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1 Introduction

Desirable mathematical background for this chapter includes

e basic concepts such as lattices, complete partial orders, homomor-
phisms, etc.

e the elements of domain theory, e.g. as in the chapter by Abramsky
or the books [Schmidt, 1986] or [Nielson, 1992a].

e the elements of denotational semantics, e.g. as in the chapter by
Tennent or the books [Schmidt, 1986] or [Nielson, 1992a].

e interpretations as used in logic.

There will be some use of structural operational semantics [Kahn, 1987],
[Plotkin, 1981], [Nielson, 1992a], for example deduction rules for a pro-
gram’s semantics and type system. The use of category theory will be kept
to a minimum but would be a useful background for the domain-related
parts of Section 3.

1.1 Goals and Motivations

Our primary goal is to obtain as much information as possible about a
program’s possible run time behaviour without actually having to run it
on all input data; and to do this automatically. A widely used technique
for such program analysis is nonstandard execution, which amounts to
performing the program’s computations using value descriptions or abstract
values in place of the actual computed values. The results of the analysis
must describe all possible program ezecutions, in contrast to profiling and
other run-time instrumentation which describe only one run at a time.
We use the term “abstract interpretation” for a semantics-based version of
nonstandard execution.
Nonstandard execution can be roughly described as follows:

e perform commands (or evaluate expressions, satisfy goals etc.) using
stores, values, ... drawn from abstract value domains instead of the
actual stores, values, ... used in computations.
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e deduce information about the program’s computations on actual in-
put data from the resulting abstract descriptions of stores, values,

One reason for using abstract stores, values, ... instead of the actual ones
is for computability: to ensure that analysis results are obtained in finite
time. Another 1s to obtain results that describe the result of computations
on a set of possible inputs. The “rule of signs” is a simple, familiar abstract
interpretation using abstract values “positive”, “negative” and “?” (the
latter is needed to express, for example, the result of adding a positive and
a negative number).

Another classical example is to check arithmetic computations by “cast-
ing out nines”, a method using abstract values 0, 1,..., 8 to detect errors
in hand computations. The idea is to perform a series of additions, sub-
tractions and multiplications with the following twist: whenever a result
exceeds 9, it is replaced by the sum of its digits (repeatedly if necessary).
The result obtained this way should equal the sum modulo 9 of the digits
of the result obtained by the standard arithmetic operations. For example
consider the alleged calculation

123 + 457 + 76543 =7= 132654

This is checked by reducing 123 to 6, 457 to 7 and 76543 to 7, and then
reducing 6 * 7 to 42 and so further to 6, and finally 6 + 7 is reduced to
4. This differs from 3, the sum modulo 9 of the digits of 132654, so the
calculation was incorrect. That the method is correct follows from:

(10a+b)mod 9 = (a=xb)mod 9
axb (mod9) = (amod 9xbmod 9) (mod9)
a+bmod 9 = (emod 94+ bmod 9) (mod9)

The method abstracts the actual computation by only recording values
modulo 9. Even though much information is lost, useful results are still
obtained since this implication holds: if the alleged answer modulo 9 differs
from the answer got by casting out nines, there is definitely an error.

On the need for approximation Due to the unsolvability of the halting
problem (and nearly any other question concerning program behaviour), no
analysis that always terminates can be exact. Therefore we have only three
alternatives:

e Consider systems with a finite number of finite behaviours (e.g. pro-
grams without loops) or decidable properties (e.g. type checking as
in Pascal). Unfortunately, many interesting problems are not so ex-
pressible.



e Ask interactively for help in case of doubt. But experience has shown
that users are often unable to infer useful conclusions from the myr-
1ads of esoteric facts provided by a machine. This is one reason why
interactive program proving systems have turned out to be less useful
in practice than hoped.

e Accept approximate but correct information.

Consequently most research in abstract interpretation has been concerned
with effectively finding “safe” descriptions of program behaviour, yielding
answers which, though sometimes too conservative in relation to the pro-
gram’s actual behaviour, never yield unreliable information. In a formal
sense we seek a C relation instead of equality. The effect is that the price
paid for exact computability i1s loss of precision.

A natural analogy: abstract interpretation is to formal semantics as
numerical analysis 1s to mathematical analysis. Problems with no known
analytic solution can be solved numerically, giving approximate solutions,
for example a numerical result » and an error estimate €. Such a result is
reliable if it is certain that the correct result lies within the interval [r-¢,
r+¢]. The solution is acceptable for practical usage if € is small enough. In
general more precision can be obtained at greater computational cost.

Safety Abstract interpretation usually deals with discrete non-numerical
objects that require a different idea of approximation than the numerical
analyst’s. By analogy, the results produced by abstract interpretation of
programs should be considered as correct by a pure semantician, as long
as the answers are “safe” in the following sense. A boolean question can
be answered “true”, “false” or “I don’t know”, while answers for the rule
of signs could be “positive”, “negative” or “?”. This apparently crude
approach is analogous to the numerical analyst’s; and for practical usage
the problem is not to give uninformative answers too often, analogous to
the problem of obtaining a small €.

An approximate program analysisis safe if the results it gives can always
be depended on. The results are allowed to be imprecise as long as they
always err “on the safe side”| so if boolean variable J is sometimes true,
we allow it to be described as “I don’t know”, but not as “false”. Again,
in general more precision can be obtained at greater computational cost.

Defining the term “safe” is however a bit more subtle than it appears.
In applications , e.g. code optimization in a compiler, it usually means “the
result of abstract interpretation may safely be used for program transfor-
mation”, 1.e. without changing the program’s semantics. To define safety
it is essential to understand precisely how the abstract values are to be
interpreted in relation to actual computations.



For an example suppose we have a function definition

F(X1,..., Xp) =exp

where exp is an expression in X1, ..., X,,. Two subtly different dependency
analyses associate with exp a subset of f’s arguments:

Analysis 1.

{Xi1, ..., Xim} = {X, | exp’s value depends on X; in at least one
computation of f(X1,...,X,) }

Analysis II.

{Xi1, ..., Xim} = {X, | exp’s value depends on X; in every
computation of f(X1,...,X,)}

For the example
FOWV, XY, 7)) =if W then (X +7) else (X + 7)

analysis T yields {W, X, Y, Z}, which is the smallest variable set always
sufficient to evaluate the expression. Analysis IT yields {W, X}, signifying
that regardless of the outcome of the test, evaluation of exp requires the
values of both W and X, but not necessarily those of Y or Z.

These are both dependence analyses but have different modality. Anal-
ysis I, for possible dependence,; is used in the binding time analysis phase
of partial evaluation: a program transformation which performs as much as
possible of a program’s computation, when given knowledge of only some
of its inputs. Any variable depending on at least one unknown input in at
least one computation might be unknown at specialization time. Thus if
any among W, X, Y, Z are unknown, then the value of exp will be unknown.

Analysis 11, for definite dependence, is a need analysis identifying that
the values of W and X will always be needed to return the value. Such anal-
yses are used for to optimize program execution in lazy languages. The ba-
sis is that arguments definitely needed in a function call f(eq,eq, €3, €4, €5)
may be pre-evaluated, e.g. using “call by value” for es; and es, instead of
the more expensive “call by need”.

Strictness. Finding needed variables involves tracing possible compu-
tation paths and variable usages. For mathematical convenience, many
researchers work with a slightly weaker notion. A function is defined to
be “strict” in variable A if whenever A’s value is undefined, the value of
exp will also be undefined, regardless of the other variables’ values. For-
mally this means: if A has the undefined value L then exp evaluates to L.
Clearly f both needs and is strict in variables W and X in the example.
For another, X is strict in a definition f(X) = f(X) + 1 since f(L) = L,
even though it is not needed.
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Violations of safety In practice unsafe data-flow analyses are sometimes
used on purpose. For example, highly optimizing compilers may perform
“code motion”, where code that is invariant in a loop may be moved to a
point just before the loop’s entry. This yields quite substantial speedups
for frequently iterated loops but it can also change termination properties:
the moved code will be performed once if placed before the loop, even if
the loop exit occurs without executing the body. Thus the transformed
program could go into a nonterminating computation not possible before
“optimization”.

The decision as to whether such efficiency benefits outweigh problems
of semantic differences can only be taken on pragmatic grounds. If one
takes a “completely pure view” even using the associative law to rearrange
expressions may fail on current computers.

We take a purist’s view in this chapter, insisting on safe analyses and
solid semantic foundations, and carefully defining the interpretation of the
various abstract values we use.

Abstract interpretation cannot always be homomorphic A very
well-established way to formulate the faithful simulation of one system by
another is by a homomorphism from one algebra to another. Given two
(one-sorted) algebras

(D, {a; : D* — D}ier)
and
(B, {bi : E¥ — E}ier)

with carriers D, E and operators a;, b;, a homomorphism is a function
G : D — E such that for each ¢ and z1,..., 25, € D

Blas(x1, ..., 25,)) = b;(Bey, ..., frr,)

In the examples of sign analysis (to be given later) and casting out nines,
abstract interpretation is done by a homomorphic simulation of the oper-
ations 4+, — and *. Unfortunately, pure homomorphic simulation is not
always sufficient for program analysis.

To examine the problem more closely, consider the example of nonre-
cursive imperative programs. The “state” of such a program might be a
program control point, together with the values of all variables. The seman-
tics is naturally given by defining a state transition function, for instance

State = Program point x Store
Store = Variable — Value
next : State — State
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where we omit formally specifying a language syntax and defining “next”
on grounds of familiarity.

Consider the algebra (State, next : State — State) and an abstraction
(AbState, next : AbState — AbState), where AbState is a set of abstract
descriptions of states. A truly homomorphic simulation of the computation
would be a function 3 : State — AbState such that the following diagram
commutes:

next
State State

\ next

AbState AbState

In this case § is a representation function mapping real states into their
abstract descriptions, and next simulates next’s effects, but is applied to
abstract descriptions.

This elegant view is, alas, not quite adequate for program analysis. For
an example, consider sign analysis of a program where

AbState = Program point x AbStore

AbStore = Variable — {+,—, 7}
next . AbState — AbState

Representation function [ preserves control points and maps each variable
into its sign. (The use of abstract value “?”, representing “unknown sign”,
will be illustrated later.) If the program contains

p:Y =X+4+Y;gotoq

and the current state is (p, [X — 1,Y +— —2]) then we have

ﬁ(next((p, [X = 1aY = _2]))) = B((Qa [X = 1aY = _1]))
= (¢,[ X —+Y— -]

On the other hand the best that next can possibly do is:



next(A((p, [X — 1Y = —2)) = mext(p,[X — +,¥ — )
(q, X —+,Y |—>7])

since X 4+ Y can be either positive or negative, depending on the exact
values of XY (unavailable in the argument of next). Thus the desired
commutativity fails.

In general the best we can hope for is a semihomomorphic simulation.
A simple way 1s to equip E with a partial order C, where # C y intuitively
means “z i1s a more precise description than y” e.g. + C 7.

In relation to safe value descriptions, as discussed in Section 1.1: if z is
a safe description of precise value v, and « C y, then we will also expect y
to be a safe description of v.

Computations involving abstract values cannot be more precise than
those involving actual values, so we weaken the homomorphism restriction
by allowing the values computed abstractly to be less precise than the result
of exact computation followed by abstraction.

We thus require that for each i and zq,..., 2, € D

Blai(x1, ..., xx,)) Cbi(fry, ..., Brk,)

and that the operations b; be monotone. For the imperative language this
is described by:

next
State State
B B
\ next Ml
AbState AbState

The monotonicity condition implies

B(next™(s)) C next” (5(s))

for all states s and n > 0, so computations by sequences of state transitions
are also safely modeled.
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Abstract interpretation in effect simulates many computations at
once A further complication is that “real world” execution steps cannot
be simulated in a one-to-one manner in the “abstract world”. In program
fragment

p: if X > Y then goto q else goto r

next((p, [X — +,Y — +])) could yield (q, [X — +,Y — +]) or (r,
[X — +,Y — +4]), since the approximate descriptions contain too lit-
tle information to determine the outcome of the test. Operationally this
amounts to nondeterminism: the argument to next does not uniquely de-
termine its result. How is such nondeterminism in the abstract world to be
treated?

One way is familiar from finite automata theory: we lift

next : State — State
to work on sets of states, namely
pnext : p(State) — p(State)

defined by
pnext (state-set) = { next(s) | s € state-set }

together with an abstraction function a: p(State) — AbState. This direc-
tion, developed by Cousot and Cousot and described in section 2.2, allows
next to remain a function.

Another approach is to let 3 be a relation instead of a function. This
approach is described briefly in section 2.8 and is also used in section 3.

The essentially nondeterministic nature of abstract execution implies
that abstract interpretation techniques may be used to analyse nondeter-
manistic programs as well as deterministic ones. This idea is developed
further in [Nielson, 1983].

1.2 Relation to Program Verification and Transforma-
tion

Program verification has similar goals to abstract interpretation. A major
difference is that abstract interpretation emphasizes approzimate program
descriptions obtainable by fully automatic algorithms, whereas program
verification uses deductive methods which can in principle yield more pre-
cise results, but are not guaranteed to terminate. Another difference is that
an abstract interpretation, e.g. sign detection, must work uniformly for all
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programs in the language it is designed for. In contrast, traditional pro-
gram verification requires one to devise a new set of statement invariants
for every new program.

Abstract interpretation’s major application is to determine the appli-
cability or value of optimization and thus has similar goals to program
transformation [Darlington, 1977]. However most program transformation
as currently practiced still requires considerable human interaction and is
so significantly less automatic than abstract interpretation. Further, pro-
gram transformation often requires proofs that certain transformations can
be validly applied; abstract interpretation gives one way to obtain these.

1.3 The Origins of Abstract Interpretation

The idea of computing by means of abstract values for analysis purposes
is far from new. Peter Naur very early identified the idea and applied it in
work on the Gier Algol compiler [Naur, 1965]. He coined the term pseudo-
evaluation for what was later described as “a process which combines the
operators and operands of the source text in the manner in which an actual
evaluation would have to do 1t, but which operates on descriptions of the
operands, not on their values” [Jensen, 1991]. The same basic idea is found
in [Reynolds, 1969] and [Sintzoff, 1972]. Sintzoff used it for proving a num-
ber of well-formedness aspects of programs in an imperative language, and
for verifying termination properties.

These ideas were applied on a larger scale to highly optimizing com-
pilers, often under the names program flow analysis or data-flow analysis
[Hecht, 1977], [Aho, Sethi and Ullman, 1986], [Kam, 1976]. They can be
used for extraction of more general program properties [Wegbreit, 1975]
and have been used for many applications including: generating assertions
for program verifiers [Cousot, 1977b], program validation [Fosdick, 1976]
and [Foster, 1987], testing applicability of program transformations [Nielson, 1985a],
compiler generation and partial evaluation [Jones, 1989], [Nielson, 1988b],
estimating program running times [Rosendahl, 1989], and efficiently paral-
lelizing sequential programs [Masdupuy, 1991, Mercouroff, 1991].

The first papers on automatic program analysis were rather ad hoc, and
oriented almost entirely around one application: optimization of target or
intermediate code by compilers. Prime importance was placed on efficiency,
and the flow analysis algorithms used were not explicitly related to the
semantics of the language being analysed. Signs of this can be seen in the
well-known unreliability of the early highly optimizing compilers, indicating
the need for firmer theoretical foundations.
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1.4 A Sampling of Data-flow Analyses

We now list some program analyses that have been used for efficient im-
plementation of programming languages. The aim is to show how large
the spectrum of interesting program analyses is, and how much they dif-
fer from one another. Only a few of these have been given good semantic
foundations, so the list could serve as a basis for future work. References
include [Aho, Sethi and Ullman, 1986] and [Muchnick, 1981].

All concern analysing the subject program’s behaviour at particular
program points for optimization purposes. Following is a rough classifica-
tion of the analyses, grouped according to the behavioural properties on
which they depend:

Sets of values, stores or environments that can occur at a program
point

Constant propagation finds out which assignments in a program yield con-
stant values that can be computed at compile time.

Aliasing analysis identifies those sets of variables that may refer to the
same memory cell.

Copy propagation finds those variables whose values equal those of other
variables.

Destructive updating recognizes when a new binding of a value to a variable
may safely overwrite the variable’s previous value, e.g. to reduce
the frequency of garbage collection in Lisp [Bloss and Hudak, 1985],
[Jensen, 1991], [Mycroft, 1981], [Sestoft, 1989].

Groundness analysis (in logic programming) finds out which of a Prolog
program’s variables can only be instantiated to ground terms

[Debray, 1986], [Sgndergaard, 1986].

Sharing analysis (in logic programming) finds out which variable pairs can
be instantiated to terms containing shared subterms [Debray, 1986],

[Mellish, 1987], [Sgndergaard, 1986].

Circularity analysis (in logic programming) finds out which unifications in
Prolog can be safely performed without the time-consuming “oc-

cur check” [Plaisted, 1984], [Sgndergaard, 1986].

Sequences of variable values

Variables invariant in loops identifies those variables in a loop that are
assigned the same values every time the loop is executed; used in
code motion, especially to optimize matrix algorithms.
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Induction variables 1dentifies loop variables whose values vary regularly
each time the loop 1s executed, also to optimize matrix algo-
rithms.

Computational past

Use-definition chains associates with a reference to X the set of all as-
signments X := ... that assign values to X that can “reach” the
reference (following the possible flow of program control).

Awvailable expressions records the expressions whose values are implicitly
available in the values of program variables or registers.

Computational future

Lwve variables variable X is dead at program point p if its value will never
be needed after control reaches p, else live. Memory or registers
holding dead variables may be used for other purposes.

Definition-use analysis associates with any assignment X := ... the set of
all places where the value assigned to X can be referenced.

Strictness analysis given a functional language with normal order seman-
tics, the problem is to discover which parameters in a function
call can be evaluated using call by value.

Miscellaneous

Mode analysis To find out which arguments of a Prolog “procedure” are
mput, i.e. will be instantiated when the procedure is entered, and
which are output, i.e. will be instantiated as the result of calling

the procedure [Mellish, 1987].

Interference analysis To find out which subsets of a of program’s com-
mands can be executed so that none in a subset changes variables
used by others in the same set. Such sets are candidates for par-
allel execution on shared memory, vector or data flow machines.

1.5 Outline

Ideally an overview article such as this one should describe its area both in
breadth and in depth - difficult goals to achieve simultaneously, given the
amount of literature and number of different methods used in abstract in-
terpretation. As a compromise section 2 emphasizes overview, breadth and
connections with other research areas, while section 3 gives a more formal
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mathematical treatment of a domain-based approach to abstract interpre-
tation using a two-level typed lambda calculus. (The motivation is that
abstract interpretation of denotational language definitions allows approx-
imation of a wide class of programming language properties.) Section 4 is
again an overview, referencing some of the many abstract interpretations
that have been seen in the literature. Section b contains a glossary briefly
describing the many terms that have been introduced. Following is a more
detailed overview.

Driven by examples, section 2 introduces several fundamental analysis
concepts seen in the literature. The descriptions are informal, few theorems
are proved, and some concepts are made more precise later within the
framework of section 3.

The section begins with a list of program analyses used by compilers,
and does a parity analysis of an example program. The shortcomings of
naive analysis methods are pointed out, leading to the need for a more sys-
tematic framework. The framework used by Cousot for flow chart programs
is introduced, using what we call the “accumulating” semantics, elsewhere
the collecting or static semantics'.

Appropriate machinery is introduced to approximate the accumulating
semantics, and to prove the approximations safe. The distinction between
independent attribute and relational analyses is made, and the latter are
related to Dijkstra’s predicate transformers. Backwards analyses are then
briefly described.

It is then shown how domain-based generalizations of these ideas can
be applied to languages defined by denotational semantics, thus going far
beyond flow chart programs. The main tools used are interpretations and
logical relations, and a general technique is introduced for proving safety.

Section 3 uses representation functions and logical relations, rather than
abstraction of an accumulating semantics. The approach is metalanguage
oriented and highly systematic, emphasizing the metalanguage for denota-
tional definitions rather than particular semantic definitions of particular
languages. It emphasizes compositionality with respect to domain con-
structors, and the extension from the approximation of basic values and
functions to all the program’s domains, analogous to the construction of a
free algebra from a set of generators. The components of the following goal
are precisely formulated:

abstract interpretation = correctness
4+ most precise analyses
4+ 1mplementable analyses

IThere is a terminological problem here: [Cousot, 1977a] used the term “static seman-
tics”, but this has other meanings, so several researchers have used the more descriptive
“collecting semantics”. Unfortunately this term too has been used in more than one
way, so we have invented yet another term: “accumulating semantics”.
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Section 4 illustrates the need to interpret programs over domains other
than abstractions of the accumulating semantics. Some program analy-
ses not naturally expressed by abstracting either an accumulating or an
wstrumented semantics are exemplified, showing the need for more sophis-
ticated analysis techniques, and an overview is given of some alternative
approaches including tree grammars.

The idea of an “instrumented” semantics is introduced and correctness
is discussed. This section is problem-oriented, with simulation techniques
chosen ad hoc to fit the analysis problem and the language being anal-
ysed. It thus centers more around programs’ operational behaviour than
the structure of their domains, with particular attention to describing the
set of program states reachable in computations on given input data, and
to finite description of the set of all computations on given input. The
section ends by describing approaches to abstract interpretation of Prolog.

2 Basic Concepts and Problems to be Solved

We begin with parity analysis of a very simple example program, and in-
troduce basic concepts only as required. We discuss imperative programs
without procedure calls since this familiar program class has a simple se-
mantics and is most often treated in the analysis algorithms found in com-
piling textbooks. Later sections will discuss functional and logic programs,
but many of their analysis problems are also visible, and usually in sim-
pler form, in the imperative context. Throughout this section the reader
is encouraged to ask himself “what i1s the analogue of this concept in a
functional or logic programming framework?”.

An example program, where =+ stands for integer division (and program
points A,...,G have been indicated for future reference):

A: while n # 1 do
B: if n even
then (C:n:=n=+2;D:)
else (B:n:=3xn+1;F:)
fi
od
G:
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n:=n-=-2

Side remark: Collatz’ problem in number theory amounts to determining
whether this program terminates for all positive initial n. To our knowledge
1t 1s still unsolved.

2.1 A Naive Analysis of the Simple Program

Abstraction of a single execution If this program is run with initial
value n = b, then n takes on values 5,16, 8,4, 2 at point B, values 16, 8,4, 2
at C, etc. Using T to represent “either even or odd” the results of this
single run can be abstracted as:

nat A natB natC natD natE natF natG
odd T even T odd even odd

Extension to all possible executions This result was obtained by
performing one execution completely, and then abstracting its outcome.
Such an analysis may of course not terminate, and it does not as wished
describe all executions. The question is: how to obtain even-odd informa-
tion valid for all possible computations? A natural way i1s to simulate the
computation, but to do the computation using the abstract values

Abs = {L, even, odd, T}

instead of natural numbers, each representing a set of possible values of n;
and to ensure that all possible control flow paths are taken.

Doing this informally, we can see that if n is odd at program entry, it
will always be even at points C and F, always odd at point E, sometimes
even and sometimes odd at points B and D, and odd at G, provided control
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ever reaches G. Individual operations can be simulated by known properties
of numbers, e.g. 3n 41 is even if n is odd and odd if n is even, while n + 2
can be either even or odd.

Simulating the whole program is not as straightforward as simulating a
single execution. The reason was mentioned before: execution over abstract
values cannot in general be deterministic, since it must take account of
all possible execution sequences on real data satisfying the abstract data
description.

Towards a less maive analysis procedure The very earliest data-
flow analysis algorithms amounted to glorified interpreters, and proceeded
by executing the program symbolically, keeping a record of the desired
flow information (abstract values) as the interpretation proceeded. Such
algorithms, which in essence traced all possible control paths through the
program, were very slow and often incorrect. They further suffered from a
number of problems of semantic nature, for example difficulties in seeing
how to handle nondeterminism due to tests with insufficient information
to recognize their truth or falsity, convergence and divergence of control
paths, loops and nontermination.

Better methods were soon developed to solve these problems, including

e putting a partial order on the abstract data values, so they always
change in the same direction during abstract interpretation, thus re-
ducing termination problems

e storing flow information in a separate data structure, usually bound
to program points (such as entry points to “basic blocks”, i.e. maxi-
mal linear program segments)

e constructing from the program a system of “data-flow equations”,
one for each program point

e solving the data-flow equations (usually by computing their greatest
fixpoint or least fixpoint).

Much more efficient algorithms were developed and some theoretical
frameworks were developed to make the new methods more precise; [Hecht, 1977],
[Kennedy, 1981] and [Aho, Sethi and Ullman, 1986] contain good overviews.

