
Proceedings of the 26th ACM Symposium on Principles of Programming Languages (POPL ’99), San Antonio, Texas, USA, January 1999

JFlow: Practical Mostly-Static Information Flow Control

Andrew C. Myers

Laboratory for Computer Science
Massachusetts Institute of Technology

http://www.pmg.lcs.mit.edu/~andru

Abstract

A promising technique for protecting privacy and integrity of
sensitive data is to statically check information flow within
programs that manipulate the data. While previous work
has proposed programming language extensions to allow this
static checking, the resulting languages are too restrictive for
practical use and have not been implemented. In this pa-
per, we describe the new language JFlow, an extension to
the Java language that adds statically-checked information
flow annotations. JFlow provides several new features that
make information flow checking more flexible and conve-
nient than in previous models: a decentralized label model,
label polymorphism, run-time label checking, and automatic
label inference. JFlow also supports many language features
that have never been integrated successfully with static infor-
mation flow control, including objects, subclassing, dynamic
type tests, access control, and exceptions. This paper defines
the JFlow language and presents formal rules that are used to
check JFlow programs for correctness. Because most check-
ing is static, there is little code space, data space, or run-time
overhead in the JFlow implementation.

1 Introduction

Protection for the privacy of data is becoming increasingly
important as data and programs become increasingly mobile.
Conventional security techniques such as discretionary ac-
cess control and information flow control (including manda-
tory access control) have significant shortcomings as privacy-
protection mechanisms.

The hard problem in protecting privacy is preventing pri-
vate information from leaking through computation. Access
control mechanisms do not help with this kind of leak, since

This research was supported in part by DARPA Contract F30602-96-C-0303, monitored
by USAF Rome Laboratory, and in part by DARPA Contract F30602-98-1-0237, also
monitored by USAF Rome Laboratory.

Copyright c
1999 by the Association for Computing Machinery, Inc. Permission
to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481,
or permissions@acm.org.

they only control information release, not its propagation
once released. Mandatory access control (MAC) mecha-
nisms prevent leaks through propagation by associating a
run-time security classwith every piece of computed data.
Every computation requires that the security class of the re-
sult value also be computed, so multi-level systems using
this approach are slow. Also, these systems usually apply a
security class to an entire process, tainting all data handled
by the process. This coarse granularity results in data whose
security class is overly restrictive, and makes it difficult to
write many useful applications.

A promising technique for protecting privacy and integrity
of sensitive data is to statically check information flows
within programs that might manipulate the data. Static
checking allows the fine-grained tracking of security classes
through program computations, without the run-time over-
head of dynamic security classes. Several simple program-
ming languages have been proposed to allow this static check-
ing [DD77, VSI96, ML97, SV98, HR98]. However, the
focus of these languages was correctly checking information
flow statically, not providing a realistic programming model.

This paper describes the new language JFlow, an extension
to the Java language [GJS96] that permits static checking of
flow annotations. JFlow seems to be the first practical pro-
gramming language that allows this checking. Like other re-
cent approaches [VSI96, ML97, SV98, HR98, ML98], JFlow
treats static checking of flow annotations as an extended form
of type checking. Programs written in JFlow can be statically
checked by the JFlow compiler, which prevents information
leaks through storage channels[Lam73]. JFlow is intended
to support the writing of secure servers and applets that ma-
nipulate sensitive data.

An important philosophical difference between JFlow and
other work on static checking of information flow is the focus
on a usable programming model. Despite a long history, static
information flow analysis has not been widely accepted as a
security technique. One major reason is that previous models
of static flow analysis were too limited or too restrictive to
be used in practice. The goal of the work presented in this
paper has been to add enough power to the static checking
framework to allow reasonable programs to be written in a
natural manner.

This work has involved several new contributions: JFlow
extends a complex programming language and supports many

language features that have not been previously integrated
with static flow checking, including mutable objects (which
subsume function values), subclassing, dynamic type tests,
and exceptions. JFlow also provides powerful new features
that make information flow checking less restrictive and more
convenient than in previous programming languages:

� It supports the decentralized label model[ML97,
ML98], which allows multiple principals to protect their
privacy even in the presence of mutual distrust. It
also supports safe, statically-checked declassification,
or downgrading, allowing a principal to relax its own
privacy policies without weakening policies of other
principals.

� It provides a simple but powerful model of access con-
trol that allows code privileges to be checked statically,
and also allows authority to be granted and checked
dynamically.

� It provides label polymorphism, allowing code that is
generic with respect to the security class of the data it
manipulates.

� Run-time label checking and first-class label values pro-
vide a dynamic escape when static checking is too re-
strictive. Run-time checks are statically checked to en-
sure that information is not leaked by the success or
failure of the run-time check itself.

� Automatic label inference makes it unnecessary to write
many of the annotations that would otherwise be re-
quired.

The JFlow compiler is structured as a source-to-source
translator, so its output is a standard Java program that can
be compiled by any Java compiler. For the most part, trans-
lation involves removal of the static annotations in the JFlow
program (after checking them, of course). There is little
code space, data space, or run time overhead, because most
checking is performed statically.

The remainder of this paper is structured as follows: Sec-
tion 2 contains an overview of the JFlow language and a
rationale for the decisions taken. Section 3 discusses static
checking, sketches the framework used to check program
constructs in a manner similar to type checking, and both for-
mally and informally presents some of the rules used. This
section also describes the translations that are performed by
the compiler. Section 4 compares this work to other work in
related areas, and Section 5 provides some conclusions. The
grammar of JFlow is provided for reference in Appendix A.

2 Language overview

This section presents an overview of the JFlow language and
a rationale for its design. JFlow is an extension to the Java
language that incorporates the decentralized label model. In
Section 2.1, the previous work on the decentralized label
model [ML97, ML98] is reviewed. The language descrip-
tion in the succeeding sections focuses on the differences
between JFlow and Java, since Java is widely known and
well-documented [GJS96].

2.1 Labels

In the decentralized label model, data values are labeled
with security policies. A label is a generalization of the
usual notion of a security class; it is a set of policies that
restrict the movement of any data value to which the label
is attached. Each policy in a label has an owner O, which
is a principal whose data was observed in order to create the
value. Principals are users and other authority entities such
as groupsor roles. Each policy also has a set of readers,
which are principals that O allows to observe the data. A
single principal may be the owner of multiple policies and
may appear in multiple reader sets.

For example, the label L = f o1: r1, r2; o2: r2, r3g has two
policies in it (separated by semicolons), owned by o1 and o2

respectively. The policy of principal o1 allows r1 and r2 to
read; the policy of principal o2 allows r2 and r3 to read. The
effective reader setcontains only the common reader r2. The
least restrictive label possible is the label fg, which contains
no policies. Because no principal expresses a privacy interest
in this label, data labeled by fg is completely public as far as
the labeling scheme is concerned.

There are two important intuitions behind this model: first,
data may only be read by a user of the system if all of the
policies on the data list that user as a reader. The effective
policy is an intersection of all the policies on the data. Second,
a principal may choose to relax a policy that it owns. This
is a safe form of declassification— safe, because all of the
other policies on the data are still enforced.

A process has the authority to act on behalf of some (pos-
sibly empty) set of principals. The authority possessed by
a process determines the declassifications that it is able to
perform. Some principals are also authorized to act forother
principals, creating a principal hierarchy. The principal hi-
erarchy may change over time, but revocation is assumed to
occur infrequently. The meaning of a label is affected by the
current principal hierarchy. For example, if the principal r 0

can act for the principal r, then if r is listed as a reader by
a policy, r0 is effectively listed by that policy as well. The
meaning of a label under different principal hierarchies is
discussed extensively in an earlier paper [ML98].

Every variable is statically boundto a static label. (The
alternative, dynamic binding, largely prevents static analysis
and can be simulated in JFlow if needed.) If a value v has label
L1 and a variable x has label L2, we can assign the value to
the variable (x := v) only ifL1 can be relabeledtoL2, which
is written as L1vL2. The definition of this binary relation
on labels is intuitive: L1 vL2 if for every policy in L1, there
is some policy in L2 that is at least as restrictive [ML98].
Thus, the assignment does not leak information.

In this system, the label onx is assigned by the programmer
who writes the code that uses x. The power to select a label
for x does not give the programmer the ability to leak v,
because the static checker permits the assignment to x only if
the label on x is sufficiently restrictive. After the assignment,
the static binding of the label ofx prevents leakage. (Changes
in who can read the value in x are effected by modifying the
principal hierarchy, but changes to the principal hierarchy
require appropriate privilege.)

2

Computations (such as multiplying two numbers) cause
joining(t) of labels; the label of the result is the least restric-
tive label that is at least as restrictive as the labels of the values
used in the computation; that is, the least upper bound of the
labels. The join of two sets of policies is simply the union
of the sets of policies. The relation v generates a lattice of
equivalence classes of labels with t as the LUB operator.
Lattice properties are important for supporting automatic la-
bel inference and label polymorphism [ML97, ML98]. The
notationA � B is also used as a shorthand forAvB^BvA

(which does not mean that the labels are equal [ML98]).
Declassification provides an escape hatch from strict infor-

mation flow tracking. If the authority of a process includes a
principal p, a value may be declassified by dropping policies
owned by principals that p acts for. The ability to declassify
provides the opportunity for p to choose to release informa-
tion based on a more sophisticated analysis.

