure 7 in-
dicates the shape of memory just before the program-point

label that appears at the bottom of the block. The text

at the top of a block indicates the preceding program point

(or points) in the control-flow graph and the action(s) taken
there. For example, 7J15’s one predecessor is the statement
t:= nil at v14.

(on first reading, it maybe helpful to skip the remainder
of this section and proceed directly to Section 4.4,)

*

●

For an assignment x := nil, the projection operation is

used to rename shape-nodes by removing z from their
“name”.. Note that this may cause what were formerly

distinct shape-nodes to be merged.

Example. In the transition between block

VT and block ’08 of Figure 7 the assignment
tl := nil causes n{~,z,i, } and n{~,z} to be

merged. ❑

For an assignment x. seio := nil, the SSG transformer
given in Figure 6 removes all of Z’S selo selector-edges
(what we called “strong nullification” above). The

variable set of a shape-node in the SSG for a program-

point v consists of variables that, for some execution

22

z 9n{ }

(a) A linked-list (b) A tree (c) An arbitrary graph

1 1

x

nnil =!=-
T

(d) A possibly cyclic list (e) A possibly cyclic list (f) A possibly cyclic list

of length >2 of length > 1 of length ~ 1 (see Section 5.4)

Figure 5: SSGS that represent five kinds of data types. For each of the shape-nodes in all of the SSGS but (c), the value of

is.shared is false. In the graph (c) both nodes are shared.

sequence ending at v, all point to the same run-time

location; therefore, our met hod can always remove z‘s

selo selector-edges. 3

Example. In Figure 7, the transition be-

tween VII and v12 removes all of y’s cdr selector-

edges. ❑

The other important aspect of the SSG transformer
for x.selo := nil is the way information in shape-node
names is used to reset the sharing information. This
is based on Invariant (ii) of the abstraction process,
as described in Section 4.2. (The resetting of sharing

information by the SSG transformer is not illustrated

by the list-reversal program since IS-shared is false for

all shape-nodes in all shape-graphs that arise. This

issue is discussed further at the end of Section 4.4.)

o For an assignment x := new, a new unshared node
n{z} is created. All other shape-nodes are unaffected.

● For an assignment z := y, the shape-node names are

charmed to reflect the fact that whatever v was point-

Example. See the transition between block

7)6 and block v? of Figure 7. ❑

● The SSG transformer for an assignment z := y.selo

is the most elaborate operation. The reason is that

y.selo may point to many nodes, and we have to cre-

ate an SSG that conservatively covers all the possible
new configurations of variable sets whose members all

point to the same run-time location (i.e., DSG shape-
node) after the assignment. That is, if y.selo points
to n.z, then we need to “materialize” a copy of nz —

producing a “new” node n(zu{z}) from “old” node nZ.

In defining this materialization operation, the goal is

to cover conservatively all the possibilities, yet at the

same time not introduce too many superfluous edges

that prevent the abstract semantics from being able
to verify interesting properties, e.g., that a variable

points to a list.

Examde. See the transition between block.
vs and block VQ of Figure 7, in which node
n{il ~ is materialized from no. ❑

ing to before is now also pointed to by x. In addition, In what follows, let rLY be a shape-node that y points
new variable-edges are added to reflect the assignment to. For every node nz pointed to by y.selo, we ma-
Of y to x. terialize a new node n(zuf.}) and direct the following

30tl~er shape analyses do not Ilandle tl]is statement precisely, or

.,
edges to n = n(zu{z}):

handle it precisely only under certain circumstances. However, we are

not claiming tlmt our metl~od is somehow “able to treat all statements
.

precisely”. In Figure 6, tbe inevitable loss of precision intrinsic to

static-analysis occurs in tile treatment of statements of tile form z :=

g.se10 (when y points to n+), rather than in statements of tbe form

z,selo := nil. In particular, in tl~e SSG transformer for z .= y.selo, —.

a node-materialization operation is used to create shape. nodes tl]at
conservatively cover all tbe possible new configurations of variable

sets whose members all point to tile same run-time location.
—

Old variable-edges that point to rzz before the
assignment. (This does not occur in the transition
between block vs and block v~ of Figure 7.)

A new variable-edge from z. (See variable-edge

[t,, n{,,]] in block VQ of Figure 7.)

A selo selector-edge from n>,. This edge replaces
the old selo selector-edge that emanates from ny

23

[z := nil] Ss~(((EU, E,), ts.shm-cd)) ‘~f (gc(((EV – [z, *], E.), zs-shared)))+Anx.n~~_~O~~

[Z.selo := nil]~Sg ((@V, E.), is.shured}) ‘~f ((Ev, Ej), ts_shared’)

where E: = (Es – {(nx, selo, *) \ z ~ X})

(

(nd, *, n) E E: (a)

and is.shared’ (n) = is-shared(n) A v %.zl, n.zz :21 nzz = q$,(nzl, *,n), (nzZ, *,n) e JZ (b)
V %z : (nz, car, n), (nz, cdr, n) @ E: (c))

[z:= new] SS~(((13v, E.), is-shared)) ~f {(EV U {[$, n{.}]}, E.), is-.shared[n~r~ * fake])