Nomne of the “classical” approaches to program analysis can, however,
be said to be formally related to the semantics of the language whose
programs were being analysed. Rather, they formalized and tightened up
methods used in existing practice. In particular none of them was able to
include precise execution as a special case of abstract interpretation (albeit
an uncomputable one). This was first done in [Cousot, 1977a], the seminal
paper relating abstract interpretation to program semantics.
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2.2 Accumulating Semantics for Imperative Programs

The approach of [Cousot, 1977a] is appealing because of its generality: it
expresses a large number of special program analyses in a common frame-
work. In particular, this makes questions of safety (i.e. correctness) much
easier to formulate and answer, and sets up a framework making it pos-
sible to relate and compare the precision of a range of different program
analyses. It is solidly based in semantics, and precise execution of the pro-
gram is included as a special case. This implies program verification may
also be based on the accumulating semantics, a theme developed further
in [Cousot, 1977b] and several subsequent works.

The ideas of [Cousot, 1977a] have had a considerable impact on later
work in abstract interpretation, for example [Mycroft, 1981], [Muchnick, 1981],
[Burn, 1986], [Donzeau-Gouge, 1978], [Nielson, 1982], [Nielson, 1984], [Mycroft, 1987]).

2.2.1 Overview of the Cousot Approach

The article [Cousot, 1977a] begins by presenting an operational semantics
for a simple flow chart language. It then develops the concept of what
we call the accumulating semantics (the same as Cousots’ static semantics
and some others’ collecting semantics). This associates with each program
point the set of all memory stores that can ever occur when program control
reaches that point, as the program is run on data from a given initial
data space. It was shown in [Cousot, 1977a] that a wide variety of flow
analyses (but not alll) may be realized by finding finitely computable
approximations to the accumulating semantics.

The (sticky) accumulating semantics maps program points to sets of
program stores. The set p(Store) of all sets of stores forms a lattice with
set inclusion C as its partial order, so any two store sets A, B have least
upper bound AU B and greatest lower bound AN B. The lattice p(Store)
is complete, meaning that any collection of sets of stores has a least upper
bound in p(Store), namely its union.

Various approximations can be expressed by simpler lattices, connected
to p(Store) by an abstraction function « : p(Store) — Abs where Abs is
a lattice of descriptions of sets of stores. Symbol U is usually used for the
least upper bound operation on Abs, M for the greatest lower bound, and
T, L for the least, resp. greatest elements of Abs.

An abstraction function is most often used together with a dual con-
cretization function v : Abs — p(Store), and the two are required to satisfy
natural conditions (given later).

For a one-variable program we could use as Abs the lattice with elements

{L, T, even, odd},

where the abstraction of any nonempty set of even numbers is lattice el-
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ement “even”, and the concretization of lattice element “even” is the set
of all even numbers. Abstract interpretation may thus be thought of as
executing the program over a lattice of imprecise but computable abstract
store descriptions instead of the precise and uncomputable accumulating
semantics lattice.

In practice computability is often achieved by using a noetherian lat-
tice, i.e. one without infinite ascending chains. More general lattices can,
however, be used, cf. the Cousots’ “widening” techniques, or the use of
grammars to describe infinite sets finitely.

Let pg be the program’s initial program point and let p be another
program point. The set of store configurations that can be reached at
program point p, starting from a set Sy of possible initial stores is defined

by:
acc, = {s | (p, s) = next™((po, so)) for some sg € Sy, n >0 }

The accumulating semantics thus associates with each program point the
set acc, C Store.

2.2.2 Accumulating Semantics of the Example Program
For the example program there is only one variable, so a set of stores has
form

{[n— a1],[n— as],[n— as],...}

For notational simplicity we can identify this with the set {a;, as, as, ...}
(an impossible simplification if the program has more than one variable).
Given initial set Sy = {5} the sets of stores reachable at each program
point are:

accy accp acco accp accp accp  accy

{5} {5,16,8,4,2} {16,8,4,2} {8421} {5} {16} {1}

The following data-flow equations have a unique least fixpoint by complete-
ness of p(Store), and it is easy to see that their fixpoint is exactly the tuple
of sets of reachable stores as defined above.

acca = Sp

accg = (acca U accp U acep)Nin| n€{0,1,2,.. }\{1}}
accc = accg N {n|n€{0,2,4,...}}

accp = {n-=+2|né€accc}

accg = acegN {n|n€{l,3,5...}}

accr = {3n+4+1|n€accg}
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accg = (accy U accp U accp)n{l}

The equation set can be derived mechanically from the given program’s
syntax, e.g. as seen in [Cousot, 1977a] or [Nielson, 1982].

2.2.3 Abstract Interpretation of the Example Program

The abstraction function o : p(Store) — Abs below may be used to abstract
a set of stores, where Abs = { L, even, odd, T}:

1 if S = {}, else

even if S C{0,2,4,...}, else
odd if S C{1,3,5,...}, else
T

a(S) =

Defining L Ceven C T and L C odd C T makes Abs into a partially
ordered set. Least upper and greatest lower bounds U, M exist so it is also
a lattice.

N
N/

Applying « to the sets of reachable stores yields the following:

abss absgp absc absp absg absyp absg
odd T even T odd even odd

Abstraction of the set of all runs This method is still unsatisfactory
for describing all computations since the value sets involved are unbounded
and possibly infinite. But we may model the equations above by applying
« to the sets involved. The abstraction function « just given is easily seen
to be monotone, so set inclusion C in the world of actual computations is
modelled by C in the world of simulated computations over Abs. Union
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is the least upper bound over sets, so it 1s natural to model U by U, and
similarly to model N by M.

The arithmetic operations are faithfully modelled as follows, using fa-
miliar properties of natural numbers:

1 ifabs =L
Fn2(abs) :{ T else

il if abs = L, else
even 1if abs = odd, else

Font1(@bs) =9 4d  if abs =

= even, else

T ifabs =T

This yields the following system of approzimate data-flow equations, de-
scribing the program’s behaviour on Abs:

absa = «(Sy)

absp = (abspaU abspU absp) 01T (“MT” may be omitted)
absc = absg M even

absp = fn-a(absg)

absgp = absg M odd

absp = fany1(absg)

absg = (absal abspl absp) M odd

Remark Here f,.5 and f3,41 were defined ad hoc; a systematic way to
define them will be seen in section 2.3.

The lattice Abs is also complete. The operators M, U, fh-2 and fs,41
are monotone, so the equation system has a (unique) least fixpoint. The
abstraction function « is easily seen to be monotone, so if it also were a
homomorphism with respect to U, U and N, M, the least solution to the
approximate flow equations would be exactly

absy = alaccy),...,absg = a(accg).
It is, however, not homomorphic since for example
a({2}) M a({4}) = even # L = a({2} 1 {4})

On the other hand the following do hold:
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o(AUB)  fura(a(A) T a({n=2|ne A}
o(ANB)  fani(a(d) T o({3n+1]ne A}

2
2
_
2
=
I

Using these, it is easy to see by inspection of the two equation systems
(more formally: a simple fixpoint induction) that their least fix points are
related by:

a(accy),

a(acep),

absy
absp

absg I afaccg)

Following is the iterative computation of the least fixpoint, assuming Sy =

{5}:

absy absp absc absp absg absp absg 1teration

L L L L L L il 0
odd L L L L L L 1
odd odd L L L L odd 2
odd odd 1L 1L odd 1L odd 3
odd odd L L odd even odd 4
odd T L 1L odd even odd 5
odd T even 1L odd even odd 6
odd T even T odd even odd 7,8, ...

The conclusion is that n is always even at points C and F, and always odd

at E and G.

2.2.4 An Optimization Using the Results of the Analysis

The flow analysis reveals that the program could be made somewhat more
efficient by “unrolling” the loop after F. The reason is that tests “n # 17
and “n even” must be both be true in the iteration after F, so they need
not be performed. The result 1s

while n # 1 do if n even thenn :=n=2elsen := (3xn+1)+2
fi od

which avoids the two tests every time n is odd. In practice, one of the
main reasons for doing abstract interpretation is to find out when such
optimizing transformations may be performed.
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2.2.5 Termination

The least fixed point may (as usual) be computed by beginning with [pp; —
L,..., ppm — L] (every program point is mapped to the least element
of Abs), and repeatedly replacing the value currently assigned to pp; by
the value of the right side of pp;’s equation. By monotonicity of M, f,-2
etc., these values can only grow or remain unchanged, so the iterations
terminate provided the approximation lattice has no ascending chains of
infinite height, as is the case here.

[Cousot, 1977a] describes ways to achieve termination even when infi-
nite chains exist, by inserting so-called widening operators in the data-flow
equations at each junction point of a loop. To explain the basic idea con-
sider the problem of finding the fixed point of a continuous function f.
The usual Kleene iteration sequence is dg = L, -+, dp11 = f(dy), - and
is known to converge to the least fixed point of f but the sequence need
not stabilize, i.e. it need not be the case that d,y1 = d, for some n. To
remedy this one may introduce a widening operator 57 that dominates the
least upper bound operation, i.e. d'Ud” T d'<7d”, and such that the chain
do =1, -, dpy1 = dn vV f(dy) always stabilizes. This leads to overshoot-
ing the least fixed point but always gives a safe solution. By iterating down
from the stabilization-value (perhaps by using the technique of narrowing)
one may then be able to recover some of the information lost.

Constant propagation This is an example of a lattice which is infinite
but has finite height (three). Tt is used for detecting variables that don’t
vary, and has Abs ={T, L,0,1,2, ...} where LCnETforn=0,1,2,...

OIS
~N\ | S

The corresponding abstraction function is:

1L iftv={}
a(Vy=<¢ n ifV={n}

T otherwise

There also exist lattices in which all ascending chains have finite height,
even though the lattice as a whole has unbounded vertical extent. An
example: let Abs = (N, >).
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2.2.6 Safety: First Discussion

The analysis of the Collatz-sequence program is clearly “safe” in the follow-
ing sense: if control reaches point C then the value of n will be even, and
similarly for the other program points and abstract values. Correctness (or
soundness) of the even-odd analysis for all possible programs and program
points is also fairly easy to establish, given the close connection of the flow
equations to those defining the accumulating semantics.

Reachable program points A similar but simpler reachability analysis
(e.g. for dead code elimination) serves to illustrate a point concerning
safety. It uses Abs = {T, L} with L C T and abstraction function «
defined as follows (where @ € Abs and .S C Store):

a(S) = L1 ifS={} elseT
fazala) = L ifa=1  elseT
fang1(a) = L ifa=1  elseT

Intuitively, L abstracts only the empty set of stores and so appropriately
describes unreachable program points, while T describes reachable program
points. Computing the fixpoint as above we get:

absy absp absc absp absg absp absg
T T T T T T T

This might be thought to imply that «ll program points including G
are reachable, regardless of the initial value of n. On the other hand,
reachability of G for input n implies termination, and it is a well-known
open question whether the program does in fact terminate for all n.

A more careful analysis reveals that L at program point p represents
“p cannot be reached”, while T represents “p might be reached” and so
does not necessarily imply termination. The example shows that we must
examine the questions of correctness and safety more carefully, which we
now proceed to do.

2.3 Correctness and Safety

In this and remaining parts of section 2, we describe informally several dif-
ferent approaches to formulating safety and correctness, and discuss some
advantages and disadvantages. A more detailed domain-based framework
will be set up in section 3.
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2.3.1 Desirable Properties of the Abstract Value Set Abs

In order to model the accumulating semantics equations, Abs could be a
complete lattice: a set with a partial order C, with least upper and greatest
lower bounds U and M to model U and N, and such that any collection of
sets of stores has a least upper bound in Abs. Note: any lattice of finite
height is complete. In the following we sometimes write a J &’ in place of
a C a.

2.3.2 Desirable Properties of the Abstraction Function

Intuitively “even” represents the set of all even numbers. This viewpoint
is made explicit in [Cousot, 1977a] by relating complete lattices Conc and
Abs to each other by a pair «, v of abstraction and concretization functions
with types

«a: Conc — Abs
v: Abs — Conc

In the even-odd example above the lattice of concrete values is Conc =
p(Store), and the natural concretization function is

v = {}

v(even) = {0,2,4,..}
v(odd) = {1,3,5,...}
wT) = {0,1,2,3,..} =N

Cousot and Cousot impose natural conditions on « and vy (satisfied by the
examples):

1. « and ¥ are monotonic

2. Ya € Abs, a = a(y(a))

3. Ve € Cone, ¢ Ceoone v(a(c))

For the accumulating semantics, larger abstract values represent larger
sets of stores by condition 1. Condition 2 is natural, and condition 3 says
that S C y(«(S)) for any S C Store.

The conditions can be summed up as: («, v) form a Galois insertion of

Abs into p(Store), a special case of an adjunction in the sense of category
theory. It is easy to verify the following

Lemma 1 If conditions 1-3 hold, then

e Ve € Conc, a € Abs: ¢ Ceone y(a) if and only if a(c) Cps a, and



25

e « 1s continuous

O
Thus the abstract flow equations converge to a fixpoint. If « is semihomo-
morphic on union, intersection and base functions, then the abstract flow
equations’ fixpoint will be pointwise larger than or equal to the abstraction
of the fixpoint of the accumulating semantics’ equations.
Again, note that stores are unordered, so « and ¥ need only preserve the
subset ordering. The more complex situation that arises when modelling
nonflat domains is investigated in [Mycroft, 1983].

2.3.3 Safety: Second Discussion

Recalling the program of section 2.2, we can define the solution
(absa,...,absg) € Abs” to the abstract flow equations to be safe with
respect to the accumulating semantics (acca,...,accq) € p(Store)” if the
reachable sets of stores are represented by the abstract values:

accy € y(absa),
accg C  y(absp),

accg C  y(absg)

This is easy to verify for the even-odd abstraction given before.

Returning to the question raised after the “reachable program points”
example, we see that safety at point G only requires that accg C y(absg),
i.e. that every store that can reach G appears in y(absg ). This also holds
if accg is empty, so y(absg) = T does not imply that G is reachable in any
actual computation. For any program point X, absx = L implies accx =
{}, which signifies that control cannot reach X. Thus abstract value L can
be used to eliminate dead code.

Safe approximation of base functions Consider a base function op :
IN— IN, and extend it, by “pointwise lifting” to sets of numbers, yielding
pop : p(IN) — p(IN) where

gpop(N) = {op(n)| n € N}

Suppose «, v satisfy conditions 1-3. It is natural to define op : Abs — Abs
to be a safe approzimation to op if the following holds for all N C IN:

pop(N) C y(op(a(N)))

or, diagrammatically:
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$op
p(IN) p(IN)
Al
o v
Y Op
Abs Abs
By the conditions and lemma this is equivalent to
a(pop(N)) T op(a(N))
corresponding to diagram:
$op
p(IN) p(IN)
e e
\ op i
Abs Abs

Intuitively, for any subset N C IN, applying the induced abstract operation
op to the abstraction of N represents at least all the values obtainable by
applying op to members of N.

Induced approximations to base functions We now show how the
best possible approximation op can be extracted from op (at least in princi-
ple, although perhaps not computably; a more detailed discussion appears
in section 3.4). Recall that smaller elements of Abs abstract smaller sets of
concrete values and so are less approximate, 1.e. more precise descriptions.
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Lemma 2 Given o : p(IN) — Abs and v : Abs— p(IN) satisfying the
three conditions above, define the operator induced by op to be op : Abs
— Abs where

op = oo gopory

Then op is the most precise function on Abs satisfying a(pop(N)) C
op(a(N)) for all N.

Proof Suppose f: Abs — Abs with a(p op(N)) E f(a(N)) for all N.
Then for any a,

op(a) = a(pop(7(a))) E f(a(y(a))) = f(a)

The definition of op as a diagram:
$op
p(IN) p(IN)

4

op
Abs Abs

For example, if op(n) = n = 2 then op is f,-2 as seen above, e.g.

op(L1) =a({n+2[ney(L)}) a({}) =1
op(even) =a({n+2|n€y(even}) =«{0,1,2,...}) =T

Unfortunately the definition of op does not necessarily give a terminating
algorithm for computing it, even if op is computable. In practice the prob-
lem is solved by approximating from above, 1.e. choosing op to give values
in Abs that may be larger (less informative) than implied by the above
equation. We will go deeper into this in Subsection 3.5.
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A local condition for safe approximation of transitions A safety
condition on one-step transitions can be formulated analogously. Define
for any two control points p, q the function next, ,:p(Store) — p(Store):

next, .(S) = {s’ | (¢,s') = next((p, s)) for some s € S}

This is the earlier transition function, extended to include all transitions
from p to q on a set of stores. Exactly as above we can define the abstract
transition function induced by o and v to be

next, , = aonext, , 0y
This is again the most precise function satisfying

nexty ¢(a(5)) C a(nextp 4(5))

for all S.

2.3.4 An Example: the Rule of Signs

Consider the abstract values 4, - and 0 with the natural concretization
function

~7(0) 10}
¥(+) {1,2,3,..}
=) = {-1,-2,-3,..}

This can be made into a complete lattice by adding greatest lower and
least upper bounds in various ways. Assuming M, U should model N, U
respectively, the following is obtained:

I\
e RN

- 0 +
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with
v = {}
HE0) = {0,1,2,3,.)
7(§ 0) = {Oa_la_Qa_3a"'}
W1y = {...,-2,-1,0,1,2,3,..}=7%
and abstraction function
1L if S ={}else
+ S CH{l,2 3, . }else
) >0 ifS5C{0,1,2,3,...}else
o(S) =4 = if S C{-1-2 -3,...} else
<0 ifSC{0,-1,-2,-3,...} else
T

The induced approximation for operator + : Z x Z— # is:

+ L — 0 + >0 <0 T
T L L 1 1 =L 1 1
— Ly - - T T - 7T
0 |L — 0 4+ >0 <0 T
+ /L T + + + T T
>0|L T >0 4+ >0 T T
<0|L - <0 T T <0 T
Ll T T T T T T

2.3.5 Composition of Safety Diagrams
Suppose we have two diagrams for safe approximation of two base functions
op and op’:
$op
p(IN) p(IN)

Abs Abs
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and
pop’
p(IN) p(IN)
o o
\ op’ mll
Abs Abs

It is easy to see that op’c op is a safe approximation to o op’ o p op,
so the two may be composed:

pop’ o pop
p(IN) p(IN)
a a
\ op’ o op ]
Abs Abs

On the other hand the diagrams for the induced approximations to
base functions cannot be so composed, since the best approximation to
gop’ o pop may be better than the composition of the best approximations
to pop and pop’. (This is precisely because « is a semihomomorphism,
not a homomorphism.) For a concrete example, let op and op’ respectively
describe the effects of the two assignments

n:=4*«n4+2; n:=n-=2

Then
a(pop’ o pop({0,1,2,...})) = ({1, 3,5,...}) = odd

whereas

op’o op («({0,1,2,...}) = op’(even) = T.
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2.4 Scott Domains, Lattice Duality, and Meet versus
Join

Relation to Scott-style domains The partial order C on Abs models
the set inclusion order C used for p(Store) in the accumulating seman-
tics. In abstract interpretation, larger elements of Abs correspond to more
approzimate descriptions, so if @ C a’ then a’ describes a larger set of con-
crete values. For example, “even” describes any set of even numbers, and
T describes the set of all numbers.

In contrast, Scott domains as used in denotational semantics use an
ordering by “information content” | where a larger domain element describes
a single value that is more completely calculated. During a computation L
means “not yet calculated”, intuitively a slot to be filled later in with the
final value. Appearance of L in a program’s final result signifies “was
never filled in”, and so represents nontermination (at least in languages
with eager evaluation).

A value in a Scott domain represents perhaps incomplete knowledge
about a single program value, for example a finite part of an infinite func-
tion f. The partial order f C f’ signifies that f’ is more completely
defined than f, and that f’ agrees with f where ever it is defined. T, if
used at all, indicates inconsistent values.

Clearly this order 1s not the same as the one used in abstract interpre-
tation, and the difference is more than just one of duality.

Least or Greatest Fixpoints? Literature on data-flow analysis as used
in compilers [Aho, Sethi and Ullman, 1986,Hecht, 1977, Kennedy, 1981] of-
ten uses abstract value lattices which are dual to the ones we consider, so
larger elements represent more precise descriptions rather than more ap-
proximate. This is mainly a matter of taste; but has the consequence that
greatest fixpoints are computed instead of least ones, and that the U and
N of the accumulating semantics are modelled by M and U, respectively.
We prefer least fixpoints due to their similarity to those naturally used in
defining the accumulating semantics.

Should U or M be Used on Converging Paths? We have argued that
U naturally models the effect of path convergence because it corresponds to
U in the accumulating semantics. On the other hand, there exist abstract
interpretations that are not approximations to the accumulating semantics,
and for some of these path convergence is properly modelled by M. To
see this, consider the two dependence analyses mentioned in section 1.1.
For analysis I, path convergence should be modelled by U since a variable
dependence is to be recorded if it occurs along at least one path. For
analysis II it should be modelled by M since a dependence is recorded only
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if it occurs along all paths. So the choice between U and M on converging
paths is just another incarnation of the modality distinction encountered
in section 1.

2.5 Abstract Values Viewed as Relations or Predicates

The accumulating semantics binds to each program point a set of stores.
Suppose the program’s variables are Vy,...,V,, so a store 1s an element of
Store = {V1,...,V,} — Value. In the examples above there was only one
variable, so a set of stores was essentially a set of values, which simplified
the discussion considerably. The question arises: how can we abstract a
set of stores when n > 17

2.5.1 Independent Attribute Analyses

Suppose value sets are abstracted by auq; @ p(Value) — A. The independent
attribute method models a set of stores S at program point p by mapping
each variable V; to an abstraction of the set of values it takes in all the
stores of S. This abstract value is thus independent of all other variables,
hence the term “independent attribute”. For example, {[X — 1,V
2], [X — 3,Y +— 1]}) would be modelled by [X +— odd, Y — T] .

Formally, we model

S € p(Store) = p({V1,..., Vo } — Value)

by a function

abs, € Abs={V1,...,V,} — 4
The store abstraction function ayy, @ p(Store) — Abs is defined by

asto(S) = [Vz = aval({s(vi) | s € S})]i:l,...,n

For example, consider an even-odd analysis of a program with variables
X, Y, Z. The independent attribute method would abstract a set of two
stores as follows:

asto({[X = 1Y — 2,7 = 1], [X =2,V — 2,7 —1]}) =

[X = ava({1,2}),Y = ava({2}), 2 = cva({1})] =
[X — T,Y — even, Z +— odd]

The independent attribute method abstracts each variable independently
of all others, and so allows “cross over” effects. An example:
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Oz({[Xl—>1,Y|—>1],[X|—>2,Y»—>2]}) =X—T, YT =
Oz({[Xn—> LY —2,[X—2Y 1]})

This loses information about relationships between X’s and Y’s values, e.g.
whether or not they always have the same parity.

2.5.2 Relational Analyses

Relations and predicates Abstract value abs, is an abstraction of the
set of stores acc,, so the question arises as to how to represent it by a
lattice element. An approach used in [Cousot, 1977a], [Cousot, 1977b] is
to describe acc, and its approximations abs, by predicate calculus formulas.
For instance the set of two stores {[X +— 1,V +— 1],[X — 2,Y + 2]} above
could be approximately described by the formula:

(odd(X) A odd(Y)) V (even(X) A even(Y))

More generally, suppose Store = {Vy,...,V,,} — Value. Clearly Store is
isomorphic to Value™, the set of all n-tuples of values. Thus any set of
stores i.e. any element of p(Store)) can be interpreted as a set of n-tuples.
For example, store set {[X +— 1,V — 1],[X — 2,V + 2]} corresponds to
{(1,1), (2,2)}. Thus a store set is essentially a set of n-tuples or, in other
words, an n-ary predicate or relation.

For program point p, the accumulating semantics defines relation
accy(Vi,...,vy) to be true just in the case that (vi,...,v,) is a tuple of
values which can occur at p in one or more computations on the given ini-
tial input data. This is the weakest possible relation among variables that
always holds at point p.

Relational Analyses These use more sophisticated methods to approx-
imate p(Store), which can give more precise information. Examples of
practically motivated program analysis problems that require relational in-
formation include aliasing analysis in Pascal, the recognition of possible
substructure sharing in Lisp or Prolog, and interference analysis.

For an example not naturally represented by independent attributes,
suppose we wish to find out which of a program’s variables always assume
the same value at a given program point p. A suitable abstraction of a set of
stores is a partition m, that divides the program’s variables into equivalence
classes, so any one class of 7, contains all variables that have the same value
at p. The effect of an assignment such as “p: X:=Y; goto q” is that m,
is obtained from 7, by removing X from its previous equivalence class and
adding it to Y’s class.
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Intensional versus extensional descriptions Above we represented
store set

{{X— 1Y —1], [X —2,YV — 2]}

by the binary relation {(1,1), (2,2)}, and approximated it by the superset
{(x,y) | x and y are both even or both odd}, denoted by the predicate
calculus formula

(odd(X) A odd(Y)) V (even(X) A even(Y))

The view of “predicate as a set of tuples” and “predicate as a formula” is
exactly the classical distinction between the extensional and the intensional
views of a predicate.