All practical information flow control systems provide the
ability to declassify data because strict information flow con-
trol is too restrictive to write real applications. More com-
plex mechanisms such as inference controls[Den82] often
are used to decide when declassification is appropriate. In
previous systems, declassification is performed by a trusted
subject: code having the authority of a highly trusted princi-
pal. One key advantage of the new label structure is that it
is decentralized: it does not require that all other principals
in the system trust a principal p’s declassification decision,
since p cannot weaken the policies of principals that it does
not act for.

2.2 Labeled types

This section begins the description of the new work in this pa-
per (the JFlow programming language), which incorporates
the label model just summarized. In a JFlow program, a label
is denoted by a label expression, which is a set of component
expressions. As in Section 2.1, a component expression of
the form owner: reader1, reader2, : : : denotes a policy. A
label expression is a series of component expressions, sep-
arated by semicolons, such as fo1: r1, r2; o2: r2, r3g. In a
program, a component expression may take additional forms;
for example, it may be simply a variable name. In that case,
it denotes the set of policies in the label of that variable. The
label fag contains a single component; the meaning of the
label is that the value it labels should be as restricted as the
variable a is. The label fa; o: rg contains two components,
indicating that the labeled value should be as restricted as a
is, and also that the principal o restricts the value to be read
by at most r.

In JFlow, every value has a labeled typethat consists of
two parts: an ordinary Java type such as int, and a label that
describes the ways that the value can propagate. The type and
label parts of a labeled type act largely independently. Any
type expression t may be labeled with any label expression
flg. This labeled type expression is written as tflg; for
example, the labeled type intfp:g represents an integer that
principal p owns and only p can read (the owner of a policy
is always implicitly a reader).

The goal of type checking is to ensure that the apparent,

intfpublicg x;
booleanfsecretg b;
: : :
int x = 0;
if (b) f

x = 1;
g

Figure 1: Implicit flow example

static type of each expression is a supertype of the actual,
run-time type of every value it might produce; similarly, the
goal of label checking is to ensure that the apparent label of
every expression is at least as restrictive as the actual label
of every value it might produce. In addition, label checking
guarantees that, except when declassification is used, the
apparent label of a value is at least as restrictive as the actual
label of every value that might affect it. In principle, the
actual label could be computed precisely at run time. Static
checking ensures that the apparent, static label is always
a conservative approximation of the actual label. For this
reason, it is typically unnecessary to represent the actual
label at run time.

A labeled type may occur in a JFlow program in most
places where a type may occur in a Java program. For exam-
ple, variables may be declared with labeled type:

intfp:g x;
intfxg y;
int z;

The label may always be omitted from a labeled type, as in
the declaration of z. If omitted, the label of a local variable
is inferred automatically based on its uses. In other contexts
where a label is omitted, a context-dependent default label
is generated. For example, the default label of an instance
variable is the public label fg. Several other cases of default
label assignment are discussed later.

2.3 Implicit
ows

In JFlow, the label of an expression’s value varies depending
on the evaluation context. This somewhat unusual property
is needed to prevent leaks through implicit flows: channels
created by the control flow structure itself.

Consider the code segment of Figure 1. By examining the
value of the variable x after this segment has executed, we
can determine the value of the secret boolean b, even though
x has only been assigned constant values. The problem is the
assignment x = 1, which should not be allowed.

To prevent information leaks through implicit flows, the
compiler associates a program-counter label(pc) with every
statement and expression, representing the information that
might be learned from the knowledge that the statement or
expression was evaluated. In this program, the value of pc
during the consequent of the if statement is fbg. After the
if statement, pc = fg, since no information about b can be
deduced from the fact that the statement after the if statement
is executed. The label of a literal expression (e.g., 1) is the
same as its pc, or fbg in this case. The unsafe assignment

3

labelfLg lb;
intf�lbg x;
intfp:g y;
switch label(x) f

case (intfyg z) y = z;
else throw new UnsafeTransfer();

g

Figure 2: Switch label

(x = 1) in the example is prevented because the label of x
(fpublicg) is not at least as restrictive as the label of 1 in this
expression, which is fbg, or fsecretg.

2.4 Run-time labels

In JFlow, labels are not purely static entities; they may also be
used as values. First-class values of the new primitive type
label represent labels. This functionality is needed when
the label of a value cannot be determined statically. For
example, if a bank stores a number of customer accounts as
elements of a large array, each account might have a different
label that expresses the privacy requirements of the individual
customer. To implement this example in JFlow, each account
can be labeled by an attached dynamic label value.

A variable of type label may be used both as a first-class
value and as a label for other values. For example, methods
can accept arguments with run-time labels, as in the following
method declaration:

static
oatf*lbg compute(int xf*lbg, label lb)

In this example, the component expression *lb denotes the
label contained in the variable lb, rather than the label of
the variable lb. To preserve safety, variables of type label
(such as lb) may be used to construct labels only if they are
immutable after initialization; in Java terminology, if they are
�nal. (Unlike in Java, arguments in JFlow are always �nal.)

The important power that run-time labels add is the ability
to be examined at run-time, using the switch label statement.
An example of this statement is shown in Figure 2. The code
in this figure attempts to transfer an integer from the variable
x to the variable y. This transfer is not necessarily safe,
because x’s label, lb, is not known statically. The statement
examines the run-time label of the expression x, and executes
one of several case statements. The statement executed is
the first whose associated label is at least as restrictive as
the expression label; that is, the first statement for which the
assignment of the expression value to the declared variable
(in this case, z) is legal. If it is the case that f�lbgvfp :g, the
first arm of the switch will be executed, and the transfer will
occur safely via z. Otherwise, the code throws an exception.

Since lb is a run-time value, information may be transferred
through it. This can occur in the example by observing which
of the two arms of the switch are executed. To prevent this
information channel from becoming an information leak, the
pc in the first arm is augmented to include lb’s label, which is
fLg. The code passes static checking only if the assignment
from y to z is legal; that is, if fLgvfyg.

class Account f
�nal principal customer;
Stringfcustomer:g name;

oatfcustomer:g balance;

g

Figure 3: Bank account using run-time principals

Run-time labels can be manipulated statically, though con-
servatively; they are treated as an unknown but fixed label.
The presence of such opaque labels is not a problem for static
analysis, because of the lattice properties of these labels. For
example, given any two labels L1 and L2 where L1vL2,
it is the case for any third label L3 that L1 tL3 v L2 tL3.
This implication makes it possible for an opaque label L3 to
appear in a label without preventing static analysis. Using it,
unknown labels, including run-time labels, can be propagated
statically.

2.5 Authority and declassi�cation

JFlow has capability-like access control that is both dynam-
ically and statically checked. A method executes with some
authority that has been granted to it. The authority is es-
sentially the capability to act for some set of principals, and
controls the ability to declassify data. Authority also can be
used to build more complex access control mechanisms.

At any given point within a program, the compiler under-
stands the code to be running with the ability to act for some
set of principals, called the static authorityof the code at that
point. The actual authority may be greater, because those
principals may be able to act for other principals.

The principal hierarchy may be tested at any point using the
actsFor statement. The statement actsFor(p1, p2) Sexecutes
the statement S if the principal p1 can act for the principal
p2. Otherwise, the statement S is skipped. The statement
S is checked under the assumption that this acts-for relation
exists: for example, if the static authority includes p1, then
during static checking of S, it is augmented to include p2.

A program can use its authority to declassify a value. The
expression declassify(e, L) relabels the result of an expres-
sion e with the labelL. Declassification is checked statically,
using the static authority at the point of declassification. The
declassify expression may relax policies owned by principals
in the static authority.

2.6 Run-time principals

Like labels, principals may also be used as first-class values
at run time. The type principal represents a principal that is a
value. A �nal variable of type principal may be used as if it
were a real principal. For example, a policy may use a �nal
variable of type principal to name an owner or reader. These
variables may also be used in actsFor statements, allowing
static reasoning about parts of the principal hierarchy that
may vary at run time. When labels are constructed using
run-time principals, declassification may also be performed
on these labels.

4

public class Vector[label L] extends AbstractList[L] f
private intfLg length;
private ObjectfLg[]fLg elements;

public Vector() : : :
public Object elementAt(int i):fL; ig

throws (ArrayIndexOutOfBoundsException) f
return elements[i];

g

public void setElementAtfLg(Objectfg o, intfg i) : : :
public intfLg size() f return length; g
public void clearfLg() : : :

g

Figure 4: Parameterization over labels

Run-time principals are needed in order to model systems
that are heterogeneous with respect to the principals in the
system, without resorting to declassification. For example,
a bank might store bank accounts with the structure shown
in Figure 3, using run-time principals rather than run-time
labels. With this structure, each account may be owned by
a different principal (the customer whose account it is). The
security policy for each account has similar structure but is
owned by the principal in the instance variable customer.
Code can manipulate the account in a manner that is generic
with respect to the contained principal, but can also determine
at run-time which principal is being used. The principal cus-
tomer may be manipulated by an actsFor statement, and the
label fcustomer:g may be used by a switch label statement.