{

72LZUIZ}) ify C Z
dcf let ((EL, EL), is-shared’) = ((Ev, ES), ts_sharecl) JAnz. nz

[x:= y]ssg((@u, E,), is-shared)) = otherwise

in ((EL u {[x)ny] I [y, nY] c E~,}, Ej), is-shared’)

[z:= y.selo]ss~(((E~, Es), u-shred)) ~f ((E;, E~), ts-shared’)

where

‘~ = ‘O u UYcy,(~Y,selo,nzjcE. {[z, n~zu~=~j] I z = x V [z, nz] ~ E.}

E: = (E. – {(nY, selo, *) \ y G Y}) U UveY,(nY,selo,nz) eE~ disjoint-or-equal(assign (x, n~, selo, nz))

{(ny, selo,n~zu~z}j) I Y #Z} old + new

U {(n(.zu{z}j,se~,nw) I (y # .ZV sel # selo), (nz, sel, nw) c Es}

1

new -+ old

(nfzu{~lJ, sel, n(zuixl)) \ ((Z= Y’ A sel = selo) V w.-shared(nz)),
assign (x, ny, selo, n,z) = u (nz, sel, nz) c Es

}
new -+ new

u (nw, d, q,zu{.})) / (Y< W V sel # selo), ts..shared(nz),
(nw, sel, rLZ) E Es 1 old -+ new

and is_shared’(nz) = is-shared (n(z–{~ }))

[z.selo := y].ssG(((E~, E.), is-shared)) ~f {(E,,, E:), is-shared’)
where E: = E. U dzsjoint.or_equa/({(nX, seto, ny) / [z, nx], [Y) ny] E E.})

and is-shared’(n) = zs-shared(n) V I{(n’, *, 7)) ~ E., I [y, n] E l?,,}] > 1

disjomt-or--.equal().) ‘~f {(n~, sel, n~-) I (n.x, sel, nY) c E., X = Y V X n Y = ~}

Figure 6: The SSG meaning function [st].ssg: SS~ + SSL7 for a statement st.

before the assignment (see the first old + new only if nz is a shared node. (See the new + new
case in Figure 6 and selector-edge (n{u,~j, cdr, ?qtl}) case). (This also does not occur in the transition
in block V9 of Figure 7.) This selector-edge is not between block Ws and block W9,)
added by the old -+ new case when Y ~ Z, be- – Selector-edges from other old predecessors of nz
cause all directly cyclic selector-edges are handled
by the new + new case.

– An edge (n, selo, n) is materialized when nY has
a selo selector-edge to itself. (See the new +
new case). (This does not occur in the transition
between block us and block VO.)

– Suppose there is a selector-edge (n~, selo, nz).
When nZ has a sel selector-edge to itself, a selector-
edge (n, set, n) is materialized if (nz, sel, rLZ) and

(nY, selo, n.z) represent edges that can simulta-
We
the

neously co-exist in some DSG. This can happen

need to be connected to n if they can simultane-
ously coexist with the selo selector-edge from ny

(see the second old -+ new case). Here, we take
advantage of the variables in shape-node names;
in particular, a predecessor of nz that has y in its

name is incompatible with ny. (This does not oc-
cur in the transition between block vs and block
lx.)

also connect n to the old successors of nz for all
selector-edges where Y # Z or sel # selo (see

24

start

VI

vs:t := nil

x

qz}

x-+
e“

tl--+
qx,t ~}

Y+

n{v}
V4

ve:y := X

v?

v9:x := nil

Y 1‘-P
tl

n{ri} n{tl}

I

z

n{z}

z-+

;1 ----

n{n!t 1}
t

Y-+ 0
; I* I

n{?f} qt}
V13

vl:y := nil vlz:y. cdr := t

x

n{z}

x--+

~1--+

n{x,t1}
t

?4-+ e ; 1°1
n{v} n{t}

‘m?

V4:’ :=y

1 I I
xwn{. }

x Tl@

tl
wx,tl }

V5

v7:tl := nil

+
x

Y
wg,z}

t

nit}
0i3

VII): a := ‘1

‘-
I

‘W---Q2l
V13: tl := nil

‘VII
. .

‘CEFaI!l
n{Y} qt}

‘V14

X--4 I %1 r 1
I I
n,, -, <i--+---l‘-I*J

x

tl
n,, - ..1 I

v!?

v5: y := nil

I I t

— / J.. I 1

=L_-Lzr ‘“+dwx,tl}

t

va: tl := x.cdr

I
I

‘Q+---Q3
V9

vll:y. cdr := nil

‘-
‘VIZ

v14: t:= nil

z

q.}

Y

n{v}
V15

Figure 7: The final SSGS computed for each control-flow-graph vertex by abstract interpretation of the destructive list-reversal
program (e.g., block V2 corresponds to column four of the iteration-4 row of Figure 3). For each of the shape-nodes in all of
the SSGS. the value of is.shared is false.

the new -+ ald case). (This does not occur in the transition between block V8 and block V9.)