Descriptions by predicate calculus formulas must of necessity be only
approximate, since there are only countably many formulas but uncount-
ably many sets of stores (if we assume an infinite variable value set). In
terms of predicate calculus formulas, for each program point p the appro-
priate formulation of a safe approximation is that acc, logically implies
abs,. In terms of sets of n-tuples: each acc, is a subset of the set of all
tuples satisfying abs,.

2.5.3 Abstract Interpretation and Predicate Transformers

The new view of the accumulating semantics is: given a program and a
predicate describing its input data, the accumulating semantics maps every
program point to the smallest relation among variables that holds whenever
control reaches that point.

From this viewpoint, the function next,, : gp(Store) — @(Store) is
clearly the forward predicate transformer [Dijkstra, 1976] associated with
transitions from p to q. Further, acc, is clearly the strongest postcondition
holding at program point p over all computations on input data satisfying
the program’s input precondition.

Program verification amounts to proving that each acc, logically im-
plies a user-supplied program assertion for point p. Note however that this
abstract interpretation framework says nothing at all about program ter-
mination. This approach is developed further in [Cousot, 1977b] and their
subsequent works.

Backwards analyses All this can easily be dualised: the backward predi-
cate transformernext;é . p(Store) — p(Store) is just the inverse of next,, 4,
and given a program postcondition one may find the weakest precondition on
program input sufficient to imply the postcondition at termination. For the
simple imperative language, a backward accumulating semantics is straight-
forward to construct. For the example program
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A: while n # 1 do

B: if n even
then (C:n:=n=+2;D:)
else (B:n:=3xn+1;F:)
fi
od
G:

the appropriate equations are:

accy = ({1}Naccg)U({0,2,3,4,.. .} Nacep)
accg = (acce N Evens) U (accg N Odds)

acce = {n|n+ 2€ acep}

accp = ({1}naceg)U({0,2,3,4,.. ) Nacep)
accg = {n|3n+1€accp}

accp = ({1}Naceg)U({0,2,3,4,.. .} Nacep)
accg = Stinal

where acc, is the set of all stores at point p that cause control to reach
point G with a final store in Stinar.

Such a backward accumulating semantics can, for example, provide a
basis for an analysis that detects the set of states that may lead to an
error. More generally backward analyses (although not the one shown here)
may provide a basis for “future sensitive” analysis such as live variables,
where variable X 1s “semantically live” at point p if there is a computation
sequence starting at p and later referencing X’s value. This is approximated
by: X is “syntactically live” if there is a program path from p to a use of X’s
value. Section 3 contains an example of live variable analysis for functional
programs.

Many analysis problems can be solved by either a forwards or a back-
wards analysis. There can, however, be significant differences in efficiency.

Backwards analysis of functional programs The backwards accu-
mulating semantics is straightforward for imperative programs, partly be-
cause of its close connections with the well studied weakest preconditions
[Dijkstra, 1976], and because the state transition function is monadic. Tt is
semantically less well understood, however, for functional programs, where
recent works include [Hughes, 1987], [Dybjer, 1987], [Wadler, 1987], and
[Nielson, 1989]. Natural connections between backwards analyses and con-
tinuation semantics are seen in [Nielson, 1982] and [Hughes, 1987].
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2.6 Important Points from Earlier Sections

In the above we have employed a rather trivial programming language so
as to motivate and illustrate one way to approximate real computations
by computations over a domain of abstract values: Cousot’s accumulating
semantics. Before proceeding to abstract interpretation of more interesting
languages we recapitulate what has been learned so far.

e Computations in the abstract world are at best semihomomorphic
models of corresponding computations in the world of actual values.

e Safety of an abstract interpretation is analogous to reliability of a nu-
merical analyst’s results: the obtained results must always lie within
specified confidence intervals (usually “one-sided intervals” in the case
of program analysis).

e To obtain safe results for specific applications it is essential to un-
derstand the interpretation of the abstract values and their relation
to actual computational values. One example is modality, e.g. “all
computations” versus “some computations”.

e Abstract values often do not contain enough information to determine
the outcome of tests, so abstract interpretation must achieve the effect
of simulating a set of real computations.

e Computations on complete lattices of abstract values appropriately
model computations on real values.

e The partial order on these lattices expresses the degree of precision in
an approximate description, and is quite different from the traditional
Scott-style ordering based on filling in incomplete information.

e Termination can be achieved by choosing lattices without infinite
ascending chains.

e Best approximations to real computations exist in principle, but may
be uncomputable.

e There are close connections between the “accumulating semantics”
and the predicates and predicate transformers (both forwards and
backwards) used in program verification.

2.7 Towards Generalizing the Cousot Framework

Abstract interpretation is a semantics-based approach to program analy-
sis, but so far we have only dealt with a single, rather trivial language.
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Rather than redo the same work for every new language, we set the foun-

dations for developing a general framework based on denotational seman-

tics. This is a widely used and rather general formalism for defining

the semantics of programming languages (see [Schmidt, 1986,Stoy, 1977,
Gordon, 1979, Nielson, 1992a]). Other possibilities include axiomatic and
structural operational semantics [Plotkin, 1981], and natural semantics [Kahn, 1987,
Nielson, 1992a). They are also general frameworks, but ones in which few
applications to abstract interpretation have been developed (although op-
erational semantics seems especially promising).

The approach will be developed stepwise. First, a denotational seman-
tics is given for essentially the simple imperative language seen before. This
is then factored into two stages, into a core semantics and an interpretation.
The interpretation specifies the details relevant to a specific (standard or
abstract) interpretation of the program’s values and operations, and the
core semantics specifies those parts of the semantics that are to be used in
the same way for all interpretations. It i1s then shown how, given a fixed
core semantics, interpretations may be partially ordered with respect to
“degree of abstractness”, and it is shown that a concrete interpretation’s
execution results are always compatible with those of more abstract in-
terpretations. This provides a basis for formally proving the safety of an
analysis, for example by showing that a given abstract interpretation is an
abstraction of the accumulating interpretation. The last step is to describe
briefly a way to generalize this approach to denotational definitions of other
languages; this gives a bridge to the development of section 3.

Earlier papers using this approach include [Donzeau-Gouge, 1978], [Nielson, 1982],
[Jones, 1986].

Denotational semantics has three basic principles:

1. Every syntactic phrase in a program has a meaning, or denotation.

2. Denotations are well-defined mathematical objects (often higher-order
functions).

3. The meaning of a compound syntactic phrase 1s a mathematical com-
bination of the meanings of its immediate subphrases.

The last assumption is often called compositionality or, according to
Stoy, the denotational assumption. Phrase meanings are most often given
by expressions in the typed lambda calculus, although other possibilities
exist. A denotational language definition consists of the following parts:

e a collection of domain definitions, to be used as types for the lambda
expressions used to define phrase meanings
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e a collection of semantic functions, usually one for each syntactic
phrase type

e a collection of semantic rules defining them, expressing the meanings
of syntactic phrases in terms of the meanings of their substructures,
usually by lambda expressions.

A tiny denotational language definition For an example, consider a
language of while-programs with abstract syntax

¢: Cmd == x:=e | c;¢
| ife then celse ¢’ | whilee do ¢
e: Exp = x | Constant | op(ey,...,en)

where x is assumed to range over a set Var of variables, op is a basic
operation (e.g. +,—,*,=), and Constant denotes any member of a not
further specified set Value of values. The part of a denotational semantics
relevant to commands could be as follows, where the traditional “semantic
parentheses” [ and ] enclose syntactic arguments. In the following Store
and Value are as before except that for concreteness we specify Value is
the set of numbers. Each can be thought of as a “flat” Scott domain with
dCd iffd=_Lord=4d.

Specifying the semantics of a while loop requires (as usual) evaluating
a fixpoint over domain Store — Store, ordered “pointwise”: s C s iff s(x)
C §'(x) for all variables x.

Domain definitions

s : Store = Var — Value
Value = Number

Types of semantic and auxiliary functions

C : Cmd — Store — Store
E : Exp — Store — Value

Semantic rules

Clx := €] = As . s[x — E[e] s

Cle ; ¢ = As. C[NC[c] )

Clif e then c else ¢’] = As . Efe] s # 0 — C[c] s, C[¢'] s
C[while e do <] = fix A¢ . As . E[e] ¢ #0 — ¢(C[c] s), s

Note that all the rules are compositional.
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2.7.1 Factoring a Denotational Semantics

The principle of compositionality provides an ideal basis for generalizing
the denotational semantics framework to allow alternate, nonstandard in-
terpretations in addition to the “standard” semantics defining the meanings
of programs. The idea is to decompose a denotational language definition
into two parts:

e a core semantics, containing semantic rules and their types, but using
some uninterpreted domain names and function symbols, and

e an wnterpretation, filling out the missing definitions of domain names
and function symbols

The interpretation is clearly a many-sorted algebra. Examples include the
“standard interpretation” defining normal program execution, an “accumu-
lating interpretation” analogous to the accumulating semantics of section 2,
and as well more approximate and effectively computable interpretations
suitable for program analysis, e.g. for parity analysis.

Scott Domains versus Complete Lattices In denotational semantics
the denoted values are nearly always elements of “domains” in the sense
of Dana Scott and others. These are cpo’s (complete partial orders with
1), usually required to be algebraic. For material on domains see the list
of references in the beginning of this chapter.

On the other hand for abstract interpretation purposes, it is usual to
use complete lattices for reasons mentioned earlier. There is no basic con-
flict here since cpo’s include complete lattices as a special case. On the
other hand, the interpretation of the partial order is somewhat different in
semantics than in abstract interpretation (as mentioned in section 2.4), so
some care must be taken. This matter is further addressed in section 3.

An example factorized semantics For the imperative language above
we obtain the following, where domains Sto and Val, and functions assign,
seq, cond, while are unspecified:

Domain definitions

MCmd = Sto — Sto
Mggp = Sto — Val
Sto, Val:  unspecified

Types of semantic and auxiliary functions

C . Cmd — MCmd
E : Exp — Mgy,
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assign : Var x Mgz, — Moma

seq  : Mema X Meoma — Meoma

cond : Mggzp X Mcma X Moma — Mema
while : MExp X MCmd — MCmd

Semantic rules

Clx :=e¢] assign(x, Efe])

Cle; ¢ ] = seq(C[c], C[<D

C[if e then ¢ else ¢’] = cond(E[e], C[c], C[c’])
C[while e do <] while(E[e], C[c])

The standard interpretation This is I;;4 = (Val, Sto; assign, seq,
cond, while), defined by

Domains

Val = Number (the flat cpo)
Sto = Var — Val

Function definitions

assign = A(x, mg) . As . s[x — m.s]

seq = A(Inlca ch) . Mg © My
cond = A(me, My, Mae) . As . Mg 8 #0 — my, s, Mae S
while = A(m,, m.) . fix A¢ . As . m, s £ 0 — ¢(m, 8), s

2.7.2 The Even-odd Interpretation
With the current machinery a general formulation of the even-odd analysis
of section 2.2.3 may be given as our first nonstandard interpretation:

Larity = (Val, Sto; assign, seq, cond, while)

where Val, etc. are given by:
Domains

Val = {1, even, odd, T} with partial order
lCevenC Tand LCodd T T
Sto = Var — Val

Function definitions

assign = A(x, m.) As . s[x — m.s]
seq = A(mye, Mmac) . Mo, 0 My,
cond = A(me, myg, Mae) As . Mye s U ma. s
while = A(m,, m.) . fix A¢ As . ¢(m.s) U s
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Remarks

1. This is an independent attribute approximation: a set of stores is
modelled by mapping its variables’ values independently to elements

of Val.

2. For the conditional, no attempt is made to simulate the test. In-
stead, the best description fitting both the then and else branches is
produced.

3. The fixpoint clearly models the one in the standard interpretation,
again without simulating the test. Termination is assured since Sto
has finite height and any one program has a finite number of variables.

2.7.3 The Accumulating Semantics as an Interpretation

The accumulating semantics seen earlier was only given by example. With
the current machinery a general formulation may be given: I,.. = (Val,
Sto; assign, seq, cond, while) where Val, etc. are given by:

Domains
Val = p(Number)
Sto = Storeset typical element S
Storeset = p(Var — Val) a set of stores

Function definitions

assign = A(x, m.) . AS . {s[x — v] |s €S andv e m.{s}}
seq = A(Inlca ch) . Mg O My
cond = A(me, my., ma) . AS .

mi. ({s€S| 0¢ me{s}})) Uma. ({s €S |0 €mfs}})
while = A(me, m,) . fix Agp. AS .
{seS| mes=0tUg(m,{s€S| mes #0})

Here the denotation of C[Cmd] has been “lifted” from Sto — Sto to p(Sto)
— p(Sto), so it now transforms a set of current states into the set of
possible next states. To relate this to the earlier accumulating semantics

of section 2.2, consider for example the program fragment “C : n := n+2;
D” of section 2.2.2. Then

Cln := n+2Jacce = accp

In general, C[c] realizes the same transformation on store sets as defined
by the data flow equations for command c.
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2.8 Proving Safety by Logical Relations

2.8.1 Safety from a Denotational Viewpoint

Suppose we are given two interpretations
I = (Val, Sto; assign, seq, cond, while)
and
T = (Val’, Sto’, assign’, seq’, cond’,while’)
and a pair of abstraction functions
B = (Bya : Val — Val’| 85, : Sto — Sto”)
where 3,41 and Gs:, are monotone. We write this as 5: I — I’. Define s C
8’ to hold iff s (X) C s’(X) for all variables X € Var.

Definition j: I — I’ is safeif for all c € Cmd and s € Sto

Bsto(CI[[C]] S) E CI’ [[C]] (6sto S)
where Cr : Sto — Sto is the semantic function obtained using assign, seq,
etc. and Cy, is analogous but using assign’, seq’, etc.

Recall that a C a’ signifies that @’ is a more approximate description
than a. This definition says that the result of computing in the “real
world” and then abstracting the resulting store gives a result that is safely
approximable by first abstracting the real world’s initial store, and then
computing entirely in the “abstract world”. It is thus simply a reformula-
tion in denotational terms of the earlier condition on safe approximation
of transitions:

a(nexty ¢(S5)) C nextp 4 (a(5))

where p and q are (resp.) the entry and exit points of command ¢ (and «
plays the role of 7).

2.8.2 A Sufficient Local Condition for Safety

While pleasingly general, this definition is unfortunately global: it quan-
tifies over all commands c. It would be strongly desirable to have local
conditions on assign, seq, etc. sufficient to guarantee safety in the sense
above. This can be done, but requires first setting up a bit of descriptive
machinery. The problem is that denotational definitions use higher order
functions and cartesian products, whereas the earlier conditions for safety
were developed only for first order domains.

The solution we present is an instance of logical relations, an approach
to relating values in different but simlarly structured domains that will be
developed further in Section 3.3.

Suppose we have two interpretations I and I’ of our simple imperative
core semantics, related by 3 = (8,4 : Val — Val', B4, : Sto — Sto’) where
Ovar and Gs4, are again monotone. Qur goal is to see how to extend [ to
apply to all domains built up from those of I and I’. Suppose further that
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domain A is built by x and — from the domains of I, and a corresponding
domain A’ is built in the same way from the domains of I'. We define
the binary relation a <g a, which will hold whenever a’ € A’ is a safe
approximation of the corresponding element a € A.

Definition Suppose § = B,4 : Val — Val’ and v € Val, v’ € Val'. Then
1. v <g v if and only if B, (v) C v’ and similarly for 3 = 35, : Sto —
Sto’.
2. Let (a,b) € AxB, (d/,b') € A’xB’and 84 : A= A’ fp: B—=F

be monotone. Then
(a’ b) Sﬁ (a/’ b/)
if and only if
a<g, a and b <g, b'.

3. Let f: A—=B g: A —=Band f4: A — A’ g : B— B be
monotone. Then
f <g g if and only if

Va € AVd' € A'(a <p, a'impliesfa <g, ga’).

This notation allows an alternate characterization of safety.
Lemma (: I — I issafe if and only if Cy[c] <g Cy,[c] for all ¢ € Cmd

Proof “If”: by 3, Cy[c] <s Cy,[c] holds if and only if Cy[c]s <g,,, Cy,[c]

s’ whenever s <g_,, s’. In particular we have s <g B,:,(s), hence

Bsto(CI[[C]]S) CCrp [[C]]Bsto(s)

so 73 is safe (as defined before).
“Only if”: if 7 is safe and s <g s’ then

Bsto(CI[[C]] S) C Cp [[C]] (ﬁstos) C Cp [[C]] s’

by monotonicity of Cy[c] (easily verified). O

It is now natural to extend the definition of <z to allow comparison of
interpretations. Given this, we are finally ready to define a local safety con-
dition which implies global safety. Proof is by a straightforward induction
on program syntax.



44

Definition Let 3: I — I’ be defined as above. Then I <g I’ if and only
if
assign  <g assign’,
seq <p seq,
cond <g cond
while <z while’.

Theorem g:1— T issafeif I <g I’

A straightforward generalization of these ideas to arbitrary denotational
definitions provides a very general framework for program analysis by in-
terpreting programs over nonstandard domains, and gives a way to show
that one abstract interpretation is a refinement of and compatible with
another. This observation is the starting point for the development in the
section below.

For a very simple example, the following is easy to show. Its signifi-
cance is that the accumulating semantics is a faithful extension of with the
standard semantics.

Lemma Let I;;q = (Val, Sto; assign, seq, cond, while) and I,.. = (Val’,
Sto’; assign’, seq’, cond’, while’) be the standard and accumulating seman-
tics. Then Iq <p Ii.., where Byqi(v) = {v} for v € Val and F..(s)= {s}
for s € Sto.

3 Abstract Interpretation Using a Two-Level
Metalanguage

In the previous section we have given a survey of many concepts in abstract
interpretation. We have stressed that abstract interpretation should be
generally applicable to programs in a wide class of languages, that it should
always produce correct properties and that it should always terminate.

To ensure the general applicability of abstract interpretation we adopt
the framework of denotational semantics. Most modern approaches to de-
notational semantics stress the role of a formal metalanguage in which the
semantics is defined. So rather than regarding denotational semantics as
directly mapping programs to mathematical domains one regards denota-
tional semantics as factored through the metalanguage. This is illustrated
by the upper half of Figure 1: First one uses the semantic equations to
expand programs into terms in the metalanguage and then one interprets
the terms in the metalanguage as elements in the mathematical domains
used in denotational semantics.
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Domains
Denotat.lonal Standard
Semantics .
Interpretation
Semantic
Programs : Terms
Equations
Abstract Abstract .
1 Interpretation
Semantics
Properties

Fig. 1. The Role of the Metalanguage

Following our informal presentation of a parameterised semantics in
Subsection 2.7 we take a similar factored approach to abstract interpreta-
tion. This is illustrated in the lower half of Figure 1 which furthermore
stresses that the semantic equations are the same. The Semantic Equa-
tions thus correspond to the core semantics of Subsection 2.7. From the
point of view of developing a general theory, the focus will be on the met-
alanguage but we trust that the reader will be able to see for himself that
the development is of wider applicability than just the simple metalan-
guage considered here. Its syntax is defined in Subsection 3.1 and we give
example interpretations (i.e. semantics) in Subsection 3.2.

Correctness of abstract interpretation will be our guide throughout the
development. In Subsection 3.3 we therefore give a structural definition of
correctness relations between interpretations thereby extending the devel-
opment surveyed in Subsection 2.8. As an example we define correctness
relations between the standard interpretation and one of the abstract in-
terpretations defined in Subsection 3.2.

Closely related to the question of correctness is the question of whether
best induced property transformers exist over the abstract domains. We
treat this in Subsection 3.4 and we consider the easier case of relating
abstract interpretations to one another as well as the harder case of relating
an abstract interpretation to the standard interpretation. Induced property
transformers need not terminate but are none the less useful as guides in
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determining the degree of approximation that will be needed to ensure
termination.

The termination aspect motivates the study in Subsection 3.5 of coarser
versions of the induced property transformers which have the advantage of
leading to analyses that will always terminate. Subsection 3.6 concludes by
mentioning some generalisations that are possible [Nielson, 1989] and by
discussing some issues that have not yet been incorporated in this treate-
ment.

3.1 Syntax of Metalanguage

Most metalanguages for denotational semantics are based on some version
of the A-calculus. Depending on the kind of mathematical foundations
used for denotational semantics the metalanguage may be without explicit
types or it may have explicit types. We shall not pay great attention to this
difference and in many instances the various algorithms for polymorphic
type inference may be used to introduce types into an untyped notation.
As our starting point we thus assume that our metalanguage is a small
typed A-calculus.

Definition 3.1.1. The Typed A-Calculus has types €7 and expressions
e€F given by

o= 4 | Ixt | t—t

e = £i[{]

| (e,e) | fst e | snd e |
Axi[t].e

| e(e) | %1 | fix e | if e then e else ¢

Concerning types we have base types A; where i ranges over a countable
index set (say I) and we have product and function space. Here x binds
more tightly than — and both associate to the right. We shall not specify
the details of the countable index set but we shall assume that we have
booleans Apee (also written Bool), integers Ajps (also written Int) and
other useful base types. However, nothing precludes us from having a base
type Agto of machine stores and if the store contains just two values, say
an integer and a boolean, we may write Aintxbool for Agio. (The difference
between types like Aintxbool and Ajnt X Apeol Will become clear in Subsection
3.2)

Concerning expressions we have basic expressions £;[t] of type { where
again ¢ ranges over a countable index set. (This index set need not be
the same as the one used for the 4; above but whenever we need to name
it we shall use the same symbol I as above.) Again we expect to have
familiar basic expressions like the truth values fi,,.[Bool] and fy,se[Bool]
(also written true[Bool] and false[Bool] or just true and false), integers like
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fo[Int] (also written O[Int] or just 0) and simple operations like equality
f_[IntxInt—Bool] (also written =[Int xInt—Bool] or just =). Much as
for the A nothing prevents us from  writing e.g.
fax Ay x=y+y [Int—Int—Bool] in order to clarify the intended meaning of
some basic expression. The remaining constructs for expressions are pair-
ing, selection of components, A-abstraction, application, variables, fixed
points and conditional. We shall assume that application binds more tightly
than fst, snd and fix.

3.1.1 The use of underlining

We shall postpone the discussion about well-formedness of expressions in
the typed A-calculus because the syntax is not yet in a form that will suit
our purpose: to prescribe a systematic approach to separating a denota-
tional semantics into its core part and its interpretation part (to use the
terminology of Subsection 2.7). To motivate this we recall from Section
2 that for a given programming language or example semantics there are
some constructs that we might wish to interpret in different ways in dif-
ferent analyses whereas there are other constructs that we might as well
interpret in the same way in all analyses. To indicate this distinction in
a precise way we shall use the convention that underlined constructs are
those that should have the freedom to be interpreted freely.
Beginning with the types we might consider a syntax as given by

1= A |A1 | ixti | 1—1

so that we would use Ay (also written Int) instead of Ajye whenever the
integers are used in a context where we would like to perform abstract
interpretation upon their values. Thus if we want to consider the store of
an imperative programming language as a base type we will always use Ag,
rather than Ag,. If we want to consider a structured version of the store
where we have a fixed set A;q. of i1dentifiers and a fixed set 4,4 of values
we shall use Ajge—Ayy rather than e.g. Ajge—Aya) O Aige—Ava-

However, this notation for types does not allow us to illustrate all the
points we will need for a general theory of abstract interpretation although
it would suffice for formalizing the development in Subsection 2.7. Exam-
ples include the discussion of forward versus backward analyses and the
discussion of independent attribute versus relational methods. To cater for
this we propose the syntax

Lo= A | A | txt | ixt | t—t | t=t

and we shall use the phrase two-level types for these. This will turn out to
be a bit too liberal for our abilities so we shall need to impose various well-
formedness conditions upon the types but in order to motivate them it 1s
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best to postpone this until they are needed for the technical development.
In actual applications there might well be the need for distinguishing be-
tween various occurrences of X and — and one might then allow a notation
like x; and —; where 7 ranges over some index set. However, as the theory
hardly changes we shall leave this extension to the reader.

Turning to the expressions, a simple solution would be to keep the
syntax of expressions as given in Definition 3.1.1 with the understanding
that the types ¢ in the basic expressions f;[{] now range over the larger
set of two-level types. However, this is not quite in the spirit of the typed
A-calculus as we now have types without corresponding constructors and
destructors. We shall therefore adopt a more comprehensive syntax of
expressions by extending the use of underlining to the expressions.