2.7 Classes

Even in the type domain, parameterizingclasses is important
for building reusable data structures. It is even more impor-
tant to have polymorphism in the information flow domain;
the usual way to handle the absence of statically-checked type
polymorphism is to perform dynamic type casts, but this ap-
proach works poorly when applied to information flow since
new information channels are created by dynamic tests.

To allow usable data structures in JFlow, classes may be
parameterized to make them generic with respect to some
number of labels or principals. Class and interface decla-
rations are extended to include an optional set of explicitly
declared parameters.

For example, the Java Vector class is translated to JFlow
as shown in Figure 4. Vector is parameterized on the label
L, which represents the label of the contained elements. As-
suming that secret and public are appropriately defined, the
typesVector[fsecretg] andVector[fpublicg]would represent
vectors of elements of differing sensitivity. Without the abil-
ity to parameterize classes on labels, it would be necessary
to reimplement Vector for every distinct element label.

The addition of label and principal parameters to
JFlow makes parameterized classes into simple dependent
types[Car91], since types contain values. To ensure that
these dependent types have a well-defined meaning, only
immutable variables may be used as parameters.

Note that even if fsecretg v fpublicg, it is not the case

that Vector[fsecretg] � Vector[fpublicg], since subtyping is
invariant in the parameter L (the subtype relation is denoted
here by �). When such a relation is sound, the parameter
may be declared as a covariant label rather than as a label,
which places additional restrictions on its use. For example,
no method argument or mutable instance variable may be
labeled using the parameter.

A class always has one implicit label parameter: the label
fthisg, which represents the label on an object of the class.
Because L1vL2 implies that CfL1g acts like a subtype of
CfL2g, the label of this is necessarily a covariant parameter,
and its use is restricted in the same manner as with other
covariant parameters.

A class may have some authority granted to its objects by
adding an authority clause to the class header. The author-
ity clause may name principals external to the program, or
principal parameters. If the authority clause names external
principals, the process that installs the class into the system
must have the authority of the named principals. If the au-
thority clause names principals that are parameters of the
class, the code that creates an object of the class must have
the authority of the actual principal parameters used in the
call to the constructor. If a class C has a superclass Cs, any
authority in Cs must be covered by the authority clause of
C. It is not possible to obtain authority by inheriting from a
superclass.

2.8 Methods

Like class declarations, JFlow method declarations also con-
tain some extensions. There are a few optional annotations
to manage information flow and authority delegation. A
method header has the following syntax (in the form of the
Java Language Specification [GJS96]):

MethodHeader:
Modifiersopt LabeledType Identifier

BeginLabelopt (FormalParameterListopt) EndLabelopt

Throwsopt WhereConstraintsopt

FormalParameter:
LabeledType Identifier OptDims

The return value, the arguments, and the exceptions may
each be individually labeled. One subtle change from Java
is that arguments are always implicitly �nal, allowing them
to be used as type parameters. This change is made for the
convenience of the programmer and does not significantly
change the power of the language.

There are also two optional labels called the begin-label
and the end-label. The begin-label is used to specify any
restriction on pc at the point of invocation of the method.
The end-label — the final pc — specifies what information
can be learned by observing whether the method terminates
normally. Individual exceptions and the return value itself
also may have their own distinct labels, which provides fine-
grained tracking of information flow.

In Figure 5 are some examples of JFlow method declara-
tions. When labels are omitted in a JFlow program, a default
label is assigned. The effect of these defaults is that often
methods require no label annotations whatever. Labels may

5

static intfx;yg add(int x, int y) f return x + y; g
boolean compare str(String name, String pwd):fname; pwdg

throws(NullPointerException) f : : : g
boolean storefLg(intfg x)

throws(NotFound) f : : : g

Figure 5: JFlow method declarations

be omitted from a method declaration, signifying the use of
implicit label polymorphism. For example, the arguments of
add and compare str are unlabeled. When an argument label
is omitted, the method is generic with respect to the label of
the argument. The argument label becomes an implicit pa-
rameter of the procedure. For example, the method add can
be called with any two integers x and y, regardless of their
labels. This label polymorphism is important for building
libraries of reusable code. Without it, a math routine like add
would have to be reimplemented for every argument label
ever used.

The default label for a return value is the end-label, joined
with the labels of all the arguments. For add, the default
return value label is exactly the label written (fx;yg), so the
return value could be written just as int. The default label
on an exception is the end-label, as in the compare str ex-
ample. If the begin-label is omitted, as in add, it becomes
an implicit parameter to the method. Such a method can be
called regardless of the caller’s pc. Because the pc within the
method contains an implicit parameter, this method is pre-
vented from causing real side effects; it may of course modify
local variables and mutate objects passed as arguments if they
are appropriately declared, but true side effects would create
static checking errors.

Unlike in Java, the method may contain a list of constraints
prefixed by the keyword where:

WhereConstraints:
where Constraints

Constraint:
authority (Principals)
caller (Principals)
actsFor (Principal , Principal)

There are three different kinds of constraints:

� authority(p1; : : : ; pn) This clause lists principals that
the method is authorized to act for. The static authority at
the beginning of the method includes the set of principals
listed in this clause. The principals listed may be either
names of global principals, or names of class parameters
of type principal. Every listed principal must be also
listed in the authority clause of the method’s class. This
mechanism obeys the principle of least privilege, since
not all the methods of a class need to possess the full
authority of the class.

� caller(p1; : : : ; pn) Calling code may also dynamically
grant authority to a method that has a caller constraint.
Unlike with the authority clause, where the authority
devolves from the object itself, authority in this case

class passwordFile authority(root) f
public boolean
check (String user, String password)
where authority(root) f
// Return whether password is correct
boolean match = false;
try f

for (int i = 0; i < names.length; i++) f
if (names[i] == user &&
passwords[i] == password) f

match = true;
break;

g

g

g

catch (NullPointerException e) fg
catch (IndexOutOfBoundsException e) fg

return declassify(match, fuser; passwordg);
g

private String [] names;
private String f root: g [] passwords;

g

Figure 6: A JFlow password file

devolves from the caller. A method with a caller clause
may be called only if the calling code possesses the
requisite static authority.

The principals named in the caller clause need not be
constants; they may also be the names of method argu-
ments whose type is principal. By passing a principal as
the corresponding argument, the caller grants that prin-
cipal’s authority to the code. These dynamic principals
may be used as first-class principals; for example, they
may be used in labels.

� actsFor (p1,p2) An actsFor constraint may be used to
prevent the method from being called unless the spec-
ified acts-for relationship (p1 acts for p2) holds at the
call site. When the method body is checked, the static
principal hierarchy is assumed to contain any acts-for
relationships declared in the method header. This con-
straint allows information about the principal hierarchy
to be transmitted to the called method without any dy-
namic checking.

2.9 Example: passwordFile

Now that the essentials of the JFlow language are covered, we
are ready to consider some interesting JFlow code. Figure 6
contains a JFlow implementation of a simple password file,
in which the passwords are protected by information flow
controls. Only the method for checking passwords is shown.
This method, check, accepts a password and a user name,
and returns a boolean indicating whether the string is the
right password for that user.

The if statement is conditional on the elements of pass-
words and on the variables user and password, whose labels
are implicit parameters. Therefore, the body of the if state-
ment has pc = fuser; password; root:g, and the variable

6

class Protected f
�nal labelfthisg lb;
Objectf�lbg content;

public ProtectedfLLg(Objectf�LLg x, label LL) f
lb = LL; // must occur before call tosuper()
super(); //
content = x; // checked assuminglb == LL

g

public Objectf�Lg get(label L):fLg
throws (IllegalAccess) f
switch label(content) f

case (Objectf�Lg unwrapped) return unwrapped;
else throw new IllegalAccess();

g

g

public label get label() f
return lb;

g

g

Figure 7: The Protected class

match also must have this label in order to allow the assign-
ment match = true. This label prevents match from being
returned directly as a result, since the label of the return value
is the default label, fuser; passwordg. Finally, the method
declassifies match to this desired label, using its compiled-in
authority to act for root. Note that the exceptions NullPoint-
erException and IndexOutOfBoundsException must be ex-
plicitly caught, since the method does not explicitly declare
them. More precise reasoning about the possibility of excep-
tions would make JFlow code more convenient to write.