25

The operation dis?oint.or.equak SSIJ -+ SSL7 elimi-

nates selector-edges whose end-points do not satisfy

Invariant (i) of the abstraction process (the ‘(equality-
or-disjointness” property for the variable-set names of
selector-edge end-points described in Section 4.2). (This

does not filter out any edges in the transition between
block VX and block w.)

e Finally, for an assignment z.selo := y, a selo selector-

edge is added between shape-nodes pointed to by x and

shape-nodes pointed to by y In addition, all nodes

that are pointed to by both y and a selector-edge be-
fore the assignment are now considered to be shared

nodes.

Example. See the transition between block

VIZ and block VQ of Figure 7. ❑

The abstract semantics associates an SSG, SGU, with

each v ~ Iz. Equationally, this can be defined as the least

fixed point (under the ordering defined in Definition 4.3) of

the following system of equations in SG.:

{

sG = ((h 0),~~.f~~se) if v = start
v 1u(u,.)cA[’t(~)n~s~(sG’)‘therwise‘1)

The least-fixed point of these equations can be found by

iteration, starting from ((~, ~), An. false).

Example 4.8 The final abstract values for all of the ver-

tices of the list-reversal program’s control-flow graph are
shown in Figure 7. Among other things, this information

tells us is that if Z’S value is a list at the beginning of the
program (see block VI) then y’s value is a list at the end of

the program (see block VI S).

Column four of Figure 3 shows the SSGS computed for
vertex v? of the list-reversal program during the successive

iterations of the fixed-point-finding procedure. The final

abstract value for vertex V2 (i.e., SGU2) is the graph shown
in the iteration-4 row of column four. The elements of this
graph can be interpreted as follows:

e There are two shape-nodes that represent the head of
the list that z points to: n{. } and ntz,tl }. The former

represents the situation where x points to the head of the
list and tlpoints elsewhere (which only happens before
the first iteration of the loop). The latter represents the
situation where z and t] both point to the head of the
list. Shape-node n{y} represents the head of the reversed
list that y points to. Shape-node n{t} represents the list

that tpoints to, which is a sublist of the list that y points

to. Shape-node nd represents all the run-time locations
in the tails of the lists that x and t point to.

e For each of the shape-nodes in the graph, the value of

zs.shared is false. The fact that ts-.shared(no) = fake tells

us a number of interesting things about the memory state

(i.e., DSG) produced by any execution sequence that ends
at vertex V2: (1) It implies that selector-edges from z and
from t cannot point to the same node (and consequently
the tails of z and tcannot have a component in common).
(2) Similarly, for every pair of different run-time locations
in the tail of x or t, the selector-edges from these run-time
locations cannot point to the same node. Consequently,
variables z and t must point to acyclic lists that do not

share any storage in common.

❑

Given how complicated the semantic equations in Fig-
ure 6 are, the following theorem, whose proof can be found
in [SRW95], is reassuring:

Theorem 4.9 (Correctness Theorem) For every control-

flow-graph vertex v, a(cs(v)) L SGV. ❑

4.4 What the Analysis Algorithm Achieves

and Why

The abstract interpretation defined in Section 43 yields a

new shape-analysis algorithm for finding out information

about the possible “shapes” that heap-allocated structures
in a program can take on. For certain programs — includ-

ing ones in which a significant amount of destructive updat-
ing takes place — this algorithm is able to verify shape-
preservation properties. Examples of such properties in-

clude: (i) when the input to the program is a list, the output
is (still) a list; (ii) when the input to the program is a tree,

the output is (still) a tree; and (iii) when the input to the

program is a possibly circular list, the output is a possibly

circular list. For instance, we are able to conclude from the
information reported by the algorithm about the list-reversal

m-omam that “list-ness” is m-eserved (see Fimrre 7).

e

*

~he algorithm is also a~le to determine t~at ‘

“list-ness” is preserved by the list-insert program given in

Figure 8 (which searches a list and splices a new element

into the list).

“circular list-ness” is also preserved by the list-insert pro-

gram. More precisely, if “at the beginning of the in~ert
program z is a possibly cyclic list of length ~ 1 (see Fig-
ure 5(e)), then at the end of the program, z N a possibly

cyclic list of length ~ 2 (see Figure 5(d)). (For details,

see [SRW95, Appendix B].)

It is instructive to consider the main reasons why the

shape-analysis algorithm is able to produce accurate infor-

mation about the list-reversal program. In analyzing this

program, the key issue is: “HOW does the algorithm keep

the y list separate from the z list?” There are two aspects

of the algorithm that contribute to the successful handling

of this problem.

Cutting the list. The more clear-cut aspect is the removal of
y’s cdr selector-edges by y. cdr := nil via strong nulli-
fication in the transition from block V11 to block VIZ in
Figure 7. This cuts the y list at the head, separating
the first element, n{ V}, from the tail, which z and tI
point to.

Materialwut%on of n{tl } from summary-node nb. Equally im-

portant is the way the algorithm handles the advance-

ment of tl down the z list by tl :=- z. cdr in the transi-

tion from vs to V9. At ‘OS,x. cdr points to n~; however,
the node-materialization operation causes a new non-
summary shape-node, n{fl }, to be materialized out

of rqj.1

In the shape analysis of the list-reversal program, there is

a crucial interaction between these two aspects. Suppose,
for example, that in the transition between blocks ‘OSand
V9 shape-node n{tl } was not materialized out of summary-

node no, but instead variable t 1 was merely set to point to
no, At Vll, variables t1 and x would then both point to

4Jocularly, we refer to nd as tile “primordial soup”, and tl]e pro-

cess of mziterializlng a node SUC1l as 7J{tl ~ from n+ as “ladling a node

out of tile soup”.