Definition 3.1.2. The Two-level A-Calculus has types t€ 7T and expres-
sions e€F given by

tou= A | A | Ixt | txt | t—t | t—t
£i[t] | (e,e) | (e,e
/\xl[]e|A i[t].e

e|fix e

fix

¢) | fst e | fst e | snd e | snd ¢ |

? [ e(e) [ele) | x|

if ¢ then ¢ else ¢ | if ¢ then e else ¢

Here the intention is that if e.g. e is of type ¢; and es is of type 5 then
(e1,e2) will be of type 1 x 2 and <61,62> will be of type 1 x5 and similarly
for the other operators. We do not have two versions of £;[¢] as £;[¢] simply
1s a basic expression of the type indicated, nor do we have two versions of
x; as x; simply is a placeholder for a ‘pointer’ to the enclosing Ax; or Ax;.
In this notation an operation seq for sequencing two commands operating
on a store Sto might be defined by

seq = Axi[Sto—Sto]. Axs[Sto—Sto]. Axso[Sto]. X2£X1£Xstoﬁ

It will have type

(Sto—Sto)—(Sto—Sto)—(Sto—Sto)

and may be used as in Ccy;ez] = seq(Cler])(Clez])-

3.1.2 Combinators

The motivation behind the use of underlining was to separate the more ‘dy-
namic’ constructs that need to be interpreted freely from the more ‘static’
constructs whose interpretation never changes. Unfortunately the two-level
A-calculus is not in a form that makes this sufficiently easy. The problem
is the occurence of free variables and especially those bound by A. This is
not a novel problem and solutions have been found:
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e When interpreting the typed A-calculus in arbitrary cartesian closed
categories one studies certain combinators (‘categorical combinators’)
whose interpretation in a cartesian closed category is rather straight-

forward.

e When implementing functional languages one often transforms pro-

grams to combinator form before performing graph reduction.

This motivates:

Definition 3.1.3. The Two-level Metalanguage has types {€7 and ex-

pressions e€ F given by

Lo= A | A | txt | ixt | t—t | t=t

e == 1i[t] | {e,e) | Tuple(e,e) | fst ¢ |Fst ¢ | snd e | Snd ¢
| Axi[t].e | Curry e | e(e) | Apply{e,e) | xi | Id[¢{] | e De
| Const[t] e | fix e | Fix e | if e then ¢ else e | If{e,e,e)

Here we have retained those expression constructs that were not under-

lined, we have replaced the underlined expression constructs by combina-
tors, and we have added the new combinators Id[t], O and Const[t]. We
shall regard application as binding more tightly than the prefixed operators
(fst, Fst, snd, Snd, Curry, Const[t], fix and Fix). The intention with

the combinators may be clarified by:

Tuple(ey,eq) = _X1~§€
Fst ¢ = Axy.fst e(x;

Snd ¢ = Axq.snd e(x;

Curry e = Axy.Axz.e({xq,

X2
Apply{eq,es) = Axj.e xl)(ezgxl_

Id[t] = AXl.Xl

e1 O es = AX1.61£62£X12
Const[t]{e) = Ax.e

Fix ¢ = Axy. fix e(xq)

H
Vomn
>
i
~—
®
N
Vomn
>
i
~—
=

If{ey,e0,e3) = Axl._i_f_el(xl) then ea(x1) else e3(xq)

This should be rather familiar to anyone who knows a bit of categorical logic
or a bit of a functional language like FP. In this notation the sequencing

operator seq used above simply is

seq = Axi[Sto—Sto]. Axs[Sto—Sto]. x» O x;
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tenv by oo £i[t] ¢ ¢ if By ¢

tenv by o €10 By tenv 210 €20 1o
tenv '_01,02 <61,62> i X1e

tenv by oo e i=1 tenv by oo €21 =t
tenv b1 o Tuple(eq,es) @ t—=t1x1s

if b1 (I=t) — (I=t2) — (I=tlixls)

tenv by oo et Xy
tenv by 0 fst e 1y

tenv by oo et t=ti X
tenv by o0 Fst e t—=1

if '_cl (tjtlitz) — (tjtl)

tenv by oo et Xy
tenv by oo snd e 1

tenv by oo et t=ti X
tenv by 2 Snd e =ty

if '_cl (tjtlitz) — (tjtz)

tenv[t/xi] 1o e ¥
tenv by oo Axi[t]e @ t—t

if o t

tenv by oo et Ixt =t
tenv by oo Curry e : =t —=1"

if &y (tit’jt”) — (tjt’jt”)

tenv by oo e 0 =t tenv by oo ea i
tenv ko1 00 e1(en) @t

tenv by o0 € @ t=t'=17 tenv by oo eg t I=t
tenv b1 o Apply{ei,es) : t—=1"

if &y (tjt’jt”) — (tjt’) — (=t

tenv oy 00 %0 1 if k2 tA tenv(x) =1
Table 1. Wellformedness of Expressions (part 1)

and thus there hardly is any need to name it.

To complete the definition of the two-level metalanguage we must ex-
plain when expressions are well-formed. We have already said that we
shall need to impose conditions on the types as we go along and the well-
formedness condition will be influenced by this although in a rather indirect
way. As we shall see later these parameters may restrict types so that they
e.g. denote complete lattices. We shall therefore write TML[c1,c2] for a
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tenv by 00 Id[t] @ t=t if b t=t

tenv i o0 €11 to=th tenv 10 €0 @ ti—is
tenv By 0 €0 O ey @ to=is
if B1 (ti=ts) — (to=t1) — (to=t12)

tenv by o e
tenv k21 00 Const[t] e : t—=1t’
if By 70— t=1

tenv b2y 0 €1 t—t
tenv bz 0 fixe @t

tenv by oo et t=t' =1
tenv ke 2 Fixe: t=1
if (tjt’jt’) - (tjt’)

tenv 21 .2 €1 @ Bool tenv by oo ea i tenv bz 00 ez it
tenv oy oo if €; then ey else ez : ¢

tenv k212 €1 @ t—=Bool fenv py o e t=t’  tenv by ez =1

tenv by 00 If{eq,eq,e3) @ t=1

if k1 (1=Bool) — (t=1") — (I=t") — (1=1")

Table 2. Wellformedness of Expressions (part 2)

version of the two-level metalanguage where types are constrained as indi-
cated by the parameters ¢l and ¢2. We then write k. to express that
the type t is well-formed with respect to the constraint ¢. Whenever we
say that ¢ is a well-formed type of TML[c1,c2] we shall mean k.5 ¢ because
in general ¢2 will be more liberal than ¢1, i.e. ¢1 will imply ¢2. Next we
write

tenv by e 0t

for the well-formedness of an expression e of intended type ¢ assuming that
the free variables of e have types as given by tenv. Here tenv is a type
environment, i.e. a mapping from a finite subset of the variables {x;j|i€T}
to the types 1'. We refer to Tables 1 and 2 for the definition of tenv b2y 2 €
: 1 but we point out that the constraint c2 is used to constrain the types of
variables whereas the constraint c¢1 is used to constrain the types of basic
expressions and combinators.




52

We shall say that the expression e is closed if it has no free variables so
that fenv may be taken as a mapping from the empty set. Also we shall
say that a combinator ¢ is used with type t1/), if g t1/) is the side condition
that needs to be verified in order to apply the rule for ¢. As an example, O
is used with type (Sto—Sto)—(Sto—Sto)—(Sto—Sto) in the expression
for seq displayed above.

Fact 3.1.4. If tenv ko1 2 e @t and tenv oy 0 e @ to then ¢ = ¢, O

3.1.3 Pragmatics of the metalanguage

We shall end this subsection with a few pragmatic considerations about the
relationship between the two-level metalanguage and the typed A-calculus
we took as our starting point. One of our first points was not to pay
great attention to the difference between a typed A-calculus and an un-
typed A-calculus because the various algorithms for type analysis might
be of use in transferring types into an otherwise untyped expression. In
quite an analogous way we shall not pay great attention to the difference
between a typed A-calculus and a two-level A-calculus as one can develop
an algorithm for binding time analysis [Nielson, 1988b] that is useful for
transferring the underlining distinction into a typed expression without
this distinction. Continuing this line of argument we shall not pay great
attention to the difference between a two-level A-calculus and the two-level
metalanguage adopted in Definition 3.1.3 because one can develop a vari-
ant of bracket abstraction (called two-level A-lifting [Nielson, 1988c]) that
will aid in transforming underlined constructs to combinator form.

The choice of combinators in the two-level metalanguage suits the A-
calculus well but one may regard them as nothing but glorified versions of
the basic expressions f£j[t], i.e. that for a few of the basic expressions £j[{]
we have decided to use a different syntax. This means that one could as
well study combinator-like basic expressions that would be more suitable
for languages like PASCAL, PROLOG, OCCAM or action semantics.
However, we always have the A-notation available and we would only wish
to restrict this in settings where the resulting metalanguage is so big as
to make it hard to develop an analysis. We shall see examples of this in
the next subsection where we define the parameterised semantics of the
metalanguage.

3.2 Specification of Analyses

Following most approaches to denotational semantics we shall interpret
the types of the metalanguage as domains. We saw in Section 2 that for
abstract interpretation there is a special interest in the complete lattices
and we shall restrict our attention to the algebraic lattices which are those
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complete lattices that are additionally domains. Roughly the idea will
be to interpret the non-underlined type constructs as domains whereas
underlined type constructs will be interpreted as algebraic lattices when
we are specifying abstract interpretations and as domains when we are
specifying the standard interpretation.

To be selfcontained we shall briefly review a few concepts that have
been treated at greater length in previous chapters of this handbook.

Definition 3.2.1. A chain in a partially ordered set D=(D,C) is a se-
quence (dy )y of elements indexed by the natural numbers such that d,Cdy,
whenever n<m. A c¢po D is a partially ordered set with a least element,
1, and in which every chain (dy), has a (necessarily unique) least upper
bound, | |ndn. The cpo D is consistently complete if every subset ¥V of D
that has an upper bound in D also has a least upper bound | |Y in D. An
element b in a cpo D is compact if whenever bC| |, dy for a chain (dy)n we
have some natural number n such that dCd,. A subset B of D is a basis
if every element d of D can be written as d = | |, by where (by), is a chain
in D with each b, an element of B. A domain is a consistently complete
cpo with a countable basis Bp of compact elements. We shall use the term
algebraic lattice for those complete lattices that are also domains, i.e. for
those domains in which any subset has an upper bound. O

Definition 3.2.2. A function f:D—F from a domain D=(D,C) to an-
other domain E=(F,C) is monotonic if it preserves the partial order and
is continuous if it preserves the least upper bounds of chains, i.e. f(| |ndn)
= | f(dn). Tt is additive (sometimes called linear) if it preserves all least
upper bounds, i.e. f([|Y) = | {f(y)|y€Y} whenever Y has a least upper
bound. Tt is binary additive if f(d1Ud2) = f(d1)Uf(d2) and is strict if it
preserves the least element, ie. f(L)=L. Tt is compact preserving if it
preserves compact elements, i.e. f(b)€Bg whenever b€Bp. A continuous
function f:D—D from a domain D=(D,C) to itself has a least fixed point
given by FIX(f) = | |n f™(L), i.e. F(FIX(f)) = FIX(f) and whenever f(d)
= d (or indeed f(d) C d) we have FIX(f) C d. O

Definition 3.2.3. A predicate P over a domain D=(D,C) is a function
from D to the set {true false} of truth values. It is admissible if P(L) holds
and if P(| |Jndn) holds whenever (dy)y, is a chain such that P(dy) holds for
every element d,,. For an admissible predicate P we have the induction
principle
P(d) = P(f(d))
P(FIX(f))

whenever f 1s continuous. In a similar way we define the notion of ad-
missible relation since a relation between the domains Dy,...,Dy (n>1) is
nothing but a predicate over the cartesian product Dy x...x Dy (where the
partial order is given in the usual componentwise manner). O
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3.2.1 Interpreting the types

For a type ¢ the definition of its interpretation [¢](Z) is by structure on the
syntax of ¢. As we shall see it will make use of the parameter 7 whenever
underlined constructs are encountered. Actually, the parameter 7 may be
regarded as being a pair (Z°,Z7¢) and for the definition of [¢](Z) it is only
the 7' component that will be needed.

[ 4 |(Z) = some a priori specified domain A;
with Apeel the domain {true false, 1} of booleans
and Ajy the domain {...,-1,0,1,...,L} of integers

[tixt: J(Z) = [t J(Z) x [ 12 ](Z)
where the elements are the pairs of elements
and the partial order is defined componentwise

[ti—t:)(Z) =t ](Z) — [t ](Z)
where the elements are the continuous functions

and the partial order is fCg iff Vd: f(d)Cg(d)
[41(T) =7}
[t x t2 WT) = ZL([6L0T),[1=)(T))
[t = )(Z) = ZL([t](@), [t=0(2))

The demands on the parameter 7 are expressed in

Definition 3.2.4. An interpretation I (or I%) of types is a specification
of

e a property Zf, = P of domains (e.g. ‘is a domain’ or ‘is an algebraic
lattice’),

o for each i a domain Z" with property P,

e operations 7! and Z' on domains with property P such that the
result is a domain with property P.

We shall use the term domain interpretation for an interpretation of types
where the property P equals ‘is a domain’ and we shall use the term lattice
interpretation for an interpretation of types where the property P equals
‘18 an algebraic lattice’. O
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Clearly domain interpretations are of relevance when specifying a stan-
dard semantics and lattice interpretations are of relevance when specifying
abstract interpretations.

Unfortunately we will have to impose certain well-formedness conditions
upon types for the above equations to define a domain. As an example,
Int xInt will not be well-formed because

[ IntxInt () = I;(Ainta Zie)

and even though Z'. is an algebraic lattice (e.g. that for the detection
of signs), Aipt is not and so one cannot apply Z! when Z is a lattice
interpretation. Since we have argued that the use of (algebraic) lattices is
a very natural setup for abstract interpretation we conclude that we should
ban IntxInt.

With this motivation we shall define the predicates

1t(t) to ensure that ¢ will be interpreted as an algebraic lattice when
performing abstract interpretation,
dt(t) to ensure that ¢ will be interpreted as a domain in any inter-

pretation.

Definition 3.2.5. The predicates 1t (for lattice type) and dt (for domain
type) are defined by

Aj & 11 X1y 11 X1y t1—1y 11—ty
It false true It 1/\1t2 It 1 /\ltz dt 1 /\ltz It 1 /\ltz
dt true true dtl/\dtz ltl/\ltz dtl/\dtz ltl/\ltz

where we write 1t; for 1t(#1) etc. O

We shall regard a type t as being well-formed whenever dt(¢) holds and
write b ¢ as a record of this.

Proposition 3.2.6. The equations for [¢](Z) define a domain when ¢ is a
well-formed type in TML[dt,dt] and 7 is a domain or lattice interpretation.
O

Proof: Let 7 be an interpretation of types that specifies the property
IS5 = P where P(D) either means that D is a domain or that D is an
algebraic lattice. By induction on the structure of types ¢ we will show

o if dt(?) then [¢](Z) specifies a domain,

o if 1t(?) then dt(¢) and [¢](Z) has property P.

The cases A; and A; are straightforward. The case {1 x {5 follows because

D1x Dy is adomain whenever Dy and D» are and an algebraic lattice when-
ever Dy and Dy are. The case {1 x 1y follows from the assumptions. The
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case t;—15 follows because D1— D+ 1s a domain when D; and D» are and
an algebraic lattice when D is a domain and D is an algebraic lattice.
The case t;—1, follows from the assumptions. O

We thus see that a type like Int xInt is not well-formed whereas (general-
ising [Nielson, 1989]) a type like (Int—Int)xInt will be well-formed and
will denote an algebraic lattice in any abstract interpretation (i.e. in any
lattice interpretation). Furthermore it should now be clear that Aintxbool,
Aint XAbool, Aint xbool and Aint XApeol Will be treated differently in the seman-
tics.

3.2.2 Interpreting the expressions

To define the meaning of a well-formed expression we shall consider a type
environment fenv with domain {x;,...,x,}? and a well-formed expression e
of type t, 1.e.

tenv bgpar e 0 1

Without loss of generality we may assume that k¢ whenever ¢ = tenv(x;)
as otherwise x; could be removed from the type environment (due to the
formulation of the axiom for x; in Table 1). The semantics of e relative to
the interpretation 7 is an entity

[ ¢ Trenv(Z) € [](T) . x[ta)(Z)—[1(Z)

where again ¢ = tenv(x;). That this makes sense is a consequence of
Fact 3.2.7. If tenv by ¢ ¢ @ tthen by ¢ O

The definition of [e]teny(Z) is by structural induction on e and again we
shall use the interpretation Z, i.e. (Z*,Z¢), supplied as a parameter when
we come to the underlined constructs. Writing [e]Zp for [e]senv(Z)(p) we
have

[20012p = 75,
[ (er,e2) 1Zp = ([ea]Zp,[ea]Zp)
I Tuple(el,ez) 1Zp = Thpiepg ([e2]Zp)([€2]Zp) where Tuple is used
with type ¢
[ £fst e [Zp = di where (dy,d2) = [e]Zp
[Fst e [Tp = Try 4 ([e]Zp) where Fst is used with type ¢
[ snd e [Zp = do where (dy,d2) = [e]Zp
[Snd e |Zp = Ignd[t]([[e]]lp) where Snd is used with type ¢

2Tt is rather demanding to assume that dom(¢env) is always of the form {x1,...,xn}
for some natural number n, but as it simplifies the notation considerably we shall stick
to this assumption. Alternatively, one might model a type environment as a list of pairs
of the form (x;,%;).
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[ Axilt].e [Zp = ME[I(T). [eltenvie/x,1(Z)(pld/xi])
where (dy,...,dn)[d/xi] = (dy1,....,d,...,dn) if i<n
and (dy,....dn)[d/xi] = (dy,...,dn,d) if i=n+1

[ Curry e [Tp = TG 1y([e]Zp) where Curry is used with type ¢

[ ei(e2) 1Zp = ([e]Zp)([e2lZp)
[ Apply{e1,e2) |ZTp = I‘prly[t]([[elﬂlp)([[ez]]lp) where Apply is used
with type ¢

[ % |Zp = di where (dy,....,dn) = p
[Tl 1Zp = Tiq_ gy
[er 0 ex]Zp =Tg([er]Zp)([e2]Zp) where O is used with type ¢
[ Const[t] e |Zp = I‘éonst[t,]([[e]]lp) where Const[t] is of type ¢’
[ fix e |[Zp = FIX([e]Zp)
[Fix e [Zp = T5;,p ([e]Zp) where Fix is used with type ¢
[e2]Zp if [e1]Z p=true
[ if e; then ey else ez [Zp = ¢ [es]Zp if [e1]Z p=false
1 if [e1]Zp=L
[ If{e1,e2,e3) | Zp = Ilef[t]([[elﬂlp)([[ez]]lp)([[eg]]lp) where If is used
with type ¢

To prevent any misconception we point out that the pattern matching, e.g.

dy where (dy,d2) = [e]pZ

may be replaced by the use of explicit destructors, e.g.

pll where p = [e]pZ

and that similarly the ‘where’ may be replaced by textual substitution, e.g.

(TelpZ) 11

The demands on the parameter Z are clarified by:

Definition 3.2.8. An interpretation 7 is a specification of

e an interpretation Z° of types that is a domain interpretation or a
lattice interpretation,

e for each basic expression or combinator an entity in the required
domain, 1.e.
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I, € [i(I)
Lhupef(tm th—(tm e (emirxery) € (=) — [="1T) —
[t=t'xt"](T)

A= € [t=t'xt"(T) — [t=t1(T)

Fstl(t=t/x 1) (t=t")]
Tna(t— vty (1memy € H=Ux)(T) — [t=1"])(T)
I%urry[(t’it”:t)—»(t’:t”:t)] € [[t’it”jt]](z) - [[t,jt”jt]](z)

Izpply[(t;t':t”)—*(t:t’)—*(t:t”)] € [i=r'="112) — [t=17)
— [t="1(T)
Tapr—y € [I=1(T)

I%[(t’:t”)—»(t:t’)—»(t:t”)] €[t'=t"](Z) = [t=t"](Z) — [i=t"](Z)

I%onst[t’—»t:t’] € [t'1(Z) — [i=¢1(T)
A= € [t=t'=t)(T) — [t=t1(2)

Fix[(t=t'=t")—(t=1t")]
Ti(t— Bool)— (t—t")— (1=t (1= € [I=Bool](T) — [i=t'|(Z)
— [t=t1(Z) — [i=t"1(2T)

Here we must assume that the types ¢ indexing each I;Z[t] are such

that [--J(Z) is only applied to well-formed types, i.e. types ¢’ such
that bk 1, and this is equivalent to assuming that by ¢.

To simplify the notation we shall henceforth feel free to omit the type and
type environments as subscripts and thus write [e](Z) for [e]seny(Z) and
I;Z for Iz[t]. (In a sense we regard the combinators as having a kind of

polymorphic interpretation.)

Proposition 3.2.9. The equations for [e](Z) define a value when e is a
well-formed expression in TML[dt,dt] and Z is a domain or lattice inter-
pretation. O

Proof: The assumptions on 7 ensure that [¢](Z) is a well-defined do-
main whenever ky ¢. We shall show by structural induction on an expres-
sion e that

if tenv b qr e : t where dom(tenv) = {x1,....xn}, tenv(x;) = t; and
B &
then [eJtenv(Z) € [11](Z) % ...x[ta](Z)—[¢](Z) and this domain does

exist.

The proof makes use of Fact 3.1.4 to ensure that the type ¢ of e is unique so
that also the types indexing each I;Z are unique. Furthermore it makes use

of Fact 3.2.7 to ensure that the type ¢ of e is well-formed so that, given the
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inference rules of Tables 1 and 2, we only request a Iz[t in a domain that
must exist by Proposition 3.2.6. The structural induction is now mostly
straightforward and we shall omit the details. O

3.2.3 Example interpretations

We now present a total of five examples: a lazy standard semantics, detec-
tion of signs (in an independent attribute formulation), strictness, liveness,
and detection of signs (in a relational formulation). The main point of
these examples is to demonstrate the generality obtained by varying the
interpretation of the underlined types and type constructors. The last two
examples are somewhat technical and the details are not vital for the re-
mainder of the development.

Example 3.2.10. (Lazy Standard Semantics) In this example we define
the standard semantics of the metalanguage. This amounts to specifying a
domain interpretation S and for types we have:

e the property S equals ‘is a domain’,
e S" = A; (the a priori chosen domains for the types 4;),

e S! = x (cartesian product) and S, = — (continuous function
space).

In other words we do not distinguish between underlined and non-underlined
types and constructors and this should not be surprising in a standard se-
mantics. (We may note from this example that well-formedness of a type
t is a sufficient condition for [¢](S) to be defined but it is not necessary
as [t](S) is in fact defined as a domain for all types t.) If we wanted an
eager standard semantics instead we might take S to be a so-called smash
product and S*, to be strict function space.

Turning to the expression part we have:

S.[;y is some a priori fixed element of [¢](S)
e.g. Siue = true etc.

S Fuple = Avy. Avg. Aw. (vi(w),v2(w))
Sg = Av. Aw. dy where (dy,d2)=v(w)
S$.q = Av. Aw. da where (dy,dz)=v(w)
SCurry = Av. Awy. Aws. v(wy,wa)

S Apply = Avy. Ave. dw. vi(w)(va(w))
SH = Aw.w

SE = Avr. Ava. Aw. vi(va(w))

Se

Const = AV. Aw. v
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St = Av. Aw. FIX(v(w))

S = Avi. Ava. Avs. Aw.

if vy (w)=true
if vy (w)=false
if v1(w)=1

This definition is in agreement with the informal explanation of the com-

binators that we gave in Subsection 3.1. O

Example 3.2.11. (Detection of Signs — I) In this example we do need
the distinction between underlined and non-underlined types in order to

be able to formalize the abstract interpretation for detecting the signs of

the integers. We specify a lattice interpretation I and for types we have:

e the property IS equals ‘is an algebraic lattice’,

e the lattices Iit include

/T\
i 0\ / ] 0\ / T\
I, = - 0 + Tea = M i
| / L
1
e I = x (cartesian product) and If, = — (continuous function space).

Turning to the expressions we have:

L{, is some a priori fixed element of [¢](I)
eg. I .. = tt, Iy = + etc.