Otherwise there is very little difference between this code
and the equivalent Java code. Only three annotations have
been added: an authority clause stating that the principal
root trusts the code, a declassify expression, and a label on
the elements of passwords. The labels for all local variables
and return values are either inferred automatically or assigned
sensible defaults. The task of writing programs is made easier
in JFlow because label annotations tend to be required only
where interesting security issues are present.

In this method, the implementor of the class has decided
that declassification of match results in an acceptably small
leak of information. Like all login procedures, this method
does leak information, because exhaustively trying pass-
words will eventually extract the passwords from the pass-
word file. However, assuming that the space of passwords
is large and passwords are difficult to guess, the amount of
information gained in each trial is far less than one bit. Rea-
soning processes about acceptable leaks of information lie
outside the domain of information flow control, but in this
system, such reasoning processes can be accommodated in a
natural and decentralized manner.

2.10 Example: Protected

The class Protected provides a convenient way of managing
run-time labels, as in the bank account example mentioned
earlier. Its implementation is shown in Figure 7. As the

implementation shows, a Protected is an immutable pair
containing a value content of type Object and a label lb
that protects the value. Its value can be extracted with the
get method, but the caller must provide a label to use for
extraction. If the label is insufficient to protect the data,
an exception is thrown. A value of type Protected behaves
very much like a value in dynamic-checked information flow
systems, since it carries a run-time label. A Protected has an
obvious analogue in the type domain: a value dynamically
associated with a type tag (e.g., theDynamic type [ACPP91]).

One key to making Protected convenient is to label the
instance variable lb with fthisg. Without this labeling, Pro-
tected would need an additional explicit covariant label pa-
rameter to label lb with.

2.11 Limitations

JFlow is not completely a superset of Java. Certain features
have been omitted to make information flow control tractable.
Also, JFlow does not eliminate all possible information leaks.
Certain covert channels (particularly, various kinds of timing
channels) are difficult to eliminate. Prior work has addressed
static control of timing channels, though the resulting rules
are restrictive [AR80, SV98]. Other covert channels arise
from Java language features:

Threads. JFlow does not prevent threads from communi-
cating covertly via the timing of asynchronous modifications
to shared objects. This covert channel can be prevented by
requiring only single-threaded programs.

Timing channels. JFlow cannot prevent threads from
improperly gaining information by timing code with the sys-
tem clock, except by removing access to the clock.

HashCode. In Java, the built-in implementation of the
hashCode method, provided by the class Object, can be used
to communicate information covertly. Therefore, in JFlow
every class must implement its own hashCode.

Static variables. The order of static variable initializa-
tion can be used to communicate information covertly. In
JFlow, this channel is blocked by ruling out static variables.
However, static methods are legal. This restriction does not
significantly hurt expressive power, since a program that uses
static variables usually can be rewritten as a program in which
the static variables are instance variables of an object. The
order of initialization of these objects then becomes explicit
and susceptible to analysis.

Finalizers. Finalizers are run in a separate thread from
the main program, and therefore can be used to communicate
covertly. Finalizers are not part of JFlow.

Resource exhaustion. An OutOfMemoryError can be
used to communicate information covertly, by condition-
ally allocating objects until the heap is exhausted. JFlow
treats this error as fatal, preventing it from communicating
more than a single bit of information per program execu-
tion. Other exhaustion errors such as StackOver
owError
are treated similarly.

Wall-clock timing channels. A JFlow program can
change its run time based on private information it has ob-

7

served. As an extreme example, it can enter an infinite loop.
JFlow does not attempt to control these channels.

Unchecked exceptions. Java allows users to define
exceptions that need not be declared in method headers
(unchecked exceptions), although this practice is described
as atypical [GJS96]. In JFlow, there are no unchecked ex-
ceptions, since they could serve as covert channels.

Type discrimination on parameters. JFlow supports
the run-time cast and instanceof operators of standard Java,
but they may only be invoked using classes that lack parame-
ters. The reason for this restriction is that information about
the parameters is not available at run time. These operators
could be permitted if the parameters were statically known
to be matched, but this is not currently supported.

Backward compatibility. JFlow is not backward com-
patible with Java, since existing Java libraries are not flow-
checked and do not provide flow annotations. However, in
many cases, a Java library can be wrapped in a JFlow library
that provides reasonable annotations.

3 Static checking and translation

This section covers the static checking that the JFlow com-
piler performs as it translates code, and the translation process
itself.

3.1 Exceptions

An important limitation of earlier attempts to create lan-
guages for static flow checking has been the absence of usable
exceptions. For example, in Denning’s original work on static
flow checking, exceptions terminated the program [DD77]
because any other treatment of exceptions seemingly leaked
information. Subsequent work has avoided exceptions en-
tirely.

It might seem unnecessary to treat exceptions directly,
since in many languages, a function that generates excep-
tions can be desugared into a function that returns a discrim-
inated unionor oneof. However, there are problems with
this approach. The obvious way to handle oneofs causes all
exceptions to carry the same label — an unacceptable loss of
precision. Also, Java exceptions are actually objects, and the
try: : : catch statement functions like a typecase. This model
cannot be translated directly into a oneof.

Nevertheless, it is useful to consider how oneof types might
be handled in JFlow. The obvious way to treat oneof types
is by analogy with record types. Each arm of the oneof has
a distinct label associated with it. In addition, there is an
added integer field tag that indicates which of the arms of
the oneof is active. The problem with this model is that
every assignment to the oneof will require that ftaggvpc,
and every attempt to use the oneof will implicitly read ftagg.
As a result, every arm of the oneof will effectively carry the
same label. For modeling exceptions, this is unacceptable.

For each expression or statement, the static checker deter-
mines its path labels, which are the labels for the informa-
tion transmitted by various possible termination paths: nor-
mal termination, termination through exceptions, termination

through a return statement, and so on. This fine-grained anal-
ysis avoids the unnecessary restrictiveness that would be pro-
duced by desugaring exceptions. Each exception that can be
raised by evaluating a statement or expression has a possibly
distinct label that is transferred to the pc of catch statements
that might intercept it. Even finer resolution is provided for
normal termination and for return termination; for example,
the label of the value of an expression may differ from the
label associated with normal termination. Finally, termina-
tion of a statement by a break or continue statement is also
tracked without confusing distinct break or continue targets.

The path labels for a statement or expression are repre-
sented as a map from symbols to labels. Each mapping
represents a termination path that the statement or expres-
sion might take, and the label of the mapping indicates what
information may be transmitted if this path is known to be
the actual termination path. The domain of the map includes
several different kinds of entities:

� The symbol n, which represents normal termination.

� The symbol r, which represents termination through a
return statement.

� Classes that inherit from Throwable. A mapping from
a class represents termination by an exception.

� The symbols nv and rv represent the labels of the nor-
mal value of an expression and the return value of a
statement, respectively. They do not represent paths
themselves, but it is convenient to include them as part
of the map. Their labels are always at least as restrictive
as the labels of the corresponding paths.

� A tuple of the form hgoto Li represents termination
by executing a named break or continue statement that
jumps to the target L. A break or continue statement
that does not name a target is represented by the tuple
hgoto �i. These tuples are always mapped to the label
> since the static checking rules do not use the actual
label.

Path labels are denoted by the letter X in this paper, and
members of the domain of X (paths) are denoted by s. The
expression X [s] denotes the label that X maps s to, and the
expression X [s := L] denotes a new map that is exactly
like X except that s is bound to L. Path labels may also
map a symbol s to the pseudo-label ;, indicating that the
statement cannot terminate through the path s. The label ;
acts as the bottom of the label lattice; ;tL = L for all labels
L, including the label fg. The special path labels X; map
all paths to ;, corresponding to an expression that does not
terminate.

3.2 Type checking vs. label checking

The JFlow compiler performs two kinds of static checking
as it compiles a program: type checking and label checking.
These two aspects of checking cannot be entirely disentan-
gled, since labels are type constructors and appear in the rules
for subtyping. However, the checks needed to show that a

8

Ag[C] = hclass C
�
[::Pi::]

�
: : : f: : :gi

(A ` Qi � Q0
i
) _ (Pi = hcovariant label idi ^ A ` QivQ

0
i
)

A `T C[::Qi::] � C[::Q0
i
::]

Ag [C] = hclass C
�
[::Pi::]

�
extends ts : : : f: : :gi

Ts = interp-T(ts; class-env(C[::Qi::]))

A `T Ts � C0[::Q0
i
::]

A `T C[::Qi::] � C0[::Q0
i
::]

Figure 8: Subtype rules

statement or expression is safe largely can be classified as
either type or label checks. This paper focuses on the rules
for checking labels, since the type checks are almost exactly
the same as in Java.

There are several kinds of judgements made during static
checking. The judgment A `T E : T means that E has
type T in environment A. The judgment A ` E : X is
the information-flow counterpart: it means that E has path
labels X in environment A. The symbol `T is used to de-
note inferences in the type domain. The environment A
maps identifiers (e.g., class names, parameter names, vari-
able names) to various kinds of entities. As with path labels,
the notation A[s] is the binding of symbol s in A. The nota-
tion A[s := B] is a new environment with s rebound to B.
In the rules given here, it is assumed that the declarations of
all classes are found in the global environment, Ag .