26

nd. The removal of y’s cdr selector-edges in the transition

from Vll to V12 would still separate the node that y points
to (n{V}) from the list pointed to by z and tl (which in this

case is no.). However, the very next transition, from VIZ to

V2, would set y’s cdr field to t,whose cdr field points to nd,

which is what z points to. At this stage, the two lists are

no longer known to be separate lists!
Note how differently things turn out when n{~l } is ma-

terialized from n~ in the transition from WSto w9: At V12, tl
and x point to n{n,~l }, and thus in the transition from v12

to V2 when y’s cdr field is set to t,whose cdr field points to

nb, x does not point to n~. Although nb occurs in both the
tail of z and the tail of y, because Is.shared(n@) = false we

know that the two lists cannot share any storage in common;

that is, z and y must point to disjoint acyclic lists.

The two operations discussed above — cutting a list and

advancing a pointer down a list — are two of the four main

operations of most list-manipulation algorithms. The third

and fourth common list-manipulation operations — splicing
a new element into a list and removing an element from a list
— can, in many cases, be handled accurately by our shape-

analysis algorithm, even if shape-nodes tem,porarily become
shared? (This is not illustrated by the list-reversal program,
but is discussed in the next paragraph.) This points up the
strength of our approach: Our algorithm handles all four
of the basic list-manipulation operations with a remarkable

degree of precision — as well as similar tree- and circular-
Iist-manipulation operations.

Let us now turn to the issue of how information in shape-

node names can sometimes be used to reset a shape-node’s

sharing information from true to false. This ability is the
main reason why our algorithm is able to determine that the

list-insert program of Figure 8 preserves both ‘Iist-ness” and

“circular list-ness”.
This situation arises in the list-insert program at ver-

tices v1l, vlz, and VM of the control-flow graph, where the
new element is spliced into the list. (We assume that at

the beginning of the program shown in Figure 8, z points
to an unshared list of length 1 or more and e points to the

new element to be inserted.) The key step is the transition

from VIZ : y. cdr := nil to V13. In the immediately preced-

ing transition, from VII to vl~ (see Figures 9(a) and 9(b)),

e. cdr is assigned the value t,which adds a new selector-edge
into n{t} and causes is-shar-ed(n{i}) to be set to true in the

shape-graph for v12.
In the SSG transformer given in Figure 6 that covers the

case of assignments of the form y. cdr := nil, information in
shape-node names is used to reset the sharing information.
In particular, n{t} meets none of the three conditions for
is-shared to be true at vertex v13 and so ts-shared(n{i}) is
reset to false at V13. (See Figure 9(c).)

Remark. It is interesting to note that if the assignment at

v12 were e.cdr := n% rather than y. cdr := nil, is.shm-ed(n{t})
would be reset to false at V13, even though there would be
two incoming selector-edges to n{ f}: (n{2,V}, cdr, n{t}) and

(n{. ,}, cdr, n{,}). This is consistent with the concrete se-
man~ics because the shape-node names ?Z{,,Y} and n{~,vi tell

us that (n{ Z,V}, cdr, n{i}) and (nf~,vi, cdr, qt})are“incom-
patible”. Because {z, y} n {z, y} # 4, we know that n{z,y}

and n{~,vl do not represent nodes that co-exist in any DSG.
This explains condition (b) in the y. cdr := nil case of Fig-

ure 6. ❑

y:=x

while y. cdr # nil A

z := y.cdr
y:=z

od

t := y.cdr

e.cdr := t

y.cdr := e

t := nil
z := nil

e := nil
y := nil

(a)

y := nil
y:=~

while y. cdr # nil A

.z := nil

z := y.cdr
y := nil
y:=ij

od

t:=nil
t := y.cdr

e.cdr := nil

e.cdr := t

y. cdr := nil
y.cdr := e
t:= nil
z := nil

e := nil

y := nil

(b)

do

do

VI

V2

V3

V4

V5

v6

V7

v8

V9

J
y := nil

[
Y:!x

J_ J

+
z := nil

i

1 z := y.cdr

J
J

y := nil

y L----+

=

?)11

VIZ

‘U13

m4

V15

V16

V17

v18

‘vIo

s

e.cdr := nil

e.cdr := t

+
z := nil I1

E=e := nil

y := nil

I I

(c)

Figure 8: A program that searches a list and splices a new

element into the list.

5 Extensions

5.1 Merging Shape Nodes

The number of shape-nodes in an SSG is bounded by 21‘v”’”l.
Unfortunately, for some pathological programs the number

of shape-nodes can actually grow to be this large (although
our limited experience to date suggests that this is unlikely

to arise in practice). It is possible to overcome this problem

by making use of a widening operator that merges selected
shape-nodes. By this means, we can guarantee that a fixed
point of Equation (1) of Section 4.3 can be found in polyno-
mial time; the widening operator simply has to be applied

whenever necessary to limit the cardinality of shape-node
name sets to some chosen constant. (This is similar in spirit
to k-limiting [JM81], but is likely to produce more accurate
results because limiting the cardinality of name sets still pre-
serves most of the structural information about the graph.)
Details can be found in [SRW95].

