
DuctileScala: Combined static
and dynamic feedback for Scala

CSE 501 Project Report

Ricardo Martin
University of Washington
rmartin@cs.washington.edu

Daniel Perelman
University of Washington

perelman@cs.washington.edu

Jinna Lei
University of Washington
jinna@cs.washington.edu

Brian Burg
University of Washington
burg@cs.washington.edu

ABSTRACT
Programmers receive feedback about program correctness
in several ways. The most common static feedback is type-
checking: if a program typechecks successfully, then all pro-
gram executions are guaranteed to be free of certain classes
of errors. Dynamic feedback is obtained by running a pro-
gram and observing the output of a single program execu-
tion. Dynamically-typed programs can yield dynamic feed-
back at any time but are never able to provide meaningful
static feedback, whereas statically-typed programs can only
yield dynamic feedback (that is, be executed) after they
properly typecheck. Recent research [6] has investigated
the possibility of obtaining static and dynamic feedback at
any point and in any order by deferring the typechecking
normally performed during compilation of Java programs.
This in essence temporarily disables the typechecker: as in
dynamically-typed languages, the program will only fail at
runtime (as opposed to failing statically with a type error).

We push this concept further by targeting Scala, a hybrid
object-oriented and functional language with an expressive
and powerful type system. What happens if one “temporar-
ily disables” a sophisticated typechecker? Is it still possible
to obtain meaningful dynamic feedback? We describe new
techniques and challenges in deferring typechecking until
runtime of (possibly type-incorrect) Scala programs. We in-
formally describe an alternate semantics for executing type-
incorrect programs, and explore the technical feasibility of a
detyping transformation for use on other real-world code.

1. INTRODUCTION
Usually, developers have to choose between statically-typed
and dynamically-typed languages, both of which have ad-
vantages and disadvantages in different stages of develop-
ment. It is always possible to obtain dynamic feedback

from programs written in a dynamically-typed language. In
such languages, semantic errors halt program execution only
at the moment they are encountered. This is in contrast
to static type systems which prevent such semantic errors
at compile-time along all program paths. Consider some
method foo of object A. If A.foo is invoked in a dynamically-
typed language, the presence of method foo in A is checked
immediately prior to calling the method at runtime, whereas
a statically-typed language would ensure the presence of
A.foo during program compilation. The upside of dynam-
ically checking the existence of foo is pure flexibility: only
those methods that are actually needed are checked, and as
a result errors can only originate from code that was (at-
tempted to be) executed. This flexibility is most helpful
during prototyping when algorithmic and architectural de-
tails change rapidly, and where the main goal is to explore
a design, or to quickly obtain correct output.

Statically-typed languages provide certain correctness guar-
antees to type-correct (that is, typecheckable) programs.
Checking the existence of foo at compile-time means that
the program is guaranteed to never encounter a method not
found error at runtime. Type annotations commonly serve
as a kind of code documentation, and also aid in automated
program verification of properties beyond those checked by
the compile-time typechecker. Lastly, static type informa-
tion can be used by the compiler to improve performance:
for example, many runtime checks can be elided safely. How-
ever, statically-typed languages require that the program-
mer present a type-correct program at all stages of devel-
opment in order to receive dynamic feedback (execute the
program). This fixes the order of feedback to be first static,
then dynamic.

Ultimately, only the programmer knows which sort of feed-
back (static or dynamic) is more valuable at any given time.
We can unfix the order of feedback; by temporarily disabling
the type checker for a statically-typed language, the pro-
grammer can run the program as if it were dynamically
typed. As with an equivalent program written in a dynami-
cally typed language, only the executed program paths must
be free of semantic errors. The programmer can run the
typechecker to get whole-program static feedback when de-
sired, and can run the program to get dynamic feedback on
a subset of their program free of semantic errors. For ex-

ample, after refactoring an interface that is implemented by
several modules, the test suite could be run for each mod-
ule when its respective refactoring is done, without having
to finish the refactoring on all the modules that implement
the interface. If the developer realizes that the refactoring
actually was a bad idea, s/he wastes much less time on the
aborted refactoring.

This approach has already been implemented for Java in
DuctileJ [6] with promising results. We hypothesize that
putting the developer in control of when to obtain dynamic
and static feedback will be even more useful when dealing
with a more complex type system. Programs can fail a com-
plex typechecker in many more ways, and discerning to which
type system feature a type error is related takes a long time
and delays testing and other dynamic feedback. Another
setback is that complex type systems often produce hard to
understand error messages which further obscures the nature
of type errors [19]. It might be the case that a dynamically-
typed version of type-incorrect program has correct runtime
behavior, but is rejected at compile-time for reasons the pro-
grammer does not understand.

Before our hypothesis can be tested, we first need to an-
swer the question of whether“temporarily disabling the type
checker” is possible for a language more complex than Java.
The Scala programming language [11] is a hybrid object-
oriented and functional programming language that builds
on Java and other languages. The close relationship between
Scala and Java allows us to provide a meaningful compari-
son.