A few more comments on notation will be helpful at this
point. The use of large brackets indicates an optional syntac-
tic element. The letter T represents a type, and t represents
a type expression. The letter C represents the name of a
class. The letter L represents a label, and l represents a
label expression. � represents an labeled type expression;
that is, a pair containing a type expression and an optional
label expression. The function interp-T(t; A) converts type
expressions to types, and the function interp-L(l; A) converts
label expressions to labels. The letter v represents a variable
name. The letter P represents a formal parameter of a class,
and the letter Q represents an actual parameter used in an
instantiation of a parameterized class.

3.3 Subtype rules

There are some interesting interactions between type and
label checking. Consider the judgment A `T S � T , mean-
ing “S is a subtype of T ”. This judgement must be made in
JFlow, as in all languages with subtyping. Here, S and T are
ordinary unlabeled types. The subtype rule, shown in Fig-
ure 8, is as in Java, except that it must take account of class
parameters. If S or T is an instantiation of a parameterized
class, subtyping is invariant in the parameters except when a
label parameter is declared to be covariant. This subtyping
rule is the first one shown in Figure 8. The function class-env,
used in the figure, generates an extension of the global envi-
ronment in which the formal parameters of a class (if any) are

true

A ` literal : X;[n := A[pc]; nv := A[pc]]

true

A ` ; : X;[n := A[pc]]

A[v] = hvar
�
�nal

�
TfLg uidi

X = X;[n := A[pc]; nv := LtA[pc]]

A ` v : X

A ` E : X

A[v] = hvar TfLg uidi

A ` X[nv] v L

A ` v = E : X

A ` S1 : X1

extend(A; S1)[pc := X1[n]] ` S2 : X2

X = X1[n := ;]�X2

A ` S1;S2 : X

(X = X1 �X2) � 8s (X[s] = X1[s]tX2[s])

Figure 9: Some simple label-checking rules

bound to the actual parameters: Ag
[::param-id(Pi) := Qi::]

Using this rule, Vector[L] (from Figure 4) would be a
subtype of AbstractList[L'] only if L � L0. Java arrays
(written as TfLg[]) are treated internally as a special type
with two parameters, T and L. As in Java, they are covariant
inT , but like most JFlow classes, invariant inL. User-defined
types may not be parameterized on other types.

IfS and T are not instantiations of the same class, it is nec-
essary to walk up the type hierarchy from S to T , rewriting
parameters, as shown in the second rule in Figure 8. Together,
the two rules inductively prove the appropriate subtype rela-
tionships.

3.4 Label-checking rules

Let us consider a few examples of static checking rules.
Space restrictions prevent presentation of all the rules, but a
complete description of the static checking rules of JFlow is
available [Mye99].

Consider Figure 9, which contains some of the most basic
rules for static checking. The first rule shows that a literal
expression always terminates normally and that its value is
labeled with the current pc, as described earlier. The sec-
ond rule shows that an empty statement always terminates
normally, with the same pc as at its start.

The third rule shows that the value of a variable is labeled
with both the label of the variable and the current pc. Note
that the environment maps a variable identifier to an entry

9

A ` Ea : Xa

A[pc := Xa[n]] ` Ei : Xi

A[pc := Xi[n]] ` Ev : Xv

X1 = exc(Xa�Xi�Xv ; Xa[nv];NullPointerException)

X2 = exc(X1;Xa[nv]tXi[nv];OutOfBoundsException)

X = exc(X2;Xa[nv]tXv[nv];ArrayStoreException)

A `T Ea : TfLag[]

A ` Xv[nv]tX[n] v La

A ` Ea[Ei] = Ev : X

A ` E : XE

A[pc := XE[nv]] ` S1 : X1

A[pc := XE[nv]] ` S2 : X2

X = XE [n := ;]�X1 �X2

A ` if (E) S1 else S2 : X

L = fresh-variable()

A0 = A[pc := L; hgoto �i := L]

A0 ` E : XE

A0[pc := XE[nv]] ` S : XS

A ` XS[n] v L

X = (XE �XS)[hgoto �i := ;]

A ` while (E) S : X

A ` do S while (E) : X

A ` A[pc] v A[hgoto Li]

A ` continue L : X;[hgoto Li := >]

A ` break L : X;[hgoto Li := >]

A ` S : X0

s 2 fn; rg

8(s0 j s0 2 paths ^ s0 6= s) X[s0] = ;

X = X0[s := A[pc]]

A ` S : X

paths= all symbols except nv, rv

exc(X;L;C) = X �X;[n := L; nv := L; C := L]

Figure 10: More label-checking rules

of either the form hvar TfLg uidi or hvar �nal TfLg uidi,
where T is the variable’s type, L is its label, and uid is a
unique identifier distinguishing it from other variables of the
same name.

The fourth rule covers assignment to a variable. Assign-

ment is allowed if the variable’s label is more restrictive than
that of the value being assigned (which will include the cur-
rent pc). Whether one label is more restrictive than other is
inferred using the current environment, which contains in-
formation about the static principal hierarchy. The complete
rule for checking this statement would have an additional
antecedent A `T E : T , but such type-checking rules have
been omitted in the interest of space.

The final rule in Figure 9 covers two statements S1 and
S2 performed in sequence. The second statement is executed
only if the first statement terminated normally, so the correct
pc for checking the second statement is the normal path label
of the first statement (X1[n]). The function extendextends
the environment A to add any local variable declarations in
the statement S1. The path labels of the sequence must be
at least as restrictive as path labels of both statements; this
condition is captured by the operator � , which merges two
sets of path labels, joining all corresponding paths from both.

Figure 10 contains some more complex rules. The rule for
array element assignment mirrors the order of evaluation of
the expression. First, the array expression Ea is evaluated,
yielding path labels Xa. If it completes normally, the index
expression Ei is evaluated, yielding Xi. Then, the assigned
value is evaluated. Java checks for three possible exceptions
before performing the assignment. The function exc, defined
at the bottom, is used to simplify these conditions. This
function creates a set of path labels that are just likeX except
that they include an additional path, the exception C, with
the path label L. Since observation of normal termination
(n) or the value on normal termination (nv) is conditional on
the exception notbeing thrown, excjoins the label L to these
two mappings as well. Finally, avoiding leaks requires that
the label on the array elements (La) is at least as restrictive
as the label on the information being stored (Xv[nv]).

The next rule shows how to check an if statement. First,
the path labels XE of the expression are determined. Since
execution of S1 or S2 is conditional on E, the pc for these
statements must include the value label of E, XE [nv]. Fi-
nally, the statement as a whole can terminate through any of
the paths that terminate E, S1, or S2— except normal ter-
mination of E, since this would cause one of S1 or S2 to be
executed. If the statement has no else clause, the statement
S2 is considered to be an empty statement, and the second
rule in Figure 9 is applied.

The next rule, for the while statement, is more subtle be-
cause of the presence of a loop. This rule introduces a label
variable L to represent the information carried by the con-
tinuation of the loop through various paths. L represents an
unknown label that will be solved for later. It is essentially a
loop invariant for information flow. L may carry information
from exceptional termination of E or S, or from break or
continue statements that occur inside the loop. An entry is
added to the environment for the tuple hgoto �i to capture
information flows from any break or continue statements
within the loop. The rules for checking break and continue,
shown below the rule forwhile, use these environment entries
to apply the proper restriction on information flow.

Assuming that L is the entering pc label, XS[n] is the
final pc label. The final condition requires that L0 may be at

10

A `T E : class C f: : :g

A ` E : XE

X = exc(XE ;XE [nv]; C)[n := ;]

A ` throw E : X

A ` S : XS

pc
i
= exc-label(XS ; Ci)

A[pc := pc
i
; vi := hvar �nal Cfpc

i
g fresh-uid()i] ` Si : Xi

X = (
L

i
Xi)�uncaught(XS ; (::; Ci; ::))

A ` try fSg ::catch(Ci vi) fSig:: : X

A ` S1 : X1 A ` S2 : X2

X = X1[n := ;]�X2

A ` try fS1g �nally fS2g : X

exc-label(X;C) =
F

C0 :(C0�C_C�C0)
X[C0]

(X0 = uncaught(X; (::; Ci; ::))) �

X0[s] = (if (9i (s � Ci)) then ; else X[s])

Figure 11: Exception-handling rules

most as restrictive as L, which is what establishes the loop
invariant.

The last rule in Figure 10 applies to any statement, and is
important for relaxing restrictive path labels. It is intuitive: if
a statement (or a sequence of statements) can only terminate
normally, the pc at the end is the same as the pc at the be-
ginning. The same is true if the statement can only terminate
with a return statement. This rule is called the single-path
rule. It would not be safe for this rule to apply to exception
paths. To see why, suppose that a set of path labels formally
contains only a single exception path C. However, that path
might include multiple paths consisting of exceptions that are
subclasses of C. These multiple paths can be discriminated
using a try: : : catch statement. The unusual Java exception
model prevents the single-path rule from being applied to
exception paths.