27

/
IY

x 6
It*

/2
n{. } n{z,v}

Eml,Tl
n{z,y}

●

n{e}

(a) The shape-graph for vertex VI,. In this graph,

is.shm-ed(n{tl) = ~ake.

I ! I

n{. }

(b) The shape-graph for vertex VIZ. In this graph,
is_shared(n{ ~}) = true (shown in bold).

I
I I I

=EEl
n{z>.v} ed

n{e}
(c) The shape-graph for vertex VM. In this graph,
i.s-sharecl(nftl) = false.

Figure 9: The shape-graphs at vertices WI1, v12, and v13 in

the list-insert program. These illustrate how is-shared (n{,})
is reset to false in the shape-graph for vertex 7JM.

5.2 Finding Aliases and Sharing

It is possible to use our shape-analysis algorithm to deter-
mine whether two pointer variables z and y are possible
aliases just before vertex v by testing whether z and y point

to a common shape-node in SSG SGU. If x and y do point to
a common node, we (conservatively) conclude that they may
be aliases. It is possible to extend this to a test of whether
two access paths are “may aliases”, as follows: First, we in-
strument the original program with two additional tempo-
rary variables (say tl and t2) and code to advance tland tz
down the two pointer-access paths in question. The code is

inserted just before v. Second, we apply our shape-analysis

algorithm. Third, we look in the SSG computed for vertex
v to see if tland tzmay be aliases.

We can also use this approach to determine if there is

possible sharing between components of two heap-allocated
data structures, which is precisely the kind of information

needed to be able to compile programs to take advantage of

coarse-grained parallelism. (See [SRW95].)

5.3 Interprocedural Analysis

Our method can also be extended to handle procedure calls
in a conservative way. Two fundamental problems need to

be resolved:

@ Representing multiple occurrences of the same local vari-
able in (mutually) recursive procedures.

e Accounting for the different calling contexts in which a

procedure can occur.

To approximate the local variables of recursive calls, we

intro duce an extra variable z for every local variable z. Vari-

able T is used as a representative for all copies of x in other

scopes. Shape-nodes whose name sets contain only barred
variables are a new kind of “summary node”. Like n4, they

can represent multiple runtime locations from a single DSG.

Using these ideas, we have extended the abstract semantics
to handle procedure calls and returns.

The second problem can be resolved using one of the

known interprocedural techniques of Sharir and Pnueli [SP81].

For example, a simple conservative solution is to consider a

procedure call as a goto to the called procedure and a re-

turn from a procedure P as a goto to all the statements that

follow an invocation of P. A more accurate solution can be

determined by tabulating a “shape-graph-transformation”

function for each procedure.

5.4 Representing Definitely Circular Struc-

tures

In the SSGS defined in Section 4.1, there are no elements that
represent the fields of nodes that point to atoms or nil (or

are uninitialized). One consequence of this is that the shape-

analysis algorithm is only able determine rather weak “data-
type” properties. As pointed out in Example 4.6, when the

algorithm reports that a variable points to a circular list, it
may actually point only to a non-circular list. That is, the
type ‘(circular list” really means ‘(possibly circular list”.

By introducing three additional nodes, n~t~~, nil, and

n.ninit, much more accurate type properties can be obtained
in many cases. We impose the invariant on SSGS that all

fields of shape-nodes have at least one out-going selector-
) The consequenceedge (possibly to n~t~~, nnil, or nuninit

of this refinement is that this modified domain of SSGS is
capable of representing definitely cyclic data structures.

For example, with this extension the SSG shown in Fig-
ure 5(d) represents a definitely cyclic list of length > 2 (mod-
U1Othe absence of edges from the car fields to n~to~ in the
two shape-nodes); Figure 5(e) represents a definitely cyclic
list of length > 1; and Figure 5(f) represents a posstbly cyclic
list of length >1.

28

6 Related Work

The shape-analysis problem was originally investigated by

Reynolds for a Lisp-like language with no destructive up-
dating [Rey68]. Reynolds treated the problem as one of
simplifying a collection of set equations. A similar shape-

analysis problem, but for an imperative language support-
ing non-destructive manipulation of heap-allocated objects,

was formulated independent ly by Jones and Muchnick, who

treated the problem as one of solving (i.e., finding the least
fixed-point of) a collection of equations using regular tree

grammars [JM81].

In that same paper, Jones and Muchnick also began the

study of shape analysis for languages wzth destructive up-

dating. To handle such languages, they formulated an anal-

ysis method that associates program points with sets of fi-
nite shape-graphs.5 To guarantee that the analysis termi-

nates for programs containing loops, the Jones- Muchnick
approach limits the length of acyclic selector paths by some

chosen parameter k. All nodes beyond the “k-horizon” are
clustered into a summary node. The k-limiting approach

has two inherent drawbacks:

The analysis yields poor results for programs that ma-

nipulate elements beyond the k-horizon. For example, in

the list-reversal program of Figure 1, little useful infor-

mation is obtained. The analysis algorithm must model

what happens when the program is applied to lists of
length greater than k. However, the tail of such a list

will be treated (conservatively) as an arbitrary, and pos-

sibly cyclic, data structure.
The analvsis mav be extremelv costlv because the number

of possible shape-graphs is doubly exponential in k.