Ifipe = Avy. Ava. dw. (vi(w),v2(w))
IS, = Av. dw. dqi where (d1,d2)=v(w)
IS, 4 = Av. Aw. dy where (d1,ds2)=v(w)
Ioumy = Av. Awi. Aws. v(wy,wa)
Loy = Avy. Avg. Aw. vi(w)(va(w))
I5 = dwow

I8 = Avy. Ava. Aw. vi(va(w))
I8 st = Av. Aw. v

I, = Av. dw. FIX(v(w))

I = Avi. Ava. Aws. Aw.
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To see that Ty, poot—(1mt')—(t=t)) (1=t
sume that the type in the subscript is well-formed. Then we have 1t(¢’) so
that by (the proof of) Proposition 3.2.6 the domain [¢'J(I) is a complete
lattice. Hence the least upper bound exists and as the binary least up-
per bound operation is continuous, I will be an element of the required
(continuous) function space. O

1s well-defined we shall as-

Example 3.2.12. (Strictness) Simplifying the lattices of the previous ex-
ample we arrive at a strictness analysis. Since this analysis is by far the
most cited analysis for lazy functional languages we briefly present its spec-
ification. As in the previous example we specify a lattice interpretation T
and for types we have:

e the property Tf equals ‘is an algebraic lattice’,

e the lattices Tit are

e/
Tit :l
0
e T! = x (cartesian product) and T' = — (continuous function

space).
Turning to the expressions we have:

T, is some a priori fixed element of [](T)
eg. TS, =1 T{ = 1ete.

Tiuple = Avi. Ava. Aw. (v1(w),v2(w))

Tf = Av. Aw. di where (dq,d2)=v(w)

TS.q = Av. Aw. dy where (d1,d2)=v(w)

Ty = Av. Awi. Aws. v(wy,wa)

Tippy = Av1. Ava. Aw. vi(w)(va(w))

Th = Aww

T = Avy. Ave. dw. v1(va(w))

TEopet = AV, Aw. v

T&, = Av. Aw. FIX(v(w))

L if v1(w)=0

TIf = /\vl. sz. Avg. Aw. { vz(w)l_lvg(w) if Ul(w)I]

Well-definedness of this specification follows much as in the previous ex-
ample. O

Example 3.2.13. (Liveness) In the previous two examples we used the
ability to interpret the A; in a different manner than in the standard seman-
tics. In this example we shall additionally need the ability to interpret the
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type constructor — in a different manner than in the standard semantics.
The reason for this 1s that liveness analysis 1s a backward analysis which
means that the direction of the analysis 1s opposite to the flow of control.
We specify the analysis by defining a lattice interpretation L and for types
we have:

e the property L equals ‘is an algebraic lattice’,

e the lattices Lit are

®/ive
Lt :l
! dead

e the operators are LY = x (cartesian product) and L* = «— i.e.

L’ (D,E) = D—F = E—D which is the domain of continuous func-
tions from F to D.

Intuitively, dead means “will never be used later in any computation”, while
live means “may be used later in some computation”. It might be argued
that the analysis should be called a “deadness” analysis because it is the
property dead that can be trusted; however, it is common terminology to
use the term “liveness” analysis. We should also point out that a backwards
liveness analysis for flowchart programs has been seen before (in section
2.5.3).

Note that the backward nature of the analysis is recorded by inter-
preting — as < just as the forward nature of an analysis is recorded by
interpreting — as — (as in the previous example).

Turning to expressions we shall impose additional constraints on the
types that these are allowed to have. The motivation is that liveness anal-
yses usually are developed for flowchart languages only and here we do not
wish to give a more encompassing definition. Doing so is indeed a hard
research problem as it seems to involve mixing forward and backward com-
ponents into one analysis; hence interpreting — as < is likely to be too
simple-minded in the general case [Hughes, 1988 Ammann, 1994].

Definition The predicates sr and sc are defined by3

A 4 1y X1y ty1 X1 t1—1, t1—1,
sr | false | true false ST1ASrs false false
sc | true | false | sciAscy false SC1ASCoy | SriAsrsy

3These acronyms relate to previous papers by one of the authors and sr stands for
‘run-time types in TML;’ whereas sc stands for ‘compile-time types in TML; .
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The intention with sr(?) is that ¢ is an all-underlined product of base types
and the intention with sc(?) is that ¢ only contains underlined constructs if
these constructs are parts of an all-underlined type with just one function
space constructor in it. Clearly sr(¢) implies 16(¢) and hence dt(?), and
sc(t) implies dt(¢). We may thus restrict our attention to types that
satisfy the predicate sc. For expressions this means that we do not need
to interpret Curry (as (¢’'xt”—=t) — (t’—=1"—=1) no longer is well-formed),
Apply (as (i=t'=1") — (t=1") — (1=1") no longer is well-formed), Fix
(as (t=1'—=1") — (1—=1’) no longer is well-formed) or Const (as t’—1—¢’
no longer is well-formed). The expression part L® of an interpretation for
TML[sc,sc] may thus be specified by:

Ly, is some a priori fixed element of [¢](L)
T,T) if w = live

eg L2 =Aw. { EJ_,J_; it w = dead
Liuple = Av1. Ava. AMwr,wa). vi(wr)Uva(ws)
L = Av. Aw. v(w,l)
LS4 = Av. Aw. v(L,w)
L = Aw.w
L = Avy. Ave. Aw. va(v1(w))
L = Avi. Ava. Avs. Adw. v (live)Uvs(w)Uvs(w)

Here we should note, in particular, that L uses the reverse order of com-
position wrt. S and If.
— This ends Example 3.2.13. O

Example 3.2.14. (Detection of Signs — II) In our final example we shall
consider an analysis where the type constructor x should be interpreted
in a different manner than in the standard semantics. The analysis we
consider is once more the detection of signs analysis but this time using
a relational method where the interdependence between components in
a pair 1s taken into account. The formalisation amounts to defining a
lattice interpretation R but a complete treatment requires a fair amount of
machinery so we refer to [Nielson, 1984 Nielson, 1985b,Nielson, 1989] and
only sketch the construction. For types we have:

e the property R equals ‘is an algebraic lattice’,

e the lattices Rit include
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/

T\
=2 2\ /T\
/ \ / \ RS . — tt i
RiElt = - 0 + bool \ /
| / L
1
e R/ = ® (tensor product) and R, = — (continuous function space).

Note here that the relational nature of the analysis is recorded by interpret-
ing X as a so-called tensor product, ®, just as the independent attribute
nature of an analysis is recorded (in Example 3.2.11) by interpreting x as
a cartesian product, x. We now need to define and motivate the tensor
product ®.

Definition A tensor product of two algebraic lattices L; and L, is an
algebraic lattice Ly ® L, and a separately binary additive* and continuous
function cross : Ly X Ls — L1®Ls that has the following universal property:
Whenever f : Ly xLy — L 1s a separately binary additive and continous
function between algebraic lattices then there exists precisely one continu-
ous and binary additive function f* : L1®Ls — L (called the extension of
f) such that

L1><L2 f
\
l Cross L
L1®Ls fx

commutes, i.e. such that f* o cross = f.

Proposition A tensor product always exists (and it is unique to within
isomorphism).

Proof: See [Bandelt, 1980] (or [Nielson, 1984] for an elementary proof). Tt
is important for this result that some lattice structure is assumed as the
tensor product does not exist for arbitrary domains. 0O

Having been assured of the existence of the tensor product the next task is
to motivate why 1t is relevant. We do so by calculating the tensor product
in a special case and by showing that the tensor product has the ability to

A function f : LyxLs — L is separately binary additive if Al .f(ll,l;) and
Mz .f(1] ,I2) are binary additive for all I, €L, and I, €Ls.
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express the interdependence between components in a pair. For this let 5
be a set and S| the domain with elements SU{ L} and the partial order C
given by s1Css iff s7=s5 or s;=1. For a domain D in which all elements
are compact, as holds for § | and § | x5 |, the lower powerdomain P(D)
may be defined as

({YCD | LeY AVdeD: VyeY: dCy = deY}, C)

This is an algebraic lattice and P1(S | ) is isomorphic to the powerset P(S5).
One can verify that setting P1(S | )J@P1(S | ) = Pi(5 | x5 | ) and cross =
A(Y1,Y2).Y1x Y satisfies the definition of a tensor product and that the
extension of a function f is given by

P =AY L F{di]diTya}, {da]|daCys}) | (y1,92)€Y }

This shows that in the particular case of a tensor product of powerdomains,
the tensor product has the ability to express the interdependence between
components in a pair.

Remark Another kind of motivation amounts to explaining the role of
binary additive functions. In general an algebraic lattice imposes certain
limitations upon the combinations of properties that can be expressed, for
example that one cannot express the property ‘/; and {3 but not . (In the
lattice R;', for the detection of signs one may take {y=—, I=0 and ls=+.)
The binary additive functions are those functions that somehow respect
these limitations. The constraining factor in the definition of L;®Ls then
is that when considering each component (as is evidenced by the demands
on f) one should respect the limitations inherent in the I;. This means
that e.g. cross(+,—)Ucross(—,—) must also describe cross(0,-).

We have to refer to [Nielson, 1984 Nielson, 1985b] for a further discus-
sion of the role of tensor products. For completeness we shall also finish by
sketching the expression part of the lattice interpretation R.:

R.f;; is some a priori fixed element of [{](R)
eg. RS, =tt, R = 4 ete.

Rf\uple = Avy. Ava. Aw. cross(vy(w),ve(w))

Ri = Av. Aw. dy where (dy,d3) = id *(v(w))

R$.q = Av. Aw. da where (dy,ds) = id *(v(w))

Ry = Av. Awi. Aws. v(cross(wi,ws))
Rgpply = Avy. Ava. Aw. vi(w)(va(w))

Ry, = Aw.w
R = Avy. Ava. dw. vi(va(w))
Re

Const = AV. Aw. v
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R, = Av. dw. FIX(v(w))

va(w) if vy (w)=tt

e __ Ug(w) if vl(w):ﬂ
R = Avi. Ava. Avz. Aw. h it vy (w)=L
vo(w)Uvg(w) if vy (w)=T

However, we should point out that with respect to the treatment given in
[Nielson, 1984,Nielson, 1989] the equations for Tuple and If are correct
but too imprecise. To improve this we would need to break an argument
into its atoms (these are the elements immediately above L) and process
these separately.

— This ends Example 3.2.14. O

3.2.4 Summary

To summarise, we have seen that for the purposes of abstract interpreta-
tion we need the ability to interpret underlined base types in different ways
in order to describe the properties used in the different analyses. Further-
more, we have seen that the well-known distinction between forward and
backward analyses may be formalized by the way — is interpreted (!) and
that the well-known distinction between independent attribute and rela-
tional methods may be formalized by the way x is interpreted (!). This
gives credit to the claim that a two-level metalanguage is a natural setting
in which to develop a theory of abstract interpretation.

3.3 Correctness of Analyses

To have faith in an analysis one must be able to prove that the properties
resulting from the analysis are correct, e.g. with respect to the values that
the standard semantics operates on. First of all this necessitates a frame-
work in which one can formulate the desired correctness relations. Secondly
it is desirable that the correctness follows for all terms in the metalanguage
(hence all programs considered in Figure 1) once the correctness of the ba-
sic expressions and combinators has been established. (In the terminology
of Subsection 2.8 this amounts to showing that local correctness is a suffi-
cient condition for global correctness.) Then one can consider the analyses
one by one and complete the definition of the correctness relations and use
this to prove the correctness of the basic expressions and combinators.

To formulate the correctness relations we shall adopt the framework
of logical relations [Plotkin, 1980] (essentially called relational functors in
[Reynolds, 1974]). For this we shall assume the existence of two domain
or lattice interpretations 7 and J and the task is to define an admissible

relation R[] between [t](Z) and [t](T), i.e.
R : NZ) x [IT) — {true,false}
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in such a way that R[t] formalizes our intuitions about correctness. We
shall feel free to write d R[¢] e as well as R[¢](d,e). In the interest of
readability we prefer the notation R[[¢] for [¢](R) but regardless of this R
should be considered a parameter to [t](-- ). The definition of R[t] is by
induction on the structure of ¢:

R[4i](d,e) = d=e

R[[tlth]]((dl,dz),(el,ez)) = R[[tl]](dl,el) A R[[tz]](dz,ez)
RIt—ta1(f,9) = Vd,e: RILN(d ) = RIE1(F(d),0(c))
RA] = Ri

Rlt1xto] = Ry (R[EDR[22])

Rlti=1t2](f.9) = R—(R[t1],R[t:])

The demands on R, i.e. (Ry)i, R« and R, are made clear in:

Definition 3.3.1. A correctness correspondence (or just correspondence)
R between domain or lattice interpretations 7 and J is a specification of

e admissible relations R; : Z\' x J — {true,false},

e operations Ry and R— upon admissible relations such that

R« (R1,R2) : I;(Dl,Dz) X j;(El,Ez) — {true false}
R—(R1,R2) : ' (D1,D2) x J . (E1,E2) — {truefalse}

are admissible relations whenever R;j:D; x Fj—{true false} are admis-
sible relations, D; and D, are domains that satisfy the property Z§
and F; and E» are domains that satisfy the property Jp5.

Proposition 3.3.2. The equations for R[] define an admissible relation
when ¢ is a well-formed type in TML[dt,dt] and R is a correctness corre-
spondence as above. O

Proof: We must show by structural induction on ¢ that R[] is an admissi-
ble relation between [t](Z) and [t](7) and that these domains exist. This is
a straightforward structural induction and we omit the details. (Note that
the only reason for demanding ¢ to be a well-formed type in TML[dt,dt],
e kg t,is for [t](Z) and [t](J) to be guaranteed to exist). O

The correctness of the basic exrpressions and combinators amounts to
showing that the appropriate correctness relations hold between their in-
terpretations as given by 7 and J. We shall write R(Z,J), or Z R J, for

this and the formal definition is:

whenever 1 is a basic expression or combinator and the follow-

ing hold
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Z,, € [LI@) — - [t](@) — [1(@)
Ty € WlT) — - [6](T) — [(T)

for well-formed types 1, ..., {, and ¢ in TML[dt,dt], then we
have

R[[tl]](dl,el) A A R[[tn]](dn,en)
= RUI(Z(d1) - (dn), Ty (er) - (en))

A shorter statement of the desired relation between I;Z and j;} 1s that
R[t1—-- ~tn—>t]](I1‘Z, j;z) must hold.  This exploits the fact that
t1— - -iy—t is well-formed (i.e. satisfies dt) if and only if all of ¢, ..., t,
and ¢ are and we may thus regard I;Z as an element of [t;—-- 1, —t](7)
and similarly for 7 <.

It now follows that the correctness of an analysis amounts to the cor-
rectness of the basic expressions and combinators:

Proposition 3.3.3. To show the correctness R([e](Z),[e](T)) of a closed
expression e in TML[dt,dt] it suffices to prove R(Z,J). O

Proof: Let R be a correctness correspondence between the domain or
lattice interpretations Z and J and such that Z R J holds. We then prove
by structural induction on a well-formed expression e that

if tenv by ar e @ t with dom(tenv)={x1, - - xn}, tenv(xi)=t
and b ¢

then R[t1](d1,e1) A - AR[tn](dnyen) = R[N [e]l(Z)(dy,- - - dn),
[[6]](j)(61,~ ’ ~,6n))

The structural induction is mostly straightforward. In the case where e =
fix eg we use the induction principle of Definition 3.2.3. O

Example 3.3.4. We shall now use the above development to show the
correctness of the detection of signs analysis of Example 3.2.11 with respect
to the lazy standard semantics of Example 3.2.10. The first task is to define
a correctness correspondence cor between the domain interpretation S and
the lattice interpretation I. We have

e the admissible relations cor; include

if d<O0 A d#£L
if d=0

if d>0 A d£L

otherwise

cofine(d,p) = p 2

e+ S
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tt  if d=true
cOrbool(d,p) = p 3 fi  if d=false
1 otherwise

so that e.g. cofipt(7,7—) and corpeor(true, T),

e the operations upon admissible relations are

cory (R1,R2) ((d1,d2),(p1,p2)) = Ri(d1,p1) A Ra(da,p2)
cor—(R1,R2) (f,h) = Vd,p: Ri(d,p) = Ra(f(d),h(p))

(much as for [---x---](R) and [ - -— - J(R) above),

and it is straightforward to verify that this does specify a correctness cor-
respondence.

The next task is to show cor(S,I) so that Proposition 3.3.3 can be
invoked. For the basic expressions f£j[t] we must show

cor[1(S.I¢)

Little can be said here as we have not mentioned many f;i[t] in Examples
3.2.10 and 3.2.11 but we may note that

cor[Bool](true,tt)
cor[mt](1,+)

both hold. For the combinators Tuple, Fst and Snd related to product
it is straightforward to verify the required relations as the definition of
these combinators is ‘the same’ in S and I. A similar remark holds for the
combinators Curry, Apply, Id, O and Const related to function space. For
the combinator Fix we may assume

R(wsy,wiy) A R'(wsa2,wiz) = R'(vs(wsy)(wsa),vi(wiy)(wiz))
R'(ws,wi)

and must show
R'(FIX(vs(ws)),FIX(vi(wi)))

where R is cor[[t] and R is cor[[t’] for types ¢ and ¢’ that both satisfy the
predicate 1t. As in the proof of Proposition 3.3.3 this follows using the
induction principle of Definition 3.2.3. Finally for the combinator If we
may assume

tt if wsy(ws)=true
R(ws,wi) = vip(wi) 3 { I if vsy(ws)=false
1 otherwise
R(ws,wi) = R'(vs2(ws),viz(wi))
R(ws,wi) = R'(vsg(ws),viz(wi))
R(ws,wi)
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and must show

T e
R'(¢ wss(ws) if vsi(ws)=false } vig(we) i (w)= )
1 otherwise vig(wi)Uvis(we) if viy(we)=T
1 otherwise

where again R is cor[t] and R' is cor[t’] for types ¢ and ¢’ that both sat-
isfy the predicate 1t. The proof amounts to considering each of the cases
vs1(ws)=true, vsy(ws)=false and vs;(ws)=_L separately and will need:

Fact If ¢ satisfies 1t then cor[¢](ws,wi) A wiCwi’ implies cor[t](ws,wi’).

The proof of this fact is by structural induction on ¢. The case ¢t = A; can
only be conducted if we tacitly assume that A; is one of Apoer OF Ajpe. O

For reasons of space we shall not prove the correctness of the remaining
analyses defined in Subsection 3.2. There are no profound difficulties in
establishing the correctness of the detection of signs analysis defined in
Example 3.2.14. For the liveness analysis of Example 3.2.13 the notion of a
correctness correspondence 1s too weak but a variation of the development
presented here may be used to prove its correctness (see [Nielson, 1989]).
We should point out that the complications in the proof of correctness of
the liveness analysis are due to the fact that the properties in the liveness
analysis do not describe actual values but rather their subsequent use in
future computations. The terms first-order analyses (e.g. detection of
signs) and second-order analyses (e.g. liveness) have been used for this
distinction [Nielson, 1985a,Nielson, 1989].

3.3.1 Safety: Comparing two analyses

A special case of correctness is when one compares two analyses and shows
that the properties resulting from one analysis correctly describe the prop-
erties resulting from the other. We shall use the term safety for this and
we shall see in the next subsection that from the safety of one analysis with
respect to a correct analysis one is often able to infer the correctness of the
former analysis.

As an example we might consider two analyses that operate on the same
properties but have different ways of modelling the basic expressions and
combinators. We formalize this by considering two lattice interpretations
Zand J withZ5=J%,If=7J, I;:j; and 7', =7, (in short Z°=7").
When we want to be more specific we shall let Z be the interpretation I
for the detection of signs (Example 3.2.10). If we wish to express that
the results of J are coarser than those of Z, e.g. that [e](Z)=+ whereas
[e](T)=——, we must define a correctness correspondence and we shall use
the notation <. Given the motivation presented in Section 2 we take

<i

C
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<x(Ri,Rz) =C

<—(Ri,R2) =C

because the idea was to use the partial order C to express the amount of
precision among various properties®. In a more abstract way one might
say that a correspondence R between two lattice interpretations Z and J
is a safety correspondence when Ri=C, Ry (C,C)=C and R (C,C)=C
whenever Z'=7". Clearly < is a safety correspondence.

We shall claim that < is the proper relation to use for relating Z and 7.
On an all-underlined type ¢ (e.g. Int or Int—Int) the relation <[[¢] clearly
equals C which 1s the relation that also Section 2 used. On a type ¢ without
any underlined symbols (e.g. Int or Int—Int) it is straightforward to see
(as we show below) that <[] equals = and this is the correct relation to
use given that we only perform abstract interpretation on underlined base
types and constructors. In particular, <[{] is more adequate than C in this
case.

However, there are types upon which <[[{] behaves in a strange way.
As an example let {;=Bool—Bool and consider a basic expression fg[tg]
such that

true 1if d=T
4 otherwise

Ig:jgz/\d.{

Then Z§ <[[to] J§ fails because we have LCT but not L=true. This means
that <[[¢o] is not even reflexive. Clearly we want <[¢] to be a partial order
and it is also natural to assume that it implies C because we have argued
for the use of C to compare properties of an all-underlined type. We shall
achieve this by restricting the types to be considered just as we did to
ensure that [t](Z) and [¢](J) were domains.

First we need a few definitions:

Definition 3.3.5. A suborder < on a domain D=(D,C) is a partial order
that satisfies

di1<dy = d1Cd>

for all d; and d5. O

For an arbitrary safety correspondence R, e.g. <, this motivates defin-
ing the predicates

pt(t) to ensure that R[¢] amounts to =,
it(?) to ensure that R[] amounts to C,

5This need not be so in general (see [Mycroft, 1983]) but considerably simplifies the
technical development.
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Ipt(¢) to ensure that R[] is a suborder.

The predicate pt was called pure in [Nielson, 1988a,Nielson, 1989] because
it will restrict the types to have no underlined symbols. The predicates it
and lpt should be thought of as slightly more discriminating analogues of
It and dt. They were called tmpure and level-preserving, respectively, in
[Nielson, 1988a,Nielson, 1989] but with one difference: TML[dt,d¢t] allows
more well-formed types than does [Nielson, 1988a] or [Nielson, 1989).

Definition 3.3.6. The predicates pt (for pure type), it (for impure type)
and Ipt (for level-preserving type) are defined by:

A A 11Xy 11 X1y t1—13 t1—1s
pt | true | false | ptiApts false ptiApts false

it false true it 1/\it2 it 1/\it2 lpt 1/\it2 it 1 /\itz
Ipt | true | true | IptiAlpts | it1Aite | (pt1ALpt2)V | 161 ALty
(lpt 1/\it2)

Note that the difference between 1t and dt versus it and 1pt is due to the
difference between the definition of dt(t1—12) and lpt(t;—i3).

1 /dt\lpt
NN\,

Fig. 2. Wellformedness-constraints

Lemma 3.3.7. The formal definition of the predicates pt, it and lpt
satisfy the intentions displayed above. 0O

Proof: For an arbitrary safety relation R, e.g. <, between lattice
interpretations Z and J with Z=7" we prove by induction on types ¢ that

e pt(t) = Ipt(t) A R[t]==,
e it(?) = Ipt(¢) A 1t(¢) A R[I]=C,
o Ipt(¢) = dt(t) A R[t] is a suborder.
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The first result is a straightforward structural induction and we shall not
give any details. The second and third result must be proved jointly as it
and lpt are mutually interdependent.

The cases A; and A; are straightforward. In the case {=1;x{s we first
assume that it(¢). Then it(¢1) and it(¢s) so that 1pt(¢1), Ipt(ta), 16(¢1),
1t(t2), R[t1]=C and R[t2]=C. Tt follows that 1pt(¢), 1t(¢) and R[¢]=LC.
Next we assume that Ipt(¢). Then Ipt(¢1) and Ipt(¢2) so that dt(¢y),
dt(t2), R[t1] is a suborder and R[t2] is a suborder. Tt follows that dt(¢)
and that R[t] is a suborder. In the case t=t; X2 the assumptions it(?)
and lpt(t) are equivalent so we assume that it(¢) holds. Then it(¢;) and
it(t2) so that 16(¢1), 1t(42), R[¢1]=C and R[t2]=C. Tt follows that Ipt(?),
1t(¢), dt(?) and R[¢]=C which is a suborder. The case t=t;—15 is similar.