However, Java is a good language to extend for static flow
analysis in other ways because it fully specifies evaluation
order. This property makes static checking of information
flow simpler, because the rules tend to encode all possible
evaluation orders. If there were non-determinism in evalua-
tion order, it could be encoded by adding label variables in a
manner similar to the rule for the while statement.

3.5 Throwing and catching exceptions

Exceptions can be thrown and caught safely in JFlow using
the usual Java constructs. Figure 11 shows the rule for the
throw statement, a try: : : catch statement that lacks a �nally
clause, and a try: : : �nally statement. (A try statement with
both catch clauses and a �nally clause can be desugared into

y = true;
try f

if (x) throw new E();
y = false;

g

catch (E e) f g

Figure 12: Implicit flow using throw

a try: : : catch inside a try: : : �nally.) The rule for throw is
straightforward.

The idea behind the try: : : catch rule is that each catch
clause is executed with a pc that includes all the paths that
might cause the clause to be executed: all the paths that are
exceptions where the exception class is eithera subclass or
a superclass of the class named in the catch clause. The
function exc-labeljoins the labels of these paths. The path
labels of the whole statement merge all the path labels of the
various catch clauses, plus the paths from XS that might not
be caught by some catch clause, which include the normal
termination path of XS if any.

The try: : :�nally rule is very similar to the rule for sequenc-
ing two statements. One difference is that the statement S2

is checked with exactly the same initial pc that S1 is, since
S2 is executed no matter how S1 terminates.

To see how these exception rules work, consider the code
in Figure 12. In this example, x and y are boolean vari-
ables. This code transfers the information in x to y by us-
ing an implicit flow resulting from an exception. In fact,
the code is equivalent to the assignment y = x. Using the
rule of Figure 11, the path labels of the throw statement
are fE ! fxgg, so the path labels of the if statement are
X = fE ! fxg; n ! fxgg. The assignment y = false is
checked with pc = X [n] = fxg, so the code is allowed only
if fxgvfyg. This restriction is correct since it is exactly
what the equivalent assignment statement would have re-
quired. Finally, applying both the try-catch rule here and the
single-path rule from Figure 10, the value of pc after the code
fragment is seen to be the same as at its start. Throwing and
catching an exception does not necessarily taint subsequent
computation.

3.6 Run-time label checking

An interesting aspect of checking JFlow is checking the
switch label statement, which inspects a dynamic label at run
time. The inference rule for checking this statement is given
in Figure 13. Intuitively, the switch label statement tests
the equation XE[nv]vLi for every arm until it finds one for
which the equation holds, and executes it. However, this test
cannot be evaluated either statically or at run time. Therefore,
the test is split into two stronger conditions: one that can be
tested statically, and one that can be tested dynamically. This
rule naturally contains the static part of the test.

Let LRT be the join of all possible run-time-
representable components (i.e., components that do not
mention formal label or principal parameters). The
static test is that XE [nv]tLRT vLi tLRT (equiva-

11

A ` E : XE

Li = interp-L(li; A)

A ` XE [nv] v Li tLRT

A `T E : T

A `T T � interp-T(ti; A)

pc0 = XE [n]

pc
i
= pc

i�1 t label(XE [nv]tLi)

A[pc := pc
i
; vi := hvar �nal TifLig fresh-uid()i] ` Si : Xi

X = XE � (
L

i
Xi)

A ` switch label(E)f::case (tiflig vi) Si::g : X

Figure 13: Inference rule for switch label

lently, XE [nv]vLi tLRT); the dynamic test is that
XE [nv]uLRT vLi uLRT . Together, these two tests im-
ply the full condition XE [nv]vLi.

The test itself may be used as an information channel, so
after the check, the pc must include the labels ofXE [nv] and
every Li up to this point. This rule uses the label function
to achieve this. When applied to a label L, it generates
a new label that joins together the labels of all variables
that are mentioned in L. However, the presence of label in
constraint equations does not change the process of solving
label constraints in any fundamental way.

3.7 Checking method calls

Let us now look at some of the static checking associated
with objects. Static checking in object-oriented languages is
often complex, and the various features of JFlow only add to
the complexity. This section shows how, despite this com-
plexity, method calls and constructor calls (via the operator
new) are checked statically.

The rules for checking method and constructor calls are
shown in Figures 14 and 15. Figure 14 defines some generic
checking that is performed for all varieties of calls, and Fig-
ure 15 defines the rules for checking ordinary method calls,
static method calls, and constructor calls.

To avoid repetition, the checking of both static and non-
static method calls, and also constructor calls, is expressed
in terms of the predicate call, which is defined in Figure 14.
This predicate is in turn expressed in terms of two predicates:
call-beginand call-end.

The predicate call-beginchecks the argument expressions
and establishes that the constraints for calling the method are
satisfied. In this rule, the functions type-partand label-part
interpret the type and label parts of a labeled type � . The
rule determines the begin label LI , the default return label
L
def

RV
, and the argument environmentAa, which binds all the

method arguments to appropriately labeled types. Invoking a
method requires evaluation of the arguments Ej , producing
corresponding path labelsXj. The argument labels are bound
in Aa to labels Lj , so the line (Xj [nv]vLj) ensures that the
actual arguments can be assigned to the formals. The begin-
label LI is also required to be more restrictive than the pc

A ` call-begin(C[Qi]; (::; Ej ; ::);S; Aa; LI ; L
def

RV
)

A ` call-end(C[Qi];S; Aa; LI ; L
def

RV
) : X

A ` call(C[Qi]; (::; Ej ; ::);S) : X

S = h
�
static

�
�r m

�
fIg
�
(::�j aj ::)

�
:fRg

�
throws(::�k::) whereKli

X0 = X;[n := A[pc]]

A[pc := Xj�1[n]] ` Ej : Xj

Lj = fresh-variable()

uidj = fresh-uid()

Ac = class-env(C[Qi])

Aa = Ac[::aj := hvar �nal type-part(�j ; Ac)fLjg uidji::]

LI = (if
�
fIg
�
then interp-L(I;Aa) elseXmax(j)[n])

A ` Lj � (if labeled(�j) then label-part(�j ; Aa)tLI else Lj)

A ` Xj [nv] v Lj

A ` Xmax(j)[n] v LI

L
def

RV
= (if (�r = void) then fg else

F
j
Xj [nv])

satisfies-constraints(A;Aa; A[::aj := Ej ::]; (::Kl::))

A ` call-begin(C[Qi]; (::Ej ::);S; A
a; LI ; L

def

RV
)

let interp(p) = interp-P-call(p;A;Aa; Am) in

caseKi of

authority(: : :) : true

caller(::pj ::) : 8(pj)9(p0 2 A[auth]) A ` p0 � interp(pj)

actsFor(p1; p2) : A ` interp(p1) � interp(p2)

end

end

satisfies-constraints(A;Aa; Am; (::Ki::))

S = h
�
static

�
�r m

�
fIg
�
(::�j aj ::)

�
:fRg

�
throws(::�k::) whereKli

LR = LI t (if
�

: fRg
�
then interp-L(R;Aa) else fg)

LRV = LR t (if labeled(�r) then label-part(�r ; Aa) else Ldef
RV

)

Ck = type-part(�k; class-env(C[Qi]))

X0 = (
L

j
Xj)[n := LR; nv := LRV]

X = X0 �X;[::Ck := label-part(�k; Aa)tLR::]

A ` call-end(C[Qi];S; Aa; LI ; L
def

RV
) : X

Figure 14: Checking calls

after evaluating all of the arguments, which is Xmax(j)[n].
The call site must satisfy all the constraints im-

posed by the method, which is checked by the predicate
satisfies-constraints. The rule for this predicate, also in Fig-
ure 14, uses the function interp-P-call, which maps iden-
tifiers used in the method constraints to the corresponding
principals. To perform this mapping, the function needs en-
vironments corresponding to the calling code (A), the called
code (Aa), and a special environment that binds the actual
arguments (Am). The environment entry A[auth] contains
the set of principals that the code is known statically to act
for. The judgement A ` p1 � p2 means that p1 is known
statically to act for p2. (The static principal hierarchy is also

12

A `T Es : C[::Qi::]

A `T Ej : Tj
signature(C[::Qi::];m(::Tj ::);S)

A ` Es : Xs

A[pc := Xs[nv]] ` call(C[::Qi::]; (::Ej ::);S) : X

A ` Es : m(::Ej ::) : X

T = interp-T(t; A)

A `T Ej : Tj
signature(T;m(::Tj ::);S)

A ` call(T; (::Ej ::);S) : X

A ` t : m(::Ej ::) : X

T = C[::Qi::] = interp-T(t; A)

Ag [C] = hclass C
�
[::Pi::]

�
: : :
�
authority(::pl::)

�
: : :i

A `T Ej : Tj
signature(T;C(::Tj ::);S)

S = hC
�
fIg
�
(::�j aj ::)

�
:fRg

�
throws(::�k::) whereKli

S0 = hstatic Tfg m
�
fIg
�
(::�j aj ::)

�
:fRg

�
throws(::�k::) whereKli

A ` call(T; (::Ej ::);S0) : X

8(parameters pl) 9(p 2 A[auth]) A ` p � interp-P(pl; class-env(T))

A ` new t(::Ej ::) : X

Figure 15: Rules for specific calls

placed in the environment.)
Finally, the predicate call-endproduces the path labels X

of the method call by assuming that the method returns the
path labels that its signature claims. The label Ldef

RV
is used

as the label of the return value in the case where the return
type, �r, is not labeled. It joins together the labels of all of
the arguments, since typically the return value of a function
depends on all of its arguments.