In addition to Jones and Muchnick’s work, k-limiting has

also been used in a number of subsequent papers (e.g., [HPR89]).
Whereas Jones and Muchnick use sets of shape-graphs

(in [JM81]), our work follows Jones and Muchnick [JM82],
Larus and Hilfinger [LH88, Lar89], Chase, Wegman, and

Zadeck [CWZ90], and Stransky [Str92] who developed shape-
analysis methods that associate each program point with a
single shape-graph. The use of a single shape-graph is pos-
sibly less accurate than a method based on sets of graphs,

but it leads to more compact representations, and thus is
more likely to lead to a practical shape-analysis algorithm.

Jones and Muchnick [JM82], Chase, Wegman, and Zadeck

[CWZ90], and Stransky [Str92] present similar methods in
which the shape-nodes correspond to a program’s allocation

sites. These methods are more efficient than the methods
discussed earlier, both from a theoretical perspective [CWZ90]

and from an imdementation Dermective IAW931.

is

●

●

e

The algorithm presented b; C~ase, Wegman, ~nd Zadeck
based on the following ideas:

Sharing information in the form of heap reference counts
(using O, 1, and m) is used to characterize shape-graphs
that represent list structures.6

Several heuristics are introduced to allow several shape-
nodes to be maintained for each allocation site.

When x.selo is assigned to and x.selo points to a shape-
node that represents a unique run-time location, the selo

‘In this section, we use tile term “sllape-grapll” in tile generic

sense, meaning my finite graph structure used to approximate tile

shapes of run-time data structures.

cTlle idea of augmenting sllape-graplls with snaring information

also appears in tile earlier work of Jones and Muclmick [,JM81].

selector-edges emanating from the shape-node that z points

to are overwritten (a so-called “strong update”).

The Chase-Wegman-Zadeck algorithm is able to identify list-
preservation properties in some cases; for instance, it can

determine that a program that appends a list to a list pre-
serves “list-ness”. However, as noted by Chase, Wegman,

and Zadeck, allocation-site information alone is insufficient

to determine interesting facts in many programs. For ex-
ample, it cannot determine that “list-ness” is preserved for
either the insert program or the reverse program. In par-

ticular, in the reverse program, the Chase- Wegman-Zadeck
algorithm reports that y points to a possibly cyclic structure

and that the structures that z and y point to possibly share

elements in common.
There are two major technical differences between our al-

gorithm and the Chase-Wegman-Zadeck algorithm that lead

to the improvements in accuracy obtained by our algorithm:

“Strong Nullification” For an assignment x.selo := y, the
Chase-Wegman-Zadeck method ordinarily performs a
“weak update” (i.e., selector-edges emanating from what

z points to are accumulated). It performs a strong up-

date only under certain specialized conditions.

In our algorithm, because of the Normalization As-

sumptions of Section 2.1, an assignment statement
z.selo := y is transformed into two statements: z.selo :=

nil, followed immediately by z.selo := y. When our

algorithm processes the first of these statements, it (al-

ways) removes the selo edges emanating from what z

points to. We have called this operation “strong nul-
lification”, bv analogy with “strong u~date”. When
the ahzorithrn moce~~es the second- st~tement. it in-
trodu~es selo edges that emanate from the shape-node

that z points to. Taken together, the effect is to over-

write the selo edges emanating from the shape-node
that x points to — in other words, for a statement
in the original, program of the form ~,selo := y, our

algorithm always performs a strong update.

Example. In SGS of Figure 4, n{z}, TZ{gl,
and n{.,v} are separate nodes. Because n{c,v]

represents on!y run-time locations that are

pointed to by both z and y, it is safe for the

abstract semantics to perform a strong nul-
lification to n{z,v} (see SG4). ❑

The reason why it is possible for our algorithm to per-
form strong nullifications (and hence strong updates)
is because each abstract assignment operation of the

abstract semantics creates an SSG that conservatively
covers all the possible new configurations of variable

sets whose members all point to the same run-time lo-
cation (i.e., DSG shape-node). If x is in the name of

an SSG shape-node n, then n represents a DSG node
whose selo field will definitely be overwritten.

Materialization In an assignment statement of the form z :=

y.selo, our algorithm materializes new shape-nodes that
conservatively cover all the possible new configurations
of variable sets whose members all point to the same
run~time location. For example, when y.selo points to

nd, our algorithm materializes a new node rz{z} out
of n~. Furthermore, if z.s-s/zared(n@) = j’alse, this in-
formation is used to exclude both of the two possible

selector-edges from n@ to n{xl.

29

In programs that use a loop containing an assignment

x := %.cdr to traverse an unshared linked list, this
technique permits our method to determine that z
points to an unshared list element on every iteration.