Contribution
We present DuctileScala, a system for running statically-
typed Scala programs as if they were dynamically-typed.
This enables a programmer to run a type-incorrect Scala
program to obtain dynamic (execution) feedback before static
feedback from the typechecker. Section 2 briefly outlines
Scala’s language features. Section 3 further details the de-
sign of our de-typing transformation, and explains salient
language and type system features as needed. Section 4 de-
scribes our transformation’s implementation at compile-time
and runtime. Section 5 describes our methodology, Section 6
presents preliminary results, and Section 7 explores alterna-
tive ways of combining advantages of static and dynamic
typing. Section 8 describes future work, and Section 9 con-
cludes.

2. SCALA
Scala is a statically-typed programming language that ex-
plicitly supports both object-oriented and functional pro-
gramming paradigms. It runs on the Java Virtual Machine
(JVM) and .NET Common Language Runtime (CLR), and
interoperates cleanly with legacy Java/C# code.

2.1 Scala is object-oriented
Unlike Java, Scala is a pure object-oriented language: all
values are objects. The compiler transparently handles the
boxing and unboxing of values to provide a consistent ob-
ject abstraction for programmers, but retains the perfor-
mance benefits of Java primitives. Behaviors in Scala are
specified with classes and traits, and are extended via single

inheritance subclassing and mixin-like composition of traits.
Static methods are unsupported; instead, Scala supports sin-
gleton objects (also called module objects). Classes, mod-
ules, functions, and packages can be nested arbitrarily. Ex-
amples of each are available online [12].

2.2 Scala is functional
As in classical functional programming languages, functions
are first-class values in Scala. Also supported are features
such as higher-order functions, currying, sequence compre-
hensions, lazy values, call-by-name evaluation, and pattern
matching over extractors.

2.3 Typing Scala
The integration of these paradigms requires a very expressive
type system. The type system supports generic classes, poly-
morphic methods, implicit arguments, implicit type conver-
sions, higher-order types, higher-order functions, type re-
finements, variance annotations, explicit class selftypes, ab-
stract type members, path-dependent types, and other fea-
tures. Scala also allows cyclic references in type definitions.
General type inference on first-order and some higher-order
types can ease the burden of explicit type annotations.

2.4 Method Dispatch
Scala uses argument types and expected return type to select
a specific method implementation. The dispatch algorithm
filters implementation candidates based on the shapes of the
arguments and return value, and among those chooses the
”most specific” candidate. Complex rules involving argu-
ment types and the return type gover the relative specificity
of implementation candidates.

2.5 Implicit Formal Parameters
Scala methods allow implicit parameters, marked with the
implicit keyword. These parameters which do not need ex-
plicit arguments at invocation. If the caller does not explic-
itly provide such arguments, the compiler will automatically
insert values of the matching type found in the current lex-
ical scope. Only values marked with the implicit keyword
and possessing the correct type are eligible to “substitute in”
as an implicit argument. As with normal arguments, it is
an error if no acceptable implicit argument is provided to
the method call (or if there is ambiguity as to which value
to substitute).

2.6 Views (Implicit Conversions)
Views, also known as implicit type conversions, are special
functions that are automatically applied by the compiler if
necessary. For example, suppose there is a type conversion
from A to B, named AtoB. If some function is expecting an
argument of type B, but is given an argument of type A, the
compiler automatically inserts AtoB in order to make the
function call typecheck.

3. DETYPING SCALA
With so many complex language features, we must pick a
subset of Scala’s language features to initially focus on. Be-
low, we describe transformations for a subset1 of Scala lan-

1For a more thorough account of the Scala language features
supported by DuctileScala, consult Table 1.

guage features that are necessary to execute any Scala pro-
gram.

Our detyping transformation conceptually modifies the pro-
gram AST after parsing and before the compiler’s normal
typechecking phase. This transformation defers typecheck-
ing operations until runtime. The Scala compiler serializes
some type and symbol information in class files to support
separate compilation. This information is accessible at run-
time and can be repurposed to reflectively emulate method
dispatch decisions that would have been made by the com-
piler (provided the same information).

Not all code can be detyped because library functions impose
types on their arguments. These type constraints cannot
be altered because libraries may already be compiled (and
their source may not be available). For our transformation
to produce typecheckable code, we must keep some type
annotations at the boundary between user code and library
code.

As in DuctileJ’s transformation, our detyping transforma-
tion should have little or no effect on the runtime seman-
tics of type-correct programs, and give an alternate runtime
semantics to type-incorrect programs. This “alternate” se-
mantics is more permissive: for example, if a class does not
implement all abstract methods of a superclass or trait, it
should only fail if that method is actually called. Similarly,
a missing field should only cause an error when actually ac-
cessed, and ambiguous references should only cause an error
when they are referenced.

3.1 Variable declarations
The transformation replaces type annotations on variable
declarations with Any, the most-general type in Scala2. In
Figure 1, we show the effect of this transformation on simple
variable declarations. Note that var declarations are mu-
table references, while val declarations denote immutable
references.

// Original code

val a: String = "foo"

var b: Int = someCall(...)

// Transformed code

val a: Any = "foo"

var b: Any = someCall(...)

Figure 1: Transformed variable declarations.

3.2 Method invocations
All methods in Scala are conceptually just fields with first-
class function values. Method declarations in Scala are of
the form apply(arg1:t1, arg2:t2, ...):t3. Function ob-
jects inherit these apply methods from fixed-arity Func-

tionN traits. For example, a 2-arity function with the apply
method would mix in the Function[t1, t2, t3] trait.3

2Any is the supertype