The rules for the various kinds of method calls are built on
top of this framework, as shown in Figure 15. In these rules,
the function signatureobtains the signature of the named
method from the class. The rule for constructors contains
two subtle steps: first, constructors are checked as though
they were static methods with a similar signature. Second,
a call to a constructor requires that the caller possess the
authority of all principals in the authority of the class that are
parameters. The caller does not need to have the authority of
external principals named in the authority clause.

3.8 Constraint solving

As the rules for static checking are applied, they generate a
constraint system of label variables for each method [ML97].
For example, the assignment rule of Figure 9 generates a
constraint X [nv]vL. All of the constraints are of the form
A1 t : : : tAmvB1 t : : : tBn. These constraints can be
split into individual constraints AivB1 t : : : tBn because
of the lattice properties of labels. The individual terms in the

T [[actsFor(p1; p2) S]] =

if (dynamic PH:actsFor(T [[p1]] ;T [[p2]])) T [[S]]

T [[switch label(E) f ::case(tiflig) Si:: else Se g]] =

T v = T [[E]] ;

if (T [[XE [nv]u LRT]] :relabelsTo(T [[L1 u LRT]])) f

T [[S1]]

g else : : :

if (T [[XE [nv]u LRT]] :relabelsTo(T [[Li u LRT]]) f

T [[Si]]

g : : : else fT [[Se]]g

Figure 16: Interesting JFlow translations

constraints may be policies, label variables, label parameters,
dynamic labels, or expressions label(L) for some label L.

The constraints can be efficiently solved, using a modifi-
cation to a lattice constraint-solving algorithm [RM96] that
applies an ordering optimization [HDT87] shown to produce
the best of several commonly-used iterative dataflow algo-
rithms [KW94]. The approach is to initialize all variables
in the constraints with the most restrictive label (>) and it-
eratively relax their labels until a satisfying assignment or a
contradiction is found. The label does not create problems
because it is monotonic. The relaxation steps are ordered by
topologically sorting the constraints and looping on strongly-
connected components. The number of iterations required is
O(nh) where h is the maximum height of the lattice struc-
ture [RM96], and also O(nd) where d is the maximum back
edges in depth-first traversal of the constraint dependency
graph [HDT87]. Both h and d seem likely to be bounded for
reasonable programs. The observed behavior of the JFlow
compiler is that constraint solving is a negligible part of run
time.

3.9 Translation

The JFlow compiler is a static checker and source-to-source
translator. Its output is a standard Java program. Most of the
annotations in JFlow have no run-time representation; trans-
lation erases them, leaving a Java program. For example,
all type labels are erased to produce the corresponding unla-
beled Java type. Class parameters are erased. The declassify
expression and statement are replaced by their contained ex-
pression or statement.

Uses of the built-in types label and principal are translated
to the Java types j
ow.lang.Label and j
ow.lang.Principal,
respectively. Variables declared to have these types remain
in the translated program. Only two constructs translate to
interesting code: the actsFor and switch label statement,
which dynamically test principals and labels, respectively.
The translated code for each is simple and efficient, as shown
in Figure 16. Note that the translation rule for switch label
uses definitions from Figure 13. As discussed earlier, the run-
time check is XE [nv]uLRT vL1 uLRT , which in effect is
a test on labels that are completely representable at run time.

13

The translated code uses the methods relabelsTo and acts-
For of the classes j
ow.lang.Label and j
ow.lang.Principal,
respectively. These methods are accelerated by a hash-table
lookup into a cache of results, so the translated code is fast.

4 Related work

There has been much work on information flow control and
on the static analysis of security guarantees. The lattice
model of information flow comes from the early work of Bell
and LaPadula[BL75] and Denning [Den76]. Most subse-
quent information control models use dynamic labels rather
than static labels and therefore cannot be checked statically.
The decentralized label model has similarities to the ORAC
model [MMN90]: both models provide some approxima-
tion of the “originator-controlled release” labeling used by
the U.S. DoD/Intelligence community, although the ORAC
model is dynamically checked.

Static analysis of security guarantees also has a long his-
tory. It has been applied to information flow [DD77, AR80],
to access control [JL78, RSC92], and to integrated models
[Sto81]. There has recently been more interest in provably-
secure programming languages, treating information flow
checks in the domain of type checking. Some of this work
has focused on formally characterizing existing information
flow and integrity models [PO95, VSI96, Vol97]. Smith and
Volpano have recently examined the difficulty of statically
checking information flow in a multithreaded functional lan-
guage [SV98], which JFlow does not address. However, the
rules they define prevent the run time of a program from de-
pending in any way on non-public data. Abadi [Aba97] has
examined the problem of achieving secrecy in security proto-
cols, also using typing rules, and has shown that encryption
can be treated as a form of safe declassification through a
primitive encryption operator.

Heintze and Riecke [HR98] have shown that information-
flow-like labels can be applied to a simple language with
reference types (the SLam calculus). They show how to
statically check an integrated model of access control, infor-
mation flow control, and integrity. Their labels include two
components: one which enforces conventional access con-
trol, and one that enforces information flow control. Their
model has the limitation that it is entirely static: it has no
run-time access control, no declassification, and no run-time
flow checking. It also does not provide label polymorphism
or objects. Heintze and Riecke prove some useful soundness
theorems for their model. This step would be desirable for
JFlow, but important features like objects, inheritance and
dependent types make formal proofs of correctness difficult
at this point.

An earlier paper [ML97] introduced the decentralized
label model and suggested a simple language for writing
information-flow safe programs. JFlow extends the ideas of
that simple language in several important ways and shows
how to apply them to a real programming language, Java.
JFlow adds support for objects, fine-grained exceptions,
explicit parameterization, and the full decentralized label
model [ML98]. Static checking is described by formal in-
ference rules that specify much of the JFlow compiler. The

performance of the label inference algorithm (the constraint
solver) also has been improved.

5 Conclusions

Privacy is becoming an increasingly important security con-
cern, and static program checking appears to be the only
technique that can provide this security with reasonable effi-
ciency. This paper has described the new language JFlow, an
extension of the Java language that permits static checking of
flow annotations. To our knowledge, it is the first practical
programming language that allows this checking. The goal
of this work has been to add enough power to the static check-
ing framework to allow reasonable programs to be written in
a natural manner.

JFlow addresses many of the limitations of previous work
in this area. It supports many language features that have
not been previously integrated with static flow checking, in-
cluding mutable objects (which subsume function values),
subclassing, dynamic type tests, dynamic access control, and
exceptions.

Avoiding unnecessary restrictiveness while supporting a
complex language has required the addition of sophisticated
language mechanisms: implicit and explicit polymorphism,
so code can be written in a generic fashion; dependent types,
to allow dynamic label checking when static label checking
would be too restrictive; static reasoning about access control;
statically-checked declassification.

This list of mechanisms suggests that one reason why static
flow checking has not been widely accepted as a security tech-
nique, despite having been invented over two decades ago, is
that programming language techniques and type theory were
not then sophisticated enough to support a sound, practical
programming model. By adapting these techniques, JFlow
makes a useful step towards usable static flow checking.

Acknowledgments

I would like to thank several people who read this paper and
gave useful suggestions, including Sameer Ajmani, Ulana
Legedza, and the reviewers. Kavita Bala, Miguel Castro,
and Stephen Garland were particularly helpful in reviewing
the static checking rules. I would also like to thank Nick
Mathewson for his work on the PolyJ compiler, from which
I was able to steal much code, and Barbara Liskov for her
support on this project.

A Grammar extensions

JFlow contains several extensions to the standard Java gram-
mar, in order to allow information flow annotations to be
added. The following productions must be added to or modi-
fied from the standard Java Language Specification [GJS96].
As with the Java grammar, some modifications to this gram-
mar are required if the grammar is to be input to a parser
generator. These grammar modifications (and, in fact, the
code of the JFlow compiler itself) were to a considerable

14

extent derived from those of PolyJ, an extension to Java that
supports parametric polymorphism [MBL97, LMM98].