In the final case =1, —15 we first assume it(¢). Then Ipt(¢1) and it(?2)
so that dt(¢1), 16(¢2), R[¢1] is a suborder and R[t:]=C. It follows that
Ipt(?), 1t(¢) and hence also dt(¢). The relation R[¢] holds on (f,g) when

R[t:](d,e) = f(d)Eg(e)

for all d and e. If fCg and R[¢1](d,e) we have dCe and hence f(d)Cg(e)
so that R[t](f,g). If R[t](f,g9) we have R[t1](d,d) and hence f(d)Cg(d)
for all d and this amounts to fCg. Thus R[{] equals the suborder L.
Next we assume that Ipt(?). There are two cases to consider but we have
just treated 1pt(¢1)Ait(¢2) so that we may assume pt(¢1) and lpt(ts). Tt
follows that Ipt(t1), dt(¢1), R[t1]==, dt({2) and R[t2] is a suborder.
Hence dt(?) and the relation R[] holds on (f,g) whenever

Vd: R[t21(f(d),g(d))

and this is clearly a suborder. — This ends the proof of Lemma 3.3.7. O

3.3.2 Summary

We shall now restrict the types of the basic expressions and combinators
so that they have level-preserving types. This amounts to considering
TML[lpt,dt] as there is no need also to require the types of variables
to be level-preserving. For the basic expressions fi[{] this condition sim-
ply amounts to requiring ¢ to be level-preserving, i.e. satisfy the predicate
Ipt. For the combinators a general form of their types may be found in
the sideconditions in Tables 1 and 2. These general forms are expressed in
terms of subtypes ¢, ’, 1" 1o, {1 and t5 and the restriction to TML[lpt,dt]
amounts to demanding that all these subtypes are impure, 1.e. satisfy the
predicate it.

The relationship between TML[lpt,dt] and TML[d¢t,dt] is clarified
by:
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Fact 3.3.8. If tenv byps qr e : t then tenv by gr e @ § and hence by £, O

Thus TML[lpt,dt] is a proper subset of TML[dt,dt] and Fact 3.1.4,
Proposition 3.2.6, Proposition 3.2.9, Proposition 3.3.2 and Proposition
3.3.3 apply to TML[Ipt,dt] as well.

Given Lemma 3.3.7 we then have that < is a partial order in the col-
lection of interpretations for TML[lpt,dt] contrary to what is the case
when one considers the collection of all interpretations for TML[dt,dt]. In
particular we have T<Z whenever T is an interpretation for TML[lpt,dt]
and by Proposition 3.3.3 we then have ([¢](Z)) <[] ([e](Z)) for all closed

expressions e of type ¢ (even if ¢ is not level-preserving).

3.4 Induced Analyses

One shortcoming of the development of the previous subsection is that
a correct analysis may be so imprecise as to be practically useless. An
example i1s an analysis where all basic expressions and combinators are
interpreted as the greatest element T (whenever they are used with a lattice
type). The notion of correctness is topological in nature but we would
ideally like something that was a bit more metric in nature so that we
could express how imprecise a correct analysis 1s. Unfortunately no one
has been able to develop an adequate metric for these purposes.

The alternative then is to compare various analyses. We shall take the
point of view that the choice of the type part of an interpretation, i.e.
the choice of what properties to use for underlined types etc., represents
a deliberate choice as to the degree of precision that is desired®. Thus
the definition of < in the previous subsection allows us to compare various
analyses provided that they use the same selection of properties. So if we
are confronted with two analyses we may compare them and might be able
to say that one analysis is more imprecise than (i.e. >) another and so
we might prefer the other analysis. This i1s not a complete recipe as <
is only a partial order and in general not a total order. Also even if we
have preferred some analysis there i1s no easy way to tell whether we could
develop an analysis that would be even more precise.

This motivates the development in the present subsection where we
show that under certain circumstances there is a most precise analysis over
a given selection of properties. Following [Cousot, 1979] we shall term
this the induced analysis. As we shall see in the next subsection there
may well be pragmatic reasons for adopting an analysis that 1s less precise
than the induced analysis. However, even if one does so we believe that
the induced analysis serves an important role as a standard against which
analyses may be compared: whenever the analysis of one’s choice models

8This is a more restricted point of view than is put forward in [Steffen, 1987].
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a basic expression or combinator less precisely than the induced analysis
does then one may judge the degree of imprecision and decide whether it
is warranted for pragmatic reasons (e.g. termination, low time-complexity,
easy to implement, etc.).

For the technical development we shall assume that we have a domain or
lattice interpretation 7 and a lattice interpretation J. (Actually, we only
need the type part of 7 and for the majority of the development we also
only need the type part of 7.) Here one should think of 7 as the standard
semantics, e.g. the lazy standard semantics of Example 3.2.10, and one
should think of J as some analysis, e.g. the detection of signs of Example
3.2.11. However, the development also specialises to the case where 7
1s some analysis much as the notion of correctness correspondence in the
previous subsection specialised to the notion of safety correspondence.

We then propose to define a transformation function g[¢] from [¢](Z)

to [{](J), i.e.
sl - [1@) — [9)-

Again one should regard 3 as a parameter to [t](---) just as 7 and J are.
The definition of S[{] is by induction on the structure of i:

Blai] = Ad.d

Bltixto] = A(dy,d2). (B[t:](d1),8[¢t=](d2))
Blti—t=] = Af. Ap. L{ BLE=0(f(d)) | Blta](d1)Ep }
BlA] = 6

Bltixta] = B (B[], 6t=])

Blti=t2] = B—(B[t:].8[t=])

Several points now need to be addressed. First we must clarify the claims
we shall make about the functions S[[¢] and the demands that this enforces
on the parameter 3. Secondly we must find a way of constraining the types
t such that the functions 8] exist and have the desired properties. Finally,
we must show that the definition of S[{] is as intended, and in particular
that it is correct. Closely related to this is the question of why the equation
for ft1—12] uses C and | | rather than <[- -] and its associated least upper
bound operator \/.

3.4.1 Existence
First we need some definitions and simple facts:
Definition 3.4.1. A representation transformation (or just a transforma-

tion) f from a domain D=(D,C) to a domain F=(F,C) is a function that
is strict, continuous and compact preserving (see Definition 3.2.2). O
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Fact 3.4.2. Let (a,y) be a pair of adjoined functions between algebraic
lattices. Then « is strict and continuous but not necessarily compact pre-
serving. If v is additionally continuous then « is compact preserving. 0O

Example 3.4.3. Recall the definition of S, and If, in Examples 3.2.10

and 3.2.11. A representation transformation from S to I' may be de-
fined by

+ i d>0
0 if d=0
Ad. if d<0
1 ifd=L

(Note that all elements in S;f, and I, are compact.) O
The demands on the paramter 3 are clarified by:

Definition 3.4.4. A representation transformer § from a domain or lat-
tice interpretation 7 to a lattice interpretation J is a specification of:

e representation transformations 3; : 7 — J,
e operations 3y and F— such that
By (fi.f2) - T3 (D1,D2) — T L (E1,E>)
B—(f1.f2) : TLA(D1, D) — TL(E1,Es)

are representation transformations whenever f; : D; — F; are rep-
resentation transformations, Dy and D, are domains that satisfy the
property 7 and Ey and E, are algebraic lattices.

Example 3.4.5. A representation transformer b from the interpretation S

of Example 3.2.10 to the interpretation I of Example 3.2.11 may be defined
by:

e representation transformations b; : S — If

+ if d>0
. 0 1if d=0
with biny = Ad. i d<0
L ifd=1

tt  if d=true

and bpoo = Ad. fI if d=false
L ifd=1

e operations by and b— given by

by (f1.f2) = A(d1,dz2). (f1(d1),f2(d2))
b—(f1.f2) = Af- Ap. LU F2(f(d)) | f1(d)Ep }
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Here we cannot be more specific about the b; as Example 3.2.11 only is
specific about Ii%t and Igool but clearly the bint and bypoo exhibited are
representation transformations. Assuming that f; and fs are representa-
tion transformations the well-definedness of by (f1,f2) is immediate. Tt is
clearly strict and continuous and it preserves compact elements because the
compact elements in a cartesian product are the pairs of compact elements
in each component. Also b (f1,f2) is well-defined because the least upper
bound is taken in an algebraic lattice (called Fs in Definition 3.4.4). That
b—(f1,f2)(f) is a continuous function and that b— (f1,f2) is a representa-
tion transformation is slightly more involved. We omit the details as they
follow rather easily from the case {=¢;—1%5 in the proof of the following
proposition. O

Well-definedness of gB[t] follows from the following fact and proposition:

Fact 3.4.6. If ¢ is a pure type and 3 a representation transformer then
B[] is the representation transformation Ad.d and [¢](Z)=[t](J). O

Proposition 3.4.7. The equations for 5[t] define a representation trans-
formation when ¢ is a level-preserving type and 3 is a representation trans-
former. O

Proof: We show by structural induction on ¢ that if Ipt(?) then the
above equations define a function

sl - @) — [9)

and that this function is a representation transformation.

The case t=A4; is straightforward. The case t=t; xt; follows from the
induction hypothesis given that the compact elements in a cartesian prod-
uct D’x D” are the pairs of compact elements of D’ and D” respectively,
1.e. Bpixpr = BprxBpr. The case t=4; follows from the assumptions
on B. In a similar way the cases {={1 x5 and t={;—{» follow from the
assumptions on 3 and the induction hypothesis.

It remains to consider the case where t=¢;—i{5. There are two ‘alter-
natives’ in the definition of Ipt(¢;—12) so we first consider the possibility
where ¢; 1s pure and %5 is level-preserving. We shall write

Y(f.p) = { ALl (F(d)) | BILI(A)ED }

and by Fact 3.4.6 we get Y(f,p) = { A[t2](f(d)) | d=p }. By continuity of
f and f[t2] this set contains an upper bound for itself, namely S[¢2](f(p)).
Hence | [Y(f,p) always exists and equals 8[¢2](f(d)). Next we consider the
situation where #; is level-preserving and % is impure. Then %, is also a
lattice type, i.e. 16(Z2), so that [¢2](J) is an algebraic lattice. It is then
straightforward that | [Y(f,p) exists.
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We have now shown that g[t1—t2](f)(p) always exists when ¢;—15
is level-preserving. To show that gt;—13](f) exists we must show that
LIY(f,p) depends continuously on p, i.e. that Ap. | [Y(f,p) is continuous.
First we write

Z(f,p) = { BIt20(f(b)) | BIE1(6)Ep A b is compact }

This set has | [Y(f,p) as an upper bound so by consistent completeness
L1Z(f,p) exists and we clearly have | |Z(f,p) C | [Y(f,p). Actually, | |Z(f,p)
=LIY(f,p) as any element d such that S[{1](d)Cp may be written as d=| |,
by where each by is compact. Then Z(f,p) contains all S[t2](f(bn)) so
LI7(F.9) 3 Ln SL0( (b)) = G1t1(7(d)) and hence |J2(7.p) 3 LIV(F.p)
as d was arbitrary.

To show that Ap. | |Z(f,p) is continuous let p = | |o pn. Clearly | |n
L1Z(f,pn) C LIZ(f,p) so it suffices to show that | |Z(f,p) C | |n |IZ(f,pn)-
If & is compact and B[{1](6) E | | pn then by the induction hypothesis
Blt1](b) is compact so that S[t1](b) C pn for some n. Hence St2](f())
C | |Z(f,pn) and this shows the result.

Finally, we must show that S[[{1—12] is a representation transformation.
So observe that g[t1—t2](L) = L follows because #[¢2] is strict. That
B[t1—12] is continuous follows because S[t2] is. It now remains to show
that Bt;—1s] preserves compact elements. For a domain D—E, where
also D and F are domains, we shall write

e if d’3d

1 otherwise

[d,e] = Ad. {

The function is continuous if d is compact and is a compact element of
D—F if additionally e is compact. The general form of a compact element
in D—FE is

[b1,61]|_|~ . ~I_|[bn,en]

(for n>1) where all b; and ¢; are compact and we assume that {e;|j€J 4}
has an upper bound (and by consistent completeness a least upper bound)
whenever d’eD and J;={j|b;C=d’}. We shall say that [b1,e1]U- - -U[bn,en)
is a complete listing if for all d’€ D there exists j’€{1,-- - n} such that b;
= | {bjlj€T 4} and e = | [{e;|j€T s }. Clearly any compact element can
be represented by a complete listing (as the least upper bound of a finite
set of compact elements is compact).

For a complete listing [bq,e1]U- - -U[bn,en] of a compact element in
[t ](ZT)—[t2](Z) we now calculate

Blti—ta2]([b1,e1]U- - -Ulbn,en]) =

Ap. I_}I{ BlL](([br, ea]U- - Ulbn, en])(0)) [ ALEI(B)EP A b is com-
pact | =
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(as the listing is complete and 2[#1] is strict and continuous)

Ap. L LA BIE=0(065,¢;1(8)) | B[11(6)Ep A b is compact } =
Ll Ap. LI BlE=](ey) | BLET(E)ER =
Ll [80¢0C65),81¢21(e;)]

By the induction hypothesis all 3[¢1](b;) and £[t2](e;) are compact. To
show that the above element is compact we must show that {3[¢2](e;)|j€T 4 }
has an upper bound when d’€[1](J) and J4 = {j|F[¢t:](4;)Ed’}. From
the definition of lpt(¢;—ts) we know that it(¢3) or pt({1). If it(¢)
then [t2](J) is an algebraic lattice so that the set clearly has an upper
bound. If pt(¢;) then Jp={j|6;Cd’} so there is j’€{1,---,n} such that
ei= | |{ejlj€T 4} given the assumption about ‘complete listing’. It follows
that 2[¢2](ej) is an upper bound of the set {3[t2](ej)|j€ g }. — This
ends the proof of Proposition 3.4.7. O

Remark 3.4.8. The function B[t;—12] is intended as a transformation
from the domain [¢t;—1:2](Z) to the domain [t;—#:3](J). As the reader
acquainted with category theory [MacLane, 1971] will know any partially
ordered set may be regarded as a simple kind of category. In a similar
way a continuous (or at least monotonic) transformation between partially
ordered sets may be regarded as a covariant functor. With this in mind we
may calculate

Alti—1:10) = Ap. LI (Bt2Def)(d) | AILI(AEDP }
= Lanﬁ[[tl]](ﬁ[[tz]]of)

where we use the formula in [MacLane, 1971, Theorem 4.1, page 236] for
the left Kan extension of p[tz]of along pt1]. O

Remark 3.4.9. The first component « of a pair («,y) of adjoined func-
tions 1s often called a lower adjoint and the second component v an upper
adjoint. In Fact 3.4.2 we said that any lower adjoint is a representation
transformation provided we restrict our attention to adjoined pairs of con-
tinuouos functions. Assume now that the representation transformer o
specifies lower adjoints «; and that oy and a— preserve lower adjoints.
Then also «ft] will be a lower adjoint whenever 7 is level-preserving. Writ-
ing ¥[[t] for the corresponding upper adjoint we then have

afti—t:](f) = afta] o f o y[t1]

(Here we have used the fact that an upper adjoint is uniquely determined by
its lower adjoint, i.e. if (a,;y1) and («,y2) are adjoined pairs then y;=y2.)
O
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3.4.2 Weak invertibility
To express that S[t] lives up to the intentions we first need to construct a

weak notion of inverse.

Definition 3.4.10. A function [’ : DxFE—D is a weak inverse of a
function f : D—FE and a relation R : Ex F—{true,false} if

f(d) E e
implies
dC f(d,e)

F(f(dye)) R e
for all deD and ec£. O

Here the intention is that f’ i1s the ‘inverse’ of f, or to be more precise,
that (f,f’) behaves as much like an adjoined pair of functions as possible.
However, D is not (necessarily) an algebraic lattice and so we cannot find
a ‘best’ description of some e€ E. Rather we must be content with finding
a description f’(d,e) that is ‘close’ to some d€D of interest.

We now propose the following definition of a weak inverse 5[] of 5[¢]
and <[¢]:

BIA] = A(dye). ¢

Bltixta] = M(d1,d2),(e1,e2)). (B[t1](d1,e1), B[t2](d2,e2))
Flti—ta] = A(f,9). Ad. B[t (f(d),9(B[t:](d)))

B’TAi] = AMd,e). d

Bt xta] = Ad,e). d

Bti=t2] = A(d,e). d

The behaviour of 8°[t] is easy to characterise in a few special cases:
Fact 3.4.11. If ¢ is pure then ’[t](d,e) = e. O
Fact 3.4.12. If ¢ is impure then 5’[t](d,e) = d. O

In the general case we have:

Lemma 3.4.13. The equations for 5[] define a weak inverse of g[t] and
<[t] whenever  is level-preserving. O

Proof: We prove the result by structural induction on ¢. The case
t=A4; is straightforward as f[4;] = Ad.d and <[A;]==. The case (=11 x5
follows from the induction hypothesis. The case t=A4; is straightforward as
<[A]=C. Also the cases =11 13 and {=1;—1y are straightforward as we
have <[{]=LC.

It remains to consider the case {=t;—1s. So assume that

Alli—t]()Eyg, Le.
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Alt](d) E e = BlL=](f(d)) E g(e) ()

for all d and e. To show f C F’[t1—t2](f,g) we consider an argument
d and must show

J(d) E BIt](F(d),9(B[11]()))

and this follows from the induction hypothesis given the assumption (*).
To show that

Blti—t](B [t —12](f.9)) <[t1—t2] g
we let

e <[t:] ¢
and must show

LI Bl1(8° [t —12](f,9)(d)) | SILI(d)Ee } <[t2] ()

1.e.

LI BLE1(8[t](F(d),9(8[01(d)))) | B[LI(d)Ee } <[t:] g(e)

We now consider the ‘alternatives’ in the definition of Ipt(¢;—t2) one by
one. If #; is pure the inequality reduces to

BLLNETE1( (e),g())) <[t2] 9(e)

as e=¢’. The desired result then follows from the induction hypothesis. If
t5 1s impure the inequality reduces to

Alt](d) E e = BlL](5°Tt](F(d),9(8[1:](4)))) E g(e’)

So assume that 3[¢1](d)Ce. Using (*) and the induction hypothesis for 5
we then get

BlL)(5° [l (F (), 9(B[1:]()))) E 9(B[11]())

The result then follows as 8[{1](d)EeCe’. — This ends the proof of Lemma
34.13. O

The main point of the above lemma is to establish the following corollary
showing that another definition of B[t;—1s] is possible. However, as is
evidenced by [Nielson, 1988a] the present route presents fewer technical
complications.

Corollary 3.4.14. 8[t;—t:1(f) = Ap. V {8160 (d) | 1L 1(d) <[2] p)
whenever t;—t5 is level-preserving and \/ denotes the least upper bound
operator wrt. <[t{5]. O

Proof: We shall write
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X(fip) = { BLt0(F()) | AL ](E) <[t:] p }

and recall the definition of Y(f,p) given in the proof of Proposition 3.4.7.
As X(f,p) C Y(f,p) and | |Y(f,p) exists we get that | [X(f,p) exists and
LIX(f,p) E LIY(f,p). Next let g[t1](d)Cp and note that by setting
d’=5[t1](d,p) we have dCd’ and SB[{1](d’) <[¢1] p. Hence

Alt=](f(d)) E BlL=1(f(47) E LUX(/,p)

so that [ [Y(f,p) C UX(f,p) and thus [ [Y(f,p) = LUX(f,p).

Next we shall show that | |X(f,p) is the least upper bound of X(f,p)
wrt. <[[{2]. For this we consider the ‘alternatives’ in the definition of
Ipt(t1—t2) one by one. If ¢; is pure the set X(f,p) equals the singleton

{8[t=1(f(p))} and clearly B[¢2](f(p)) is the least upper bound of this set
wrt. the suborder <[t¢s]. If {5 is impure the suborder <[{2] amounts to C
and then clearly | |X(f,p) is the least upper bound of X(f,p) wrt. C. O

3.4.3 Optimality

It remains to demonstrate that the transformation S[[¢{] has the required
properties (whenever ¢ is a level-preserving type). We express the correct-
ness using a relation R[¢] as defined in the previous subsection and clearly
4 and R have to ‘cooperate’:

Definition 3.4.15. An admissible relation R : Dx E—{true,false} coop-
erates with a representation transformation f : D—F and an admissible
relation R’ : E'x E—{true false} if

R(d,p) = R'(f(d),p)

A correctness correspondence R cooperates with a representation trans-
former 3 if

e Ri cooperates with §; and C, and

o if R;i cooperates with f; and C (for i=1,2) then
R« (R1,R2) cooperates with 3y (f1,f2) and C, and
R—(R1,R2) cooperates with 5 (f1,f2) and C

Example 3.4.16. The correctness correspondence cor of Example 3.3.4
cooperates with the representation transformer b of Example 3.4.5. O

Lemma 3.4.17. If R cooperates with 3 then

R[] cooperates with 3[¢] and <[¢]
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for all level-preserving types ¢t. O

Proof: We must prove R[t](d,p) = (4[t](d) <[?] p) by structural induc-
tion on a level-preserving type .

The case t=A4; is straightforward as R[t]==, g[t]=Ad.d and <[t]==.
The case t=t; xt5 follows from the induction hypothesis and the compo-
nentwise definitions of R[t1x 2], B[t1x12] and <[[t; xt2]. The case {=4;
is immediate from the assumptions. The cases {=11x{s and {=t1—=1,
are straightforward given the assumptions, the induction hypothesis and
Lemma 3.3.7.

It remains to consider the case t=t;—i,. We first assume that
R[t1—1t2](f,9) and by the induction hypothesis this amounts to

Bltl(d) <[t:] e = Blt=0(f(d)) <[t=] g(e) ()

for all d and e. To show St1—12](f) <[t1—12] ¢ we assume that e <[¢4]
e’ and must show

VA BRI () | B[6](d) <[] e } <[t=] g(¢’)

where we have used Corollary 3.4.14. For this it suffices to show that

Blt(d) <[t1] e = BIt=20(f(d)) <[t2] g(e’)

and this follows from (*) as g <[t1—t2] ¢ implies g(e) <[t2] g(e’). Next
we assume that gt1—t2](f) <[t1—t2] g, i.e. that

e <[] ¢ = V { Blt](F (D)) | BIt:](d) <[ta] e } <[t2] 9(¢)

holds for all e and e’. It follows that
Blt](d) <[] e A e <[] ¢ = BIt=(f(d)) <[t2] g(e’)

and by choosing e’=e and using the induction hypothesis we have

R[t:](d,e) = RIt2](f(d),g(e))
for all d and e. But this amounts to R[t1—12](f,¢). O

3.4.4 Summary
Let 3 : Z—J,or B : I'—=J" to be precise, be a representation transformer
and let B be a correctness correspondence that cooperates with 3. An
example was given in Example 3.4.16 and we should stress that we do not
claim that - is a function as it does not seem possible to define Bx and B_>
from fy and S— in general.

If 7 is an interpretation for TML[lpt,dt] we may define an interpreta-
tion S(Z) for TML[lpt,dt], called the induced analysis, as follows:
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o (D)) =T,

e for each basic expression or combinator ¥ used with type t1/):

(B()y), = sltyplTy)
We can now be assured that
e B(I) is correct, ie. T B B(T),
e B(Z)isoptimal,ie. T § J = B(I) < J

In both cases we use that 7 B K amounts to 5(Z) < K given that B coop-
erates with 3 and that < is a partial order when we restrict our attention
to interpretations of TML[lpt,dt].

3.5 Expected Forms of Analyses

Even though the induced analyses of the previous subsection are optimal
they are not necessarily in a form where they are practical or even com-
putable. As an example consider composition O which is interpreted as S5
= Av1. Ava. Aw. vi(va(w)) in the lazy standard semantics. The induced
version is

Plr=0")—=(l=t)=(=t")] (SA) =

Moir. L {B1(=0) (=) (S (ws1)) | BlE—=(ws1)Coir} =

Avip. Avia. || {B[t=1"]1 (St(ws1)(vs2)) | B['=1"](vs1)Cuvip A
Blt=1t"1(vs2)Cuis} =

Aviy. Avig. | [{B[t=1"] (vs10vs2) | B[t'=1"](vs1)Cuiy A B[t—=1"](vs2)Cwis}

and this is not as easy to implement as one could have hoped for. In the
special case where 3 specifies lower adjoints as in Remark 3.4.9 we have a
slightly nicer induced version (writing o for 53):

af(t=t")—(1=t")—(1=1")] (SA) =
Avip. af(t=1)—=(t=t")] (Sa(v[t' =t"](vi1))) =
Aviy. Avig. at=1"] (SAGY[=t"](vi))(y[t=1"1(vi2)))

If we assume that a— 1s as in Example 3.4.5, i.e.

a—(f1.f2) = Af. Ap. U A f2(f(d)) | f1(d)Ep }

then it follows much as in Remark 3.4.9 that a[t—=1"](f) = «[t"]ofoy[],

HE=1(F) = 1[0 Tofoalt] and ALt=t1(f) = 1[tTofoalt]. Tt follows
that
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a[(U=")—=(I=)—(I=t")] (SA) =
Aviy. Avig. aft”’] o (¢[t7Joviroaft’]) o (v[t ]ovizoa[t]) o y[t] =
Aviy. dvia. (a[t"Joy[¢7]) o viy o (at’]oy[t]) o viz o (a[t]oy[t])

but as af - Joy[ - -] in general will differ from the identity also this is not
as easy to implement as one could have hoped for.