For instance, this occurs in the transition from block

va to block v~ in Figure 7. As explained in Section 4.4,
the materialization of TZ{LI} in block V9 is one of the

key aspects of our algorithm that allows it to determine

that the list-reversal program preserves “list-ness”.

The Chase- Wegman-Zadeck algorithm lacks a node-
materialization operation (although they did recognize

that the lack of one was a stumbling block to the ac-

curacy of their method [CWZ90, pp. 309]).

Chase, Wegman, and Zadeck use reference-count values O,
1, and co, whereas we use a Boolean-valued is-shared value.
However, this does not represent a significant difference be-

cause in our SSGS the selector-edges allow recovering the

distinction between O (no incoming edges) and 1 (at least

one incoming selector-edge, but ts.shared = fake).

Our method has been presented within the framework of
abstract interpretation, which allows us to prove that the
algorithm obtained is conservative with respect to the con-

crete semantics. Chase, Wegman, and Zadeck give only in-
formal arguments about the correctness of their algorithm.
Because of several ad hoc features of the Chase-Wegman-

Zadeck method, several changes would be necessary to re-
formulate it as an abstract interpretation. For inst ante, the

rules they give for the “join” operation are complicated by
the fact that the result of “joining” two shape-graphs de-

pends on the program point at which the operation is ap-

plied. (For this reason, “join “ is a misnomer in the lattice-

theoretic sense.) In contrast, our join operation, which is
essentially graph union, is the join operation in the lattice

of SSGS defined in Section 4.1.
Larus and Hilfinger [LH88, Lar89] devised a shape-analysis

algorithm that is based on somewhat different principles
from the aforementioned work. As with our algorithm, shape-

nodes are labeled with some auxiliary hformation. At first
glance, their node-labeling scheme appears to be more gen-

eral than ours: Whereas we use a set of varzables to label
each node, they use a regular ezpresszon (limited to be no
longer than some chosen constant k) representing pointer-

access paths that may lead to an instance of the node. How-

ever, their shape-node labels do not add any information to
their representation because the pointer-access expressions

can always be reconstructed from the graph stripped of node
labels. In contrast, our labels — which in some sense rep-
resent regular expressions of length-l — do contribute es-

sential information to our representation: When z is in t,he
variable-set of shape-node nX, we know that a strong nul-
lification (and hence a strong update) can be performed on
the selector-edges emanating from nx.

It is possible that it would be worthwhile to extend our
technique to use more complicated shape-node names of the
kind that Larus and Hilfinger use. However, on many in-

teresting examples, even with our ‘(length-1 labels”, our al-
gorithm achieves greater accuracy than the Larus-Hilfinger
algorithm does, no matter what value of k is chosen: For
example, the Larus-Hilfinger algorithm is not able to deter-
mine that programs such as the list-reversal and list-insert

programs preserve “list-ness”.
There are also several algorithms for finding may aliases

that are not based on shape-graphs, The most sophisticated

ones are those of Landi and Ryder [LR91] and Deutsch [Deu94]

Deutsch’s algorithm is particularly interesting because, for
certain programs that manipulate lists, it offers a way of
representing the exact (infinite set of) may aliases in a com-

pact way. It can be shown that Deutsch algorithm yields

may-alias information for the list-reversal program that is

equivalent to that produced by the algorithm of Section 4.1.

However, both the Landi-Ryder and Deutsch algorithms do

not determine that either ‘(list-ness” or ‘tcircular list-ness” is

preserved by the insert program of Figure 9. The reason is
that due to the lack of a strong-nullification operation, these

algorithms cannot infer that the assignment y. cdr := nil in
the program shown in Figure 8(b) cuts the list pointed to by
z (see Figures 9(b) and (c)). We do not mean to imply that
our method dominates the Landi-Ryder and Deutsch algo-
rithms; there exist programs in which the Deutsch algorithm
is more accurate than our algorithm.

A different approach was taken by Hendren, who de-
signed an algorithm that handles only acyclic data struc-

tures [HN90, Hen90] Because of the choice to work with

programs that only manipulate acyclic structures, the al-

gorithm does not have to have a way of representing cycles
conservatively. For this alias-analysis problem, she has given

an efficient algorithm that manipulates matrices that record

access paths that are aliased.
To the best of our knowledge, Hendren’s algorithm is the

only algorithm besides ours that can detect that insertion of

an element into a list (respectively, tree) preserves the list
(tree) structure. However, by design, Hendren’s algorithm

cannot determine such structure-preservation properties for

programs that handle cyclic lists.

Myers presented an algorithm for interprocedural bit-
vector problems that accounts for aliasing [Mye81]. Like

our shape-analysis algorithm, his algorithm also keeps track

of sets of aliased variables. He conjectured that in practice
the sizes of the alias sets remain small, However, Myers’s
work does not handle heap-allocated storage and destructive

updating. Therefore, his algorithm is significantly simpler
and he is even able to show that it is precise. In contrast,
it is undecidable to give a precise solution to our problem,

even in the absence of procedure calls [Lan92, Ram94].

Acknowledgments

We are grateful for the helpful comments of Alain Deutsch,

Christian Fecht, and Neil Jones, Laurie Hendren provided
us with extensive and very helpful information about the

capabilities of her analysis technique.