A.1 Label expressions

LabelExpr:
f Componentsopt g

Components:
Component
Components ; Component

Component:
Principal : Principalsopt

this
Identifier
* Identifier

Principals:
Principal
Principals , Principal

Principal: Name

A.2 Labeled types

Types are extended to permit labels. The new primitive types
label and principal are also added.

LabeledType:
PrimitiveType LabelExpropt

ArrayType LabelExpropt

Name LabelExpropt

TypeOrIndex LabelExpropt

PrimitiveType:
NumericType
boolean
label
principal

The TypeOrIndex production represents either an instantia-
tion or an array index expression. Since both use brackets,
the ambiguity is resolved after parsing.

TypeOrIndex:
Name [ParamOrExprList]

ArrayIndex:
TypeOrIndex
PrimaryNoNewArray [Expression]

ClassOrInterfaceType:
Name
TypeOrIndex

ParamOrExprList:
ParamOrExpr
ParamOrExprList , ParamOrExpr

ParamOrExpr:
Expression
LabelExpr

ArrayType:
LabeledType []

ArrayCreationExpression:
new LabeledType DimExprs OptDims

A.3 Class declarations

ClassDeclaration:
Modifiersopt class Identifier Paramsopt

Superopt Interfacesopt Authorityopt ClassBody

InterfaceDeclaration:
Modifiersopt interface Identifier Paramsopt

ExtendsInterfacesopt

Interfacesopt InterfaceBody

Params:
[ParameterList]

ParameterList:
Parameter
ParameterList , Parameter

Parameter:
label Identifier
covariant label Identifier
principal Identifier

Authority:
authority (Principals)

A.4 Method declarations

MethodHeader:
Modifiersopt LabeledType Identifier

BeginLabelopt (FormalParameterListopt) EndLabelopt

Throwsopt WhereConstraintsopt

Modifiersopt void Identifier
BeginLabelopt (FormalParameterListopt) EndLabelopt

Throwsopt WhereConstraintsopt

ConstructorDeclaration:
Modifiersopt Identifier

BeginLabelopt (FormalParameterList) EndLabelopt

Throwsopt WhereConstraintsopt

FormalParameter:
LabeledType Identifier OptDims

BeginLabel:
LabelExpr

EndLabel:
: LabelExpr

WhereConstraints:
where Constraints

Constraints:
Constraint
Constraints , Constraint

Constraint:

15

Authority
caller (Principals)
actsFor (Principal , Principal)

To avoid ambiguity, the classes in a throws list must be
placed in parentheses. Otherwise a label might be confused
with the method body.

Throws:
throws (ThrowList)

A.5 New statements

Statement:
StatementWithoutTrailingSubstatement
: : : existing productions : : :
ForStatement
SwitchLabelStatement
ActsForStatement
DeclassifyStatement

SwitchLabelStatement:
switch label (Expression) f LabelCases g

LabelCases:
LabelCase
LabelCases LabelCase

LabelCase:
case (Type LabelExpr Identifier) OptBlockStatements
case LabelExpr OptBlockStatements
else OptBlockStatements

ActsForStatement:
actsFor (Principal , Principal) Statement

The declassify statement executes a statement, but with
some restrictions removed from pc.

DeclassifyStatement:
declassify (LabelExpr) Statement

A.6 New expressions

Literal:
: : : existing productions : : :
new label LabelExpr

DeclassifyExpression:
declassify (Expression , LabelExpr)

References

[Aba97] Martı́n Abadi. Secrecy by typing in security pro-
tocols. In Proc. Theoretical Aspects of Com-
puter Software: Third International Conference,
September 1997.

[ACPP91] Martı́n Abadi, Luca Cardelli, Benjamin C. Pierce,
and Gordon D. Plotkin. Dynamic typing in a stat-
ically typed language. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS),
13(2):237–268, April 1991. Also appeared as
SRC Research Report 47.

[AR80] Gregory R. Andrews and Richard P. Reitman. An
axiomatic approach to information flow in pro-
grams. ACM Transactions on Programming Lan-
guages and Systems, 2(1):56–76, 1980.

[BL75] D. E. Bell and L. J. LaPadula. Secure com-
puter system: Unified exposition and Multics in-
terpretation. Technical Report ESD-TR-75-306,
MITRE Corp. MTR-2997, Bedford, MA, 1975.
Available as NTIS AD-A023 588.

[Car91] Luca Cardelli. Typeful programming. In E. J.
Neuhold and M. Paul, editors, Formal Descrip-
tion of Programming Concepts. Springer-Verlag,
1991. An earlier version appeared as DEC
Systems Research Center Research Report #45,
February 1989.

[DD77] Dorothy E. Denning and Peter J. Denning. Certi-
fication of programs for secure information flow.
Comm. of the ACM, 20(7):504–513, 1977.

[Den76] Dorothy E. Denning. A lattice model of secure
information flow. Comm. of the ACM, 19(5):236–
243, 1976.

[Den82] Dorothy E. Denning. Cryptography and Data
Security. Addison-Wesley, Reading, Mas-
sachusetts, 1982.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The
Java Language Specification. Addison-Wesley,
August 1996. ISBN 0-201-63451-1.

[HDT87] Susan Horwitz, Alan Demers, and Tim Teitel-
baum. An efficient general iterative algorithm for
dataflow analysis. Acta Informatica, 24:679–694,
1987.

[HR98] Nevin Heintze and Jon G. Riecke. The SLam cal-
culus: Programming with secrecy and integrity.
In Proc. 25th ACM Symp. on Principles of Pro-
gramming Languages (POPL), San Diego, Cali-
fornia, January 1998.

[JL78] Anita K. Jones and Barbara Liskov. A language
extension for expressing constraints on data ac-
cess. Comm. of the ACM, 21(5):358–367, May
1978.

[KW94] Atsushi Kanamori and Daniel Weise. Work-
list management strategies for dataflow analy-
sis. Technical Report MSR–TR–94–12, Mi-
crosoft Research, May 1994.

16

[Lam73] Butler W. Lampson. A note on the confinement
problem. Comm. of the ACM, 16(10):613–615,
October 1973.

[LMM98] Barbara Liskov, Nicholas Mathewson, and
Andrew C. Myers. PolyJ: Parameterized
types for Java. Software release. Located at
http://www.pmg.lcs.mit.edu/polyj, July 1998.

[MBL97] Andrew C. Myers, Joseph A. Bank, and Bar-
bara Liskov. Parameterized types for Java. In
Proc. 24th ACM Symp. on Principles of Program-
ming Languages (POPL), pages 132–145, Paris,
France, January 1997.

[ML97] Andrew C. Myers and Barbara Liskov. A de-
centralized model for information flow control.
In Proc. 17th ACM Symp. on Operating System
Principles (SOSP), pages 129–142, Saint-Malo,
France, 1997.

[ML98] Andrew C. Myers and Barbara Liskov. Complete,
safe information flow with decentralized labels.
In Proc. IEEE Symposium on Security and Pri-
vacy, Oakland, CA, USA, May 1998.

[MMN90] Catherine J. McCollum, Judith R. Messing, and
LouAnna Notargiacomo. Beyond the pale of
MAC and DAC — defining new forms of access
control. In Proc. IEEE Symposium on Security
and Privacy, pages 190–200, 1990.

[Mye99] Andrew C. Myers. Mostly-Static Decentralized
Information Flow Control. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge,
MA, 1999. In progress.

[PO95] Jens Palsberg and Peter Ørbæk. Trust in the �-
calculus. In Proc. 2nd International Symposium
on Static Analysis, number 983 in Lecture Notes
in Computer Science, pages 314–329. Springer,
September 1995.

[RM96] Jakob Rehof and Torben Æ. Mogensen. Trac-
table constraints in finite semilattices. In Proc.
3rd International Symposium on Static Analysis,
number 1145 in Lecture Notes in Computer Sci-
ence, pages 285–300. Springer-Verlag, Septem-
ber 1996.

[RSC92] Joel Richardson, Peter Schwarz, and Luis-Felipe
Cabrera. CACL: Efficient fine-grained protection
for objects. In Proceedings of the 1992 ACM Con-
ference on Object-Oriented Programming Sys-
tems, Languages, and Applications, pages 154–
165, Vancouver, BC, Canada, October 1992.

[Sto81] Allen Stoughton. Access flow: A protection
model which integrates access control and infor-
mation flow. In IEEE Symposium on Security
and Privacy, pages 9–18. IEEE Computer Soci-
ety Press, 1981.

[SV98] Geoffrey Smith and Dennis Volpano. Secure in-
formation flow in a multi-threaded imperative lan-
guage. In Proc. 25th ACM Symp. on Principles
of Programming Languages (POPL), San Diego,
California, January 1998.

[Vol97] Dennis Volpano. Provably-secure programming
languages for remote evaluation. ACM SIGPLAN
Notices, 32(1):117–119, January 1997.

[VSI96] Dennis Volpano, Geoffrey Smith, and Cynthia
Irvine. A sound type system for secure flow analy-
sis. Journal of Computer Security, 4(3):167–187,
1996.

17