What we shall do instead 1s to use functional composition in all analy-
ses. This may not be as precise as possible but will be easier to implement
and, as we shall show below, will indeed be correct and thus will make
applications easier. A similar treatment can be given for the other combi-
nators and we shall consider a few examples in this subsection. Additional
examples may be found in [Nielson, 1989 Nielson, 1986b].

Example 3.5.1. For a lattice interpretation J of TML[lpt,dt] we suggest
modelling the composition combinator O as functional composition, i.e.

T8 = Avi. Ava. dw. vi(va(w))

and we shall say that this is the expected form of O. Actually the expected
form depends on whether we consider forward or backward analyses, i.e.
whether — is interpreted as — or as <, as is illustrated by Examples 3.2.11
and 3.2.13 but in this subsection we shall only consider forward analyses.

To demonstrate the correctness of this expected form let 7 be a domain
or lattice interpretation with Z7fy = Avy. Ava. Aw. vi(va(w)). Here T may
be thought of as the standard semantics or some other lattice interpretation
that uses the expected form for O. We shall then show

Pl =t") = (1=t )—=(1=1")](Z5)
<L(=t) (=) —(1=t")]
JB6
where 3 : 7 — J is a representation transformer. In analogy with the

assumption that — is interpreted as — in both 7 and J it is natural to
assume that . is as in Example 3.4.5, i.e.

B—(f1.f2) = Af. Ap. U A f2(f(d) | f1(d)Ep }

As ('=1")—(t=1")—(1=1") is level-preserving it follows that ¢, ¢’ and ¢”
are impure so that <[{]=C, <[¢’]=C and <[{"]=C. The desired result
then amounts to assuming that

BIN(wi) £ wj = A1 N (vis (wi)) C vji(wj)
BL(wi) C wj = BTN vis(wi)) C vja(wj)
BL(wi) C w

and showing that
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BI (wir(viz(wi)) C vj1(vi2(wy))

and this is straightforward. O

Example 3.5.2. For a lattice interpretation J of TML[lpt,dt] we sug-
gest that the expected form of Fix amounts to a finite, say 27, number of
iterations starting with the ‘most imprecise’ property T, i.e.

T fix = Av.Aw. (v(w))?(T)

(Recall that if Fix is used with type (1—="=1")—({—=1") then ¢’ will be an
impure type so that [¢'](J) is an algebraic lattice and thus T=| |[t']|(J)
does exist.) This choice of expected form differs from the choice made in
the standard semantics of Example 3.2.10 (or the detection of signs analysis
of Example 3.2.11) and is motivated by the desire to ensure that an analysis
by abstract interpretation terminates. However, it means that we have to
give seperate proofs for the correctness of this expected form with respect
to the standard semantics and for the correctness of continuing to use this
expected form.

So let 7 be a domain or lattice interpretation with Zg, = Av. Aw.
FIX(v(w)). Let 8 : T — J be a representation transformer with g as
in the previous example. We must then show

Bl(t=t"=1") ==t ](Av.Aw.FIX(v(w)))
<[t=t'=")—(t=1")]
AvAw.(v(w))?(T))

where again ¢ and ¢’ will be impure so that <[{] and <[[{’] both equal C.
This amounts to assuming

BltI(wir) © wis A B[E](wiz) T wjs =
BIEY(vi(wer)(wiz)) E vy (wyr)(wiz)

Oltl(we) € wj

and showing

SICIEIX (ve(we))) E (o7 (wy))™(T)

for m=27. We shall prove this by induction on m and the base case m=0 is
immediate. The induction step then follows from the induction hypothesis
and the fact that (vi(wi))(FIX(vi(wi))) equals (FIX(vi(wi))).

Next let K be a lattice interpretation that uses the expected form for
Fix and let §: J — K be a representation transformer with 5 as above.
We must then show

Bl(t=t' =) —(t=)](Av.Aw.(v(w))*(T))
<t=t'=t")—
(Avdw.(v(w))?

RSN
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This amounts to assuming

Bltl(wi1) E wky A B[tT(wy2) E wky =
BN (vs (wy1)(wyz)) © vk(whky)(wks)

Bltl(wy) E whk

and showing

BION(w (g )™ (7)) E (wk(wk))™ (T)
for m=27. This is once again by induction on m. O

Example 3.5.3. In TML[lpt,dt] the meaning of fix remains constant,
l.e. fix is not interpreted by an interpretation but always amounts to the
least fixed point FIX. Consider now a version of TML where the meaning
of £ix is not constant and thus must be given by an interpretation. When
fix is used with type ({—1)—17 this means that we will have to restrict
(t—1t)—t to be level-preserving. Tt is straightforward to verify that this
means that ¢ must either be pure or impure. When ¢ is pure it is natural
to let an interpreation J use the expected form

J& = Av. FIX(v)
whereas when ¢ is impure it is natural to let J use the expected form
J& = v v¥(T).

The correctness of this is shown in [Nielson, 1989]. O

Example 3.5.4. For a lattice interpretation J of TML[lpt,dt] we suggest
that the ezpected form of If amounts to simply combining the effects of
the true and else branches, i.e.

T& = Avi. Ava. Avs. dw. (va(w)) U (va(w))

This is slightly coarser than what we did in Examples 3.2.11 and 3.2.14 in
that v 1s not taken into account but this is in agreement with common
practice in data flow analysis [Aho, Sethi and Ullman, 1986].

To show the correctness of this let Z be a domain interpretation along
the lines of the lazy standard semantics, i.e.

Ilgool = AbOOI
va(w) if vi(w)=true
I{ = Avi. Avs. Avs. Aw. va(w) if vy(w)=false
L if v1(w)=1
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(as well as 7', =— as is the case for all interpretations considered in this
subsection). Also let §: 7 — J be a representation transformer with 5
as in the previous example. We must then show

ﬁ[[(thool)—%tjt’)—>(tjt’)—>(tjt’)]] (Iﬁ)
<[(t=Bool)—(t=t")—(t=1")—(t=1")]
(T

and this follows much as in Example 3.3.4 so we dispense with the details.
Next let K be a lattice interpretation that also uses the expected form
for If. Then we must show

Bl(t=Bool)—(t—=1t")—(t=1")—(t=1")] (Avy. Ava. Avz. Aw. (va(w))
U (vs(w)))

<[(t=Bool)—(t—=t")—(t=t")—(t=1")]

(Avy. Avg. Avs. Aw. (va(w)) U (va(w)))

and for this we shall need to assume that 3 specifies lower adjoints as in
Remark 3.4.9. Then 3[¢’] is (binary) additive and it is then straightforward
to show the desired result. O

Example 3.5.5. For a lattice interpretation J of TML[lpt,dt] the ex-
pected forms of the combinators Tuple, Fst and Snd depend on how X is
interpreted. When x is the tensor product ® one may suggest expected
forms based on the definitions given Example 3.2.14 but as we have not
covered the tensor product in any detail we shall not look further into this
here. We thus concentrate on the case where x is interpreted as cartesian
product and here we suggest

jTe‘Llple = /\vl. sz. AU). (vl(w),vz(w))
Tfs = Av. dw. dy where (dq,ds)=v(w)
T§na = Av. Aw. dy where (dq1,d2)=v(w)

For correctness we shall assume that 7 is a domain or lattice interpretation
that uses ‘analogous definitions’, either because it is the standard seman-
tics, or because it is some lattice interpretation that also uses the expected
forms. Furthermore we shall assume that § : 7 — J is a representa-
tion transformer with . as in the previous examples and with F« as in
Example 3.4.5) 1.e.

Bx(f1.f2) = A(d1,d2). (f1(d1).f2(d2))

The correctness is then expressed and proved using the pattern of the
previous examples and we omit the details. O

Example 3.5.6. For a lattice interpretation J of TML[lpt,dt] we shall
suggest the following expected forms for Curry and Apply:
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jgurry = /\v. /\wl. sz, v(wl’wz)
T Apply = Av1- Ava. Adw. vy (w)(va(w))

Here we assume that — is interpreted as — and that x is interpreted
as cartesian product x. To show correctness we consider a domain or
lattice interpretation Z that uses ‘analogous definitions’. Concerning the
representation transformer §: 7 — J we shall assume that . and gy are
as in the previous example. The correctness is then expressed and proved
using the pattern of the previous examples and we omit the details. O

These examples have illustrated that the practical application of a
framework for abstract interpretation may be facilitated by studying cer-
tain expected forms for the combinators. In this way one obtains correct
and implementable analyses than can be arranged always to terminate
although at the expense of obtaining more imprecise results than those
guaranteed by the induced analyses.

3.6 Extensions and Limitations

In this section we have aimed at demonstrating the main approach, the
main definitions, the main theorems and the main proof techniques em-
ployed in a framework for abstract interpretation. To do so we have used
a rather small metalanguage based on the typed A-calculus and in this
subsection we conclude by discussing possible extensions and current limi-
tations.

The discussion will center around [Nielson, 1989]. The metalanguage
TML,, considered there has sum types and recursive types in addition
to the base types, product types and function types. However, the well-
formedness conditions imposed on the two-level types in [Nielson, 1989]
are somewhat more demanding than those imposed here. Let me(?) de-
note the condition that every underlined type constructor in ¢ has argu-
ments that are all-underlined and that any underlined construct occurs in
a subtype of the form {’—1”. Then the fragment of TML,, [Nielson, 1989]
that only has base types, product types and function types corresponds
to TML[lptAme,dtAmec]” rather than the TML[Ipt,dt] studied here. As
an example this means that a type like (Ajp;—Aint ) X Apoor is well-formed in
TML[lpt,dt] but not in TML[lptAmc,dtAmc].

Concerning sum types one can perform a development close to that per-
formed for product types. In a sense an analogue to the relational method
is obtained by modelling 4+ as cartesian product whereas an analogue of
the independent attribute method is obtained by interpreting + as a kind
of sum (adapted to produce an algebraic lattice). For recursive types there
are various ways of solving the recursive type equations and one of these

7One may verify that dtAmc is equivalent to mc.
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amounts to truncating a recursive structure at a fixed depth. Turning to
expressions an analysis like detection of signs is formulated and proved cor-
rect for the whole metalanguage and also strictness analysis can be handled
[Nielson, 1988a]. Tt is also shown that induced analyses exist in general and
this is used to give a characterisation of the role of the collecting semantics
(accumulating standard semantics in the terminology of the Glossary). For
a second-order and backward analysis like live variables analysis a formu-
lation much like the one given in Example 3.2.13 is proved correct. As we
already said in Subsection 3.1 this may be extended with several versions
of underlined type constructors without a profound change in the theory.

Even for TML[IptAme,dtAmc] the development in [Nielson, 1989] goes
a bit further than overviewed here. The presence of the constraint mec
makes it feasible to study interpreations, so-called frontier interpretations,
where the interpretation of underlined types is not specified in a structural
way. (In a sense one considers a version of the metalanguage without x
and — but with a greatly expanded index set I’ over which the index
in A; ranges.) This makes is feasible to give a componentwise definition
of the composition 3’0o of frontier representation transformers. This is
of particular interest when (3’ only specifies representation transformations
that are lower adjoints. Writing f’=« one can then show that («ao8)[{]
= «aft]ep[t] for level-preserving types ¢ and this may be regarded as the
basis for developing abstract interpretations in a stepwise manner. Also
the transformation from g3 to B becomes functional and one can show that
o (S ﬁ = B o a.

From a practical point of view a main limitation 1s that we have not
incorporated stickiness, 1.e. we transform a property through a program
but we do not record the properties that reach a given program point.
Such a development would be very desirable when one wants to exploit the
results of an analysis to enable program transformations that are not valid,
i.e. meaning preserving, in general. This is illustrated in [Nielson, 1985a]
that uses the results of analyses as specified in [Nielson, 1982]. Tt applies
equally well to the flow analysis techniques used in practical compilers.

However, it is not a minor task to incorporate this in the present frame-
work. One reason is that the way it is done depends heavily on details of
the evaluation order used in an implementation and these details are not
specified by the standard semantics.

4 Other Analyses, Language Properties, and
Language Types

In the first sections we described the roots of abstract interpretation and
gave a motivated development of the Cousot approach. We then showed
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how their methods can be systematically extended to languages defined
by denotational semantics, using logical relations to lift approximations
from base domains to product and function space domains. This extension
allows analysis of a wide range of programming languages, by abstractly
interpreting the domains and operations appearing in the denotational se-
mantics that define them.

In section 3 the denotational approach was generalized even more: we
rigorously developed an abstract interpretation framework based on rein-
terpreting some of the primitive operations appearing in the metalanguage
used to write denotational language definitions. This yields a framework
that is completely independent of any particular programming language.

We now describe some other analysis methods, language properties, and
language types. As to methods, we will see that it is sometimes necessary to
mstrument a semantics to make it better suited for analysis, 1.e. to modify
it so it better models operational aspects relevant to program optimization.
(A related approach, not yet as fully developed, is to derive analyses from
operational semantics rather than denotational ones.)

Abstract interpretation has its roots in applications to optimizing com-
pilers for imperative languages, so it is not surprising that the early papers
by Cousot on semantically based methods were about such programs. A
later wave of activity concerned efficient implementation of high-level func-
tional languages. Recent years have witnessed a rapid growth of research
in abstractly interpreting logic programming languages, Prolog in particu-
lar. Analysis of both functional and logic programming languages will be
discussed briefly.

In contrast to the previous section we only give an overview of basic
ideas, motivations and a few examples, together with some references to
the relevant literature (large — a bibliography from 1986 may be found in
[Nielson, 1986¢]).

4.1 Approaches to Abstract Interpretation

We now briefly assess what we did in earlier sections, and give some al-
ternative approaches to program analysis by abstract interpretation. Each
has some advantages and disadvantages.

4.1.1 The Cousot Approach

This was the first truly semantics-based framework for abstract interpre-
tation, and had many ideas that influenced development of the field, for
example abstraction and concretization functions, natural mathematical
conditions on them, and the collecting (or static) semantics. The collect-
ing semantics i1s “sticky”, meaning that it works by binding information
describing the program’s stores to program points. This provided a nat-
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ural link to the earlier and more informal flow analysis methods used in
optimizing compilers, based on constructing and then solving a set of “data
flow equations” from the program.

The abstraction and concretization functions are a pair of functions « :
C — Abs and v : Abs — C between concrete values C and abstract values
Abs. Both are required to be complete lattices, and «, v must satisfy some
fairly stringent conditions (y must be a Galois insertion from Abs into C).

An important new concept was that of a program interpretation, ab-
stracting the program’s stores. A partial order on interpretations was de-
fined, making it possible to prove rigorously that one interpretation is a
correct abstraction of another. This allows program analysis methods to
be proven “safe”, i.e. to be correct approximations to actual program be-
haviour.

A limitation is that the Cousot approach only applies to flow chart
programs, and has been difficult to extend to, for example, programs with
procedures (examples include [Jones, 1982] and [Sharir, 1981]). Another
limitation is in its data: as originally formulated, only stores were ab-
stracted, and no systematic way to extend the framework to more general
data types was given.

4.1.2 Logical Relations

This solved the problem of extending the Cousots’ methods to more general
data, using logical relations as defined in [Reynolds, 1974], [Plotkin, 1980].
(In the discussion above on local conditions for safety, the logical relation
was <p on values.) Safe approximation of composite domains is defined
by induction on the form of the domain definitions, leading to a natural
sufficient condition for safety of an abstract interpretation that generalizes
the Cousots’. In this approach, concretization is not mentioned at all, nor
does it seem to be necessary.

Example works using this approach are [Mycroft, 1986], [Jones, 1986]
and [Nielson, 1984].

4.1.3 A Method Based on a Metalanguage

The previous method applies only to one language definition at a time.
Yet more generality can be obtained by abstractly interpreting the meta-
language used to write the denotational semantics (typically the lambda
calculus). This is done in [Nielson, 1984] and subsequent papers, and is
summarized in Section 3. A two-level lambda calculus is used to separate
those parts of a denotational semantics that are to be approximated from
those to remain uninterpreted.

The approach seems to be inherently “non-sticky”, as it concerns ap-
proximating intermediate values and lacks a means for talking about pro-
gram points.
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4.1.4 Operationally Based Methods

A major purpose of abstract interpretation isits application to efficient pro-
gram implementation, e.g. in highly optimizing compilers. For application
purposes, it thus seems more relevant to use analyses based on a semantics
of the language being analyzed, rather than on the metalanguage in which
the semantics is written.

But there i1s a fly in the ointment: many implementation dependent
properties relevant to program optimization are simply not present in a
standard denotational semantics. (This is not at all surprising, if we recall
that the original goal of denotational semantics [Stoy, 1977] was to assign
the right input-output behaviour to the programs weithout giving implemen-
tation details.) Examples include:

o the dependence analyses mentioned in the first section (for neededness
analysis, or partial evaluation)

e sequential information about values, e.g. that a variable grows mono-
tonically

e order of parameter evaluation
e time or space usage

e available expressions.

Interesting properties that can be extracted from a denotational seman-
tics include strictness analysis and a (rather weak form of) termination
[Burn, 1986], [Abramsky, 1990]. In the approach of [Abramsky, 1990] this
is done by focusing on logical relations and then developing “best inter-
pretations” with respect to these: the notion of safety leads to a strictness
analysis, whereas the dual notion of liveness leads to a termination of anal-
ysis. This is all related to adjunctions between categories and the use of
the formula for Kan extensions. However, while a compositional strictness
analysis is indeed useful, a compositional termination analysis is not be-
cause 1t has to “give up” for recursion; amending this would entail finding
a well-founded order with respect to which the recursive calls do decrease
and this is beyond the development of [Abramsky, 1990].

Operational Semantics It would seem obvious to try to extract these
properties from an operational semantics [Plotkin, 1981], [Kahn, 1987]. How-
ever this is easier said than done, for several reasons. One is that there is
no clearly agreed standard for what is allowed to appear in an operational
semantics, other than that it is usually given by a set of conditional logical
inference rules (for instance single-valuedness of an expression evaluation
function must be proven explicitly). Another is that operational semantics
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do not by their nature give all desirable information, e.g. the resource usage
or dependency information mentioned above.

It must be said, though, that operational semantics has a large potential
as a basis for abstract interpretation, since it more faithfully models actual
computational processes, as witnessed by the many unresolved problems
concerning full abstraction in denotational semantics. Further, operational
semantics is typically restricted to first-order values and so avoids some-
times painful questions involving Scott domains. For instance, there are
still several open questions about how to approximate power domains for
abstract interpretation of nondeterministic programs.

4.1.5 Instrumented Semantics

Much early work in static program analysis was based on approximating
informal models of program execution - and was complex and sometimes
wrong. On the other hand, the validity of certain program optimizations
and compilation techniques may depend strongly on execution models, e.g.
some of the properties just mentioned.

A denotationally based method to obtain information about program
execution is to instrument the standard semantics, extending it to include
additional detail, perhaps operational. The approach can be described by
the following diagram, where the left arrow follows since the instrumented
semantics extends the standard one, and the right one comes from the re-
quirement of safe approximation. On the other hand all three are obtained
by various interpretations of the core semantics, so analysis is still done by
abstractly executing source programs.

instrumented
semantics

7 X

standard abstract
semantics semantics

The collecting semantics illustrates one way to instrument, by collecting
the state sets at program points. This is practically significant since many
interesting program properties are functions of the sets of states that occur
at the program’s control points.

More general instrumentation could record a trace or history of the
entire computation, properties of the stores or environments, forward or
backward value dependencies, sequences of references to variables and much
more. This could be used to collect forward dependence information, mono-
tone value growth or perform step counting. The sketched approach puts
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the program flow analyses used in practice on firmer semantical founda-
tions.

The absence of an arrow between the standard and the abstract seman-
tics is disturbing at first, since correctness is no longer simply a matter
of relating abstract values to the concrete ones occurring in computations.
However this is inevitable, once the need to incorporate some level of op-
erational detail has been admitted. One must be sure that the extension
of the standard semantics properly models the implementation techniques
on which optimization and compilation can be based; and this cannot be
justified on semantical grounds alone.

On the other hand, an approximate semantics can be proven correct
with respect to the instrumented version by exactly the methods of the
previous sections.

4.2 Examples of Instrumented Semantics

The possible range of instrumented semantics is enormous, and many vari-
ants have already been invented for various optimization purposes. Here
we give just a sampling.

4.2.1 Program Run Times

A program time analysis can be done by first extending the standard se-
mantics to record running times, and then to approximate the resulting
instrumented semantics. Here we use the denotational framework of sec-
tion 2.7. The earlier semantics is extended by accumulating, together with
the store, the time since execution began.

The time interpretation This is I;me = (Val, Sto; assign, seq, cond,
while), defined by

Domains

Val = Number (the flat cpo)
Sto = (Var — Val) x Number

Function definitions

assign = A(x, m.) . A(s,t) . (s[x — mes], t+1)
seq = A(mye, Mmac) . Mo, 0 My,
cond = A(me, my ma.) . A(s,t).
me s #0 —my, (s, t+1), ma. (s, t+1)
while = A(m,, m.) . fix A¢ . A(s,t).
me 8 # 0 — ¢(me(s,t+1)), (s,t+1)

This was used as the basis for the approximate time analyses reported in

[Rosendahl, 1989].
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4.2.2 Execution Traces

A closely related idea is to instrument a semantics by including full com-
putation histories. This gives in a sense all the raw material that can
be used to extract “history-dependent” information, and thus a basis for
a very wide range of program analyses. This approach was used in P.
Cousot’s thesis work, and has since been seen in [Donzeau-Gouge, 1978]
and [Nielson, 1982].

In a functional setting, Sestoft has traced sequences of variable def-
initions and uses (i.e. bindings and references) in order to see which
variables can be “globalized”, i.e. allowed to reside in global memory in-
stead of the computation stack [Sestoft, 1989]. A similar idea is used in
[Bloss and Hudak, 1985] for efficient implementation of lazy functional lan-
guages; they trace references to functions’ formal parameters to see which
ones can be computed using call by value, i.e. prior to function entry.

4.2.3 Store Properties

The sequencing information just mentioned is quite clearly not present
in a standard semantics. Another information category very useful for
optimization has to do with store properties. A standard semantics for a
language with stuctured values often treats them simply as trees. i.e. terms;
but in reality memory sharing is used, so new terms are constructed using
pointers to old ones rather than a very expensive recopying. For efficient
implementation, compile-time analyses must take sharing into account, for
example to minimize costs of memory allocation and gargage collection.
(Careful proofs of equivalence between the two formulations for a term
rewriting language can be seen in [Barendregt et al, 1989].)

In [Jones, 1981a] a simple imperative language with Lisp-like primitives
is discussed. The semantics is described operationally, using finite graphs
for the store. The following diagram describes a store with X = a = (b =
¢),Y=b:candZ = (b :: c):: ¢, where Y is shared by X and Z.

=

This instrumented semantics is modelled in [Jones, 1981a] by approximat-
ing such stores by “k-limited graphs”, where k is a distance parameter. The
idea is that the graph structure is modelled exactly for nodes of distance
k or less from a variable. All graph nodes farther than k from a variable
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name are modelled by nodes of the forms “7¢”, “?s” or “?”, indicating that
the omitted portion of the graph is (respectively) possibly cyclic; acyclic
but with possibly shared nodes; or acyclic and without sharing.

Stransky has done further work in this direction [Stransky, 1990].

4.3 Analysis of Functional Languages

Motivations for analysing functional languages are partly to counter the
time costs involved in implementing powerful programming features such as
higher order functions, pattern matching, and lazy evaluation; and partly to
reduce their sometimes large and not easily predictable space requirements.

The problem of strictness analysis briefly mentioned in Section 1.1 has
reeived much attention, key papers being [Burn, 1986], [Wadler, 1987], and
[Hughes, 1990]. Polymorphism, which allows a function’s type to be used
in several different instantiations, creates new problems in abstract inter-
pretation. Important papers include [Abramsky, 1986] and [Hughes, 1990].

Approximating functions by functions on abstract values A nat-
ural and common approach 1s to let an abstraction of a function be a
function on abstract values. One example is Section 3’s general framework
using logical relations and based on the lambda calculus as a metalanguage.

The first higher-order strictness analysis was the elegant method of
[Burn, 1986]. In this work the domains of a function being analyzed for
strictness are modeled by abstract domains of exactly the same structure,
but with {1, T} in place of the basis domains. Strictness information
is in essence obtained by computing with these abstracted higher-order
functions. However, a fixpoint iteration is needed, since the abstractions
sacrfice the program’s determinacy (cf. the end of Section 1.1).

While suitable for many problems concerning functional and other lan-
guages, abstracting functions by functions is not always enough for the
program analyses used in practice. An example where this simply does not
give enough information is constant propagation in a functional language.
As before, the goal is to determine whether or not one of the arguments of
a program function is always called with the same value and, if so, to find
that value at analysis time.

For this it is not enough to know that if a function f is called with
argument x, it will return value = + 1. It is also essential to know which
values f can be called with during program execution, since a compiler
can exploit knowledge about constant arguments to generate better target
code.