References

[AW93] U. Assmann and M. Weinhardt. Interprocedural Heap

Analysis For Parallelizing Imperative Programs. In

W. K. Giloi, S. Jahnichen, and B. D Shriver, editors,

Programming Models For Masstuely Parollel Comput-

ers, pages 74--82. IEEE Press, September 1993,

[CBC93] J.-D. Choi, M. Burke, and P. Carim. Efficient

flow-sensitive interprocedural computation of pointer-

induced aliases and side-effects. In ACM Symposium

on Principles of Programming Languages, pages 232–
245, 1993,

[CWZ90] DR. Chase, M. Wegman, and F. Zadecli. Analysis of

pointers and structures. In SIGPLAN Conference on
Programming Languages Destgn and Implementation,
1990,

30

[Deu92]

[Der194]

[Hen90]

[HG92]

[HN90]

[HNH92]

[HPR89]

[JM81]

[JM82]

[Lan92]

[Lar89]

[LH88]

[LR91]

[Mye81]

[PCK93]

[Ram94]

A. Deutsch. A storeless model for aliasing and its ab-
stractions using finite representations of right-regular

equivalence relations. In IEEE Jnterrsatiorml Confer-

ence on Computer Languages, pages 2–13, 1992.

A. Deutsch. Interprocedural may-alias analysis for

pointers: Beyond k-limiting, In SIGPLAN Conference

on Programming Languages Design and Implementa-
tion, 1994.

L. Hendren. Parallelizing Programs with Recursive
Data Structures. PhD thesis, Cornell University, Jan

1990.

L. Hendren and G.R. Gao. Designing programming lan-

guages for analyzability: A fresh look at pointer data
structures. In Proceedings of the International Confer-
ence on Computer Languages, pages 242–251, 1992.

L. Hendren and A. Nicolau. Parallelizing programs

with recursive data structures. IEEE Transactions on

Parallel and Lhstributed Systems, 1(1):35–47, January

1990.

L. Hendren, A. Nicolau, and J. Hummel. Abstrac-

tions for recursive pointer data structures: Improv-

ing the analysis and the transformation of imperative
programs. In SIGPLAN Conference on Programming

Languages Design and Implementation, pages 249-260,

June 1992.

S. Horwitz, P. Pfeiffer, and T. Reps. Dependence anal-

ysis for pointer variables. In SIGPLAN Conference on
Programming Languages Design and Implementation,

pages 28–40, 1989.

N.D. .Jones and S.S. Muchnick. Flow analysis and opti-
mization of Lisp-like structures. In S.S. Muchnick and

N.D. Jones, editors, Program Flow Analysis. Theory

and Applications, chapter 4, pages 102–131. Prentice-
Hall, 1981,

N.D. Jones and S.S. Muchnick. A flexible approach to
interprocedural data flow analysis and programs with

recursive data structures. In ACM Symposium on Prin-

ciples of Programmmg Languages, pages 66–74, 1982.

W. Landi. Undecidability of static analysis. ACM Let-
ters on Programming Languages and Systems, 1(4),
1992.

J.R. Larus. Restructuring Symbolic Programs for Con-

cur-rent Execution on Multiprocessor-s. PhD thesis, Uni-
versity of California, 1989.

J.R. Larus and P.N. Hilfinger. Detecting conflicts be-

tween structure accesses. In SIGPLAN Conference on
Programming Languages Destgn and Implementation,
pages 21–34, 1988.

W. Landi and B.G. Ryder. Pointer induced aliasing: A
problem classification. In ACM Sympostum on Prtnct-
ples of Programming Languages, pages 93–103, 1991.

E.W. Myers. A precise inter-procedural data flow algo-
rithm. In ACM Symposzum on Principles of Program-
ming Languages, pages 219–230, 1981.

J. Plevyak, A.A. Chien, and V. Karamcheti. Anal-
ysis of dynamic structures for efficient parallel exe-

cution. In U. BanerJee, D. Gelernter, A. Nicolau,
and D. Padua, editors, Languages and Compders for
Parallel Computing, volume 768 of Lecture Notes in
Computer Science, pages 37-57, Portland, OR, August
1993. Springer-Verlag.

G. Ramalingam. The rmdecidability of aliasing, ACM
Transactions on Programming Languages and Sys-
tems, 16(5):1467–1471, 1994.

[Rey68] J.C. Reynolds. Automatic computation of data set def-
initions. In Information Processing 68: Proceedings

of the IFIP Congress, pages 456–461, New York, NY,

1968. North-Holland.

[SP81] M. Sharir and A, Pnueli. Two approaches to interpro-

cedural data flow analysis. In S.S. Muchnick and N.D.
Jones, editors, Program Flow Analysis: Theory and
Applications, chapter 7, pages 189–234. Prentice-Hall,
1981.

[SRW95] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-

analysis problems in languages with destructive up-
dating. Technical Report TR-1276, Computer Sci-
ences Department, University of Wisconsin, Madieon,

WI, July 1995. Available on the WWW from URL
http://www.cs.wisc. edu/trs.html.

[Str92] J. Stransky. A lattice for abstract interpretation of
dynamic (Lisp-like; structures. Information and Com-
putation, 101(1):70-132, November 1992.

’31