For another example, the higher-order strictness analysis in [Burn, 1986]
has turned out to be unacceptably slow in practice, even for rather small
programs. The reason is that the abstract interpretation involves comput-
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ing fixpoints of higher-order functions. Abstract domains for the function
being analyzed have the same structure as the originals, but with {1, T}
for all basis domains. This implies that analysis of even a small function
such as “fold right” can lead to a combinatorial explosion in the size of
the abstract domains involved, requiring subtle techniques to be able to
compute the desired strictness information and avoid having to traverse
the entire abstract value space.

4.3.1 First Order Minimal Function Graphs

The minimal function graph of a program function was defined in [Jones, 1986]
to be the smallest set of pairs (argument, function value) suffcicient to
carry out program execution on given input data. For example, consider
the function defined by the following program:

f(X) = if X =1thenl
elseif Xeven then f(X/2)
else f(3+ X +1)

Its minimal function graph for program input X = 3 is

{(3,1),(10,1),(5,1),(16,1),(8,1),(4,1),(2,1),(1, 1)}

The minimal function graph semantics maps a programmer-defined func-
tion to something more detailed than the argument-to-result function tra-
ditionally used in a standard semantics, and is a form of instrumented
semantics. In [Jones, 1986] it is shown how the “constant propagation”
analysis may be done by approximating this semantics, and the idea of
proving correctness by semihomomorphic mappings between various inter-
pretations of a denotational semantics 1s explained.

Earlier methods to approximate programs containing function calls were

described in [Cousot, 1977¢], [Sharir, 1981] and [Jones, 1982].

4.3.2 Higher Order Functions

Higher order functions as well as first order ones may be approximated
using logical relations. Examples include the analyses of Section 3.2.3 and
[Burn, 1986], but such methods cannot closely describe the way functions
are used during execution.

For example, if the value of exp in an application ezp(exp’) is modelled
by a function from abstract values to abstract values, this does not contain
enough information to see just which programmer-defined functions may
be called at run time; and such information may be essential for efficient
compilation.
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This leads to more operational approaches to abstractly interpreting
programs containing higher order functions. An early step in this direction
was the rather complex [Jones, 1981b], and more recent and applications-
motivated papers include [Sestoft, 1989,Shivers, 1991].

Closure analysis This method from can be described as an operationally
oriented semantics-based method. Programs are assumed given as systems
of equations in the now popular named combinator style, with all functions
curried, and function definitions of the form

fX1...X, = -expressioncontaining X;...X, and function names

In this language, a value which is a function is obtained by an incomplete
function application. Operationally such a value is a so-called closure of
form < fvy ...v; > where vy ...v; are the values of f’s first 1 arguments.

The paper [Sestoft, 1989] contains algorithms for a closure analysis,
yielding for example information that in a particular application exp(exp’),
the operator exp can evaluate to an f-closure with one evaluated argument,
or to a g-closure with two evaluated arguments.

Instead of approximating a function by a function, each programmer-
defined function f is described by a global function description table con-
taining descriptions of all arguments with which it can be called (just as in
the minimal function graphs discussed earlier).

An approximation to a value which is a function is thus represented by
an approximate closure of the form < faq ...a; > where the a; approximate
the v;.

But then how is v; itself approximated? (There seems to be a risk of
infinite regression.) Supposing v; can be a closure < gw; ...w; >, we can
simply approximate it by the pair < ¢, 7 >. The reason this works is that,
when needed, a more precise description of g’s arguments can be obtained
from g¢’s entry in the global function description table.

Analysis starts with a single global function description table entry de-
scribing the program’s initial call, and abstract interpretation continues
until this table stabilizes, i.e. reaches its fixpoint. Termination is guaran-
teed because there are only finitely many possible closure descriptions.

Closure analysis describes functions globally rather than locally, and
so appears to be less precise in principle than approximating functional
values by mathematical functions. This is substantiated by complexity
results that show the analyses of [Burn, 1986] to have a worst-case lower
bound of exponential time, whereas closure analysis works in time bounded
by a low-degree polynomial.

The techniques developed in [Sestoft, 1989 Shivers, 1991] have shown
themselves useful for a variety of practical flow analysis problems involv-
ing higher order functions, for example in efficient implementation of lazy
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evaluation [Sestoft and Argo, 1989] and partial evaluation [Bondorf, 1991].
Similar ideas are used in [Jones, 1993b] to provide an operationally oriented
denotational minimal function graph semantics for higher order programs.
One application is to prove the safety of Sestoft’s algorithms.

4.3.3 Backwards Analysis and Contexts

As observed in Section 2.5.3, backwards analysis of an imperative program
amounts to finding the weakest precondition on stores sufficient to guar-
antee that a certain postcondition will hold after command execution. For
functional programs, an analogous concept to postcondition is that of the
contexrt of a value, which describes the way the value will be used in the
remainder of the computation.

Clearly the usage of the result of a function will affect the usage of
its arguments to the function will be used. For an extreme example, if
the result of function call f(ey,...,e,) is not needed, then the arguments
€1,...,e, will not be needed either.

The example is not absurd; consider the following abstract program,
using pattern matching and a list notation where nil = [] is the empty list,

. is the concatenation operator, [a1,...,a,] abbreviates a; : ...: a, : nil.
length ([]) = 0
length(Z:Zs) = 1+ length(Zs)
X) = if tes(X) then [] else ¢(X) : fX-1)

When evaluating a call length(f(exp)), the values of ¢g(...) are clearly ir-
relevant to the length of f(exp), and g need not be called at all. (This
can be used to optimize code in a lazy language.) For another example, if
f(n,z) = 2™ and a call f(e1,e2) appears in a context where its value is an
even number, one can conclude that ey 1s positive and es is even.

Context information thus propagates backwards through the program:
from the context of an enclosing expression to the contexts of its subex-
pressions, and from the context of a called function to the contexts of its
parameters in a call.

Some uses of backwards functional analyses

Strictness analysis identifies arguments in a lazy or call by name lan-
guage for which the more efficient call by value evaluation may be used
without changing semantics. Both forwards and backwards algorithms ex-
ist, but backwards methods seem to be faster. Early work on backwards
methods includes [Hughes, 1985] and [Hughes, 1987], later simplified for
the case of domain projections in [Wadler, 1987] and [Hughes, 1990].

Storage reclamation. Methods are develped in [Jensen, 1991] to recog-
nize when a memory cell has been used for the last time, so it may safely
be freed for later use. An application is substantially to reduce the number
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of garbage collections.

Partial evaluation automatially transforms general programs into ver-
sions specialized to partially known inputs. A specialized program is usu-
ally faster that the source it was derived from, but often contains redundant
data structures or unused values (specializations of general-purpose data in
the source). Backwards analysis is used for “arity raising”, which improves
programs by removing unnecessary data and computation [Romanenko, 1990].

Information flow While the analogy to the earlier backwards analyses
is clear, the technical details are different and rather more complicated. A
bottleneck is that, while functions may have many arguments, they produce
only one result. Thus one cannot simply invert the “next” relation to
describe program running in the reverse direction.

Given a function definition

fX1...X, = -expressioncontaining X;...X, and function names

one can associate a context transformer f¢ : Context — Context with each
argument X;. The i1dea is that if f is called with a result context (', then
fH(C) will be the context for f’s ith argument.

In effect this is an independent attribute formulation of f’s input-
output relation, necessarily losing intervariable interactions. Unfortunately
it means that backwards analyses cannot in principle exactly describe the
program’s computations, as is the case with forward analyses.

What is a context, semantically? The intuition “the rest of the com-
putation” can be expressed by the current continuation, since since a con-
tinuation is a function taking the current expression value into the pro-
gram’s computational future. This approach was taken in [Hughes, 1987],
but is technically rather complex since it entails that a context is an ab-
straction of a set of continuations—tricky to handle since continuations are
higher-order functions.

In the later [Wadler, 1987] and [Hughes, 1990], the concept of context
is restricted to properties given by domain projections, typically specifing
which parts of a value might later be used. A language for finite descriptions
of projections and their manipulation was developed, flow equations were
derived from the program to be analyzed, and their least fixpoint solution
gives the desired information.

Some example contexts that have shown themselves useful for the effi-
cient implementation of lazy functional programs include:

e ABSENT: the value is not needed for further computation
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e ID: the entire value may be needed

e HEAD: the value is a pair, and its first component may be needed
(but the second will not be)

e SPINE: the value is a list, and all its top-level cells may be needed
(the length function demads a SPINE context of its argument)

4.4 Complex Abstract Values

Finding finite approximate descriptions of infinite sets of values is an es-
sential task in abstract interpretation. We mentioned in Section 2.5 that
abstracting stores or environments amounts to finding finite descriptions of
relations among the various program variables. This was straightforward in
the even-odd example given earlier; e.g. “odd” represented {1,3,5,...}, etc.,
and operations on numbers were easily modeled on this finite domain of
abstract values. Analysis problems requiring more sophisticated methods
include

o functions as values (especially higher order functions)
e mutual relationships among variable values

e describing structured data, e.g. nested lists and trees

4.4.1 Functions as values

Some approaches were described above (approximation by functions on
abstract values, and closure analysis), and several more have been studied.

4.4.2 Relations on n-tuples of numbers

In this special case there is a well-developed theory: linear algebra, in
particular systems of linear inequalities. [Cousot, 1978] describes a way
to discover linear relationships among the variables in a Pascal-like pro-
gram. Such relations may be systematically discovered and exploited for,
for example, efficient compilation of array operations. Related work, in-
volving the inference of systems of modulus equations, has been applied
to pipelining and other techniques for utilizing parallelism [Granger, 1991,
Mercouroff, 1991]. This work has been further developed into a system for
automatic analysis of Pascal programs.

4.4.3 Grammars

The analysis of programs manipulating structured data, e.g. lists as in Lisp,
ML, etc, requires methods to approximate the infinite sets of values that
variables may take on during program runs. There is also a well-developed
theory and practice for approximating such infinite sets, involving regular
grammars or their equivalent, regular expressions.
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An Example Grammar Construction Consider the following abstract
program, using the list notation of Section 4.3.3.

f(N) = first(N, sequence(nil))
first(nil, Xs) = il

first(M : Ms, X : Xs) = Ms: first(Ms, Xs)
sequence(Y) = Y :sequence(l 1Y)

We assume an initial call of form f(N) where the input variable N ranges
over all lists of 1’s; and further that the language is lazy. Conceptually,
call “sequence(nil)” generates the infinite list [[],[1],[1,1],[1,1,1],...]. The
possible results of the program are all of its finite prefixes:

Output = {[], {10111, [, (11,0010, {0,000, (10,010 -

The method of [Jones, 1987a] constructs form this program a tree grammar
G containing (after some simplification) the following productions. They
describe the terms which are the program’s possible output values:

N w= mnil|1:N Program input = f argument
fresult L= ﬁrStresult

ﬁrStresult = nil | Ms : ﬁrstmsu“

M = 1

Ms = N

X =Y

Xs = SeqUeNCeresylt

Y = nil|l:Y

SeqUeNCeresylt = Y: SeqUENCEy ezt

With f,.su¢ as initial nonterminal, G generates all possible lists, each of
whose elements is a list of 1’s. More generally, by this approach, an abstract
value in Abs is a tree grammar, and the concretization function maps the
tree grammar and one of its nonterinal symbols A into the set of terms
that A generates.

Safety The natural definition of safe program approzimation is that the
grammar generates all possible runtime values computed by the program
(and usually a proper superset). By the grammar above, nonterminal f, ¢y
clearly generates all terms in Qutput — and so is a safe approximation to
the actual program behaviour.

It is not a perfect description, since f,.5,;; generates all possible lists of
lists of 1’s, regardless of order.
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Nonexistence of an abstraction function « For this analysis an ab-
stract value is a large object: a grammar G, and the concretization function
v maps G’s nonterminals into term sets which are supersets of the value
sets that variables range over in actual computations. It 1s natural to ask:
what is the corresponding abstraction function a7

In this case, there 1s no unique natural «, for a mathematical reason.
The point is that regular tree grammars as illustrated above generate only
reqular sets of terms, a class of sets with well-known properties. On the
other hand, the program above, and many more, generate nonregular sets
of values (Output is easily proven nonregular). Tt is well known that for
any nonregular set S of terms, there is no “best” regular superset of S. In
general, increasing the number of nonterminals will give better and better
“fits”, i.e. smaller supersets, but a perfect fit to a nonregular set is (by
definition) impossible.

References The papers [Reynolds, 1969] and [Jones, 1981a,Jones, 1987a]
contain methods to construct, given a program involving structured val-
ues, a regular tree grammar describing it. Essentially similar techniques,
although formalized in terms of tables rather than grammars, have been
applied to the lambda calculus [Jones, 1981b], interprocedural imperative

program analysis [Jones, 1982], a language suitable as an intermediate lan-
guage for ML [Deutsch, 1990], and the Prolog Language [Heintze, 1992].

4.5 Abstract Interpretation of Logic Programs

Given the framework already developed, we concentrate on the factors that
make logic program analysis different from those seen earlier. Further, we
concentrate on Prolog, in which a program is a sequence of clauses, each
of the form “head <« body”:

Dty tm) = ba(Fh, o, 8) A oo A by(t. 81,

where h, by,...,b; are predicate names and the t; are terms built up from
constructors and varitables. Variable names traditionally start with capital
letters, e.g. X. Constructors are as in functional languages (e.g. “” and
“[”), but runtime values are rather different, as they may contain free or
“uninstantiated” variables. Each b;(t1,...) is called a goal.

An example program, for appending two lists:

append(Xs, [], Xs) —.
append(X:Xs,Ys,X:Zs) — append(Xs,Ys,Zs).
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4.5.1 Semantics of Prolog Programs

Prolog can be viewed either as a pure logical theory (so a program is a set
of “Horn clauses” with certain logical consequences), or as an operationally
oriented programming language. When used operationally, programs may
contain features with no interpretation in mathematical logic, to improve
efficiency or facilitate communication with other programs. Examples: in-
put/output operations, tests as to whether a variable is currently instanti-
ated, and operations to add new clauses to the program currently running,
or to retract existing clauses.

A ground term 1s one containing no variables. The bottom-up or log-
ical interpretation of “append” is the smallest 3-ary relation on ground
terms which satisfies the implications in the program. It thus contains
append(1:[],2:[],1:2:[]) and append(1:2:[],3:4:[],1:2:3:4:[]), among others.

Top-down interpretation is used for Prolog program execution. Com-
putation begins with a query, which is a “body” as described above. The
result is a finite or infinite sequence of answer substitutions, each of which
binds some of the free variables in the query. In a top-down semantics,
the basic object of discourse is not a store or an environment, but a sub-
stitution that maps variables to new terms — which may in turn contain
uninstantiated variables; i.e. be nonground.

The result of running the program above with an initial query ap-
pend(1:2:],3:4:[], Ws) would be the one-element answer sequence

[Ws — 1:2:3:4:]]]

while the result of running with query append(Us,Vs,1:2:[]) would be the
sequence of three answers

[Us — 1:2:]], Vs — []]
[Us — L[], Vs — 2:[]]
[Us — [], Vs — 1:2:[]]

and the result of running with query append(1:2:[],Vs,Ws) would be an
answer containing an uninstantiated variable:

[Vs — Ts, Ws — 1:2:Tg]

4.5.2 Special Features of Logic Programs

The possibility of more than one answer substitution is due to the back-
tracking strategy used by Prolog to find all possible ways to satisfy the
query. These are found by satisfying the individual goals q;(...) left to
right,unifying each with all possible clause left sides in the order they ap-
pear in the program. Once unification with a clause head has been done,
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its body is then satisfied in turn (trivially true if it is empty). This pro-
cedure is often described as a depth-first left-to-right search search of the
“SLD-tree”.

Bindings made when satisfying q; are used when satisfying q; for j > 1,
S0 In a certain sense the current substitution behaves like an updatable
store. A difference is that it is “write-once” in that old bindings may not
be changed. However changes may be made by instantiating free variables.

4.5.3 Types of Analyses

All this makes program analysis rather complex, and the spectrum seen
in the literature is quite broad. Many but not all analyses concentrate on
“pure” Prolog subsets without nonlogical features. Some are bottom-up,
and others are top-down.

4.5.4 Needs for Analysis

A first motivation for analysis is to optimize memory use — Prolog is noto-
rious for using large amounts of memory. One reason is that due to back-
tracking the information associated with a predicate call cannot be popped
when the call has been satisfied, but must be preserved for possible future
use, in case backtracking should cause control the call to be performed
again. Considerable research on “intelligent backtracking” is being done
to alleviate this problem, and involves various abstract interpretations of
possible program behaviour.

Another motivation is speed. Unification of two terms containing vari-
ables is a fundamental operation, and one that is rather slower than assign-
ment in imperative languages, or matching as used in functional languages.
One reason is that unification involves two-way bindings: variables in either
term may be bound to parts of the other term (or transitively even to parts
of the same term). Another is the need for the occur check: to check that a
variable never gets bound to a term containing itself (although sometimes
convenient for computing, programs containing such “circular” terms have
no natural logical interpretation).

4.5.5 Examples of Analysis

Analyses to speed up unification The following are useful to recognize
when special forms of unification can be used such as assignment or one-way
matching:

Mode analysis determines for a particular goal those of its free variables
which will be unbound whenever a goal is called, and which will be bound
as a result of the call [Mellish, 1987].

Groundness anaysis discovers which variables will always be bound to
a ground (variable-free) term when a given program point is reached. For
example “append”, when called with a query with ground Xs and Ys, yield
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a substitution with ground Zs; when called with bround Zs, all answers will
have ground Xs and Ys; and when called with only Xs ground, the answers
will never be ground.

Groundness analysis is more subtle than it appears due to possible
aliasing and shared substructures, since binding one variable to a ground
term may affect variables appearing in another part of the program be-
ing analyzed. Simple groundness and sharing analyses are described in
[Jones, 1987b]. A more elegant method using propositional formulas built
from A and < was introduced in [Marriott, 1987] and compared with other
methods in [Cortesi, 1991].

Safely avoiding the occur check

Circularity analysisis a related and more subtle problem, the goal being
to discover which unifications may safely be performed without doing the
time-consuming “occur check”. The first paper on this was by Plaisted
[Plaisted, 1984], with a very complex and hard to follow method. A more
semantics-based method was presented in [Sgndergaard, 1986].

Other analyses The “difference list” transformation can speed programs
up by nonlinear factors, and can be applied systematically; but it can
also change program semantics if used indiscriminately. Analyses to de-
termine when the transformation may be safely applied are described in
[Marriott, 1988].

Other uses include binding time analysis for offline partial evaluation,
and deciding when certain optimizing transformations can be applied. One
example is deforestation [Wadler, 1988].

4.5.6 Methods of Analysis

Analysis methods can roughly be divided into the pragmatically oriented,
including [Bruynooghe, 1991], [Mellish, 1987], and [Nilsson, 1991]; and the
semantically oriented, including [Cortesi, 1991], [Debray, 1986], [Jones, 1987b],
and [Marriott, 1993].

A natural analogue to the accumulating semantics seen earlier was used
in [Jones, 1987b] and a number of later papers, and presumes given a se-
quence of clauses and a single query. It is a “sticky” semantics in which
the program points are the positions just before each clause goal or the
query, and at the end of each clause and the query. With each such point
i1s accumulated the set of all substitutions that can obtain there during
computations on the given query (so those for the query end describe the
answer substitutions).

Approximation of substitutions and unification. These are nontriv-
ial problems for several reasons. One is renaming: each clause is (implicitly)
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universally quantified over all variables appearing in it, so unification of a
predicate call with a clause head requires renaming to avoid name clashes,
and the same variable may appear in many “incarnations” during a sin-
gle program execution. Many approximations merge information about all
incarnations into a single abstraction, but this is not safe for all analyses.

Aliasing is also a problem, since variables may be bound to one another
so binding one will change the bindings of all that are aliased with it. Terms
containing free variables have the same problem: binding one variable will
change the values of all terms containing it.

Finally, unification binds variables to structured terms, so approxima-
tions that do not disregard structure entirely have some work to do to
obtain finite descriptions. A recent example is [Heintze, 1992].

[Marriott, 1993] is interesting in two respects: it uses the metalanguage
approach described in this work, in Section 3; and it uses sets of constraints
instead of substitutions, reducing some of the technical problems just men-
tioned.
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5 Glossary

abstraction function: Usually a function from values or sets of values to
abstract values such as EVEN, ODD. See adjoined pair.

accumulating semantics: A semantics that models the set of values that
a standard semantics (or instrumented semantics) may produce. The
functionality of commands might be P(Sto)—P(Sto), and the pro-
gram description might be Pla — P(Sto), where Pla is the domain
of program points (or places).

adjoined pair: A pair of functions (a: D— E y: E—D) that satisfies a(d)Ce
if and only if dCv(e). The first component is often called an abstrac-
tion function (or a lower adjoint) and the second component is called
a concretization function (or an upper adjoint).

backward: Used for an analysis where the program is analysed in the
opposite direction of the flow of control, an example being liveness
analysis (see glossary). In Section 3 this is formalized by interpreting
— as «— where D«—FE means E—D.

collecting semantics: Has been used to mean sticky semantics as well as
lifted (or accumulating) semantics, so some confusion as to its exact
meaning has arisen in the literature.

concretization function: Usually a function from abstract values such
as EVEN, ODD to sets of concrete values. See adjoined pair.

context: A description of how a computed value will be used in the re-
mainder of the computation. Used in backwards analysis of functional
programs.

correctness: Given a relation of theoretical or implementational impor-
tance, correctness amounts to showing that the properties obtained
by abstract interpretation always have this relation to the standard
semantics.

core semantics: See factored semantics.

duality principle: The principle of lattice theory saying that by changing
the partial order from C to O one should also change least fixed
points to greatest fixed points and least upper bounds to greatest
lower bounds and that then the same information results.

factored semantics: The division of a denotational semantics into two
parts: a core, assigning terms to every language construct, but with
some details left unspecified; and an interpretation, giving the mean-
ings of the omitted parts. Often used to compare the correctness of
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one abstract interpretation with respect to another abstract interpre-
tation.

first-order: Used for an analysis where the properties directly describe
actual values. An example is detection of signs where the property
‘47 describes the values 1, 2, 3, etc.

forward: Used for an analysis where the program is analysed in the same
direction as the flow of control. In Section 3 this is formalized by
interpreting — as —.

independent attribute method: Used for an analysis where the com-
ponents of a tuple are described individually, ignoring relationships
among components. In Section 3 this is formalized by interpreting x
as x.

induced property transformer: An analysis that is obtained from a
standard semantics or another analysis in a certain way that is guar-
anteed to produce an optimal analysis over a given selection of prop-
erties.

instrumented semantics: A version of the standard semantics where
more operational detail is included. In general an instrumented se-
mantics constrains the implementation of a language as defined by
its standard semantics.

interpretation: See factored semantics.

lax functor: A modification of the categorical notion of functor in that
certain equalities are replaced by inequalities.

lifted semantics: Another term for the accumulating semantics.

live variable: A variable whose variable may be used later in the current
computation.

logical relation: A relation constructed by induction on a type structure
in a certain ‘natural’ way.

minimal function graph: An interpretation that associates to each user-
defined function in a program a subset of S* xS that indicates those
argument/result pairs which are actually involved in computing out-
puts for a given input to a program.

relational method: Used for an analysis where the interrelations among
components of a tuple are described, e.g. X +Y < 110. In Section 3
this is formalized by interpreting X as ® (tensor product).

representation transformation: A function that maps values or prop-
erties to properties, e.g. an abstraction function.
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safety: Essentially the same as correctness, but emphasizing that the re-
sults of an analysis may be used for program transformation without
changing semantics. Often used when the correctness of one abstract
interpretation is established with respect to another abstract inter-
pretation.

second-order: Used for an analysis where the properties do not directly
describe actual values but rather some aspects of their use. An ex-
ample is liveness where the property live does not describe any value
but rather that the value might be used in the future computations.

standard semantics: A semantics where as few implementation consid-
erations as possible are incorporated. The functionality of commands
might be Sto—Sto.

static semantics: Has been used to mean sticky lifted semantics but this
usage conflicts with the distinction between static and dynamic se-
mantics.

sticky semantics: Used for a semantics which binds program points to
various information (“sticky” in the sense of flypaper). In a sticky
semantics a command might be of functionality Sto—Pla—P(Sto),
where Pla is the domain of program points (or places).

strict function: f : Vi x ...V, — W is strict in its ith argument if
flor, .o vim1, Lyvig, ..o, 0n) = L for all v € V5.

tensor product: An operation ® on algebraic lattices that may be used
to formalize the notion of relational method. When formulated in the
categorical framework, as is natural when recursive types are to be
considered, the concept of laz functor is necessary.
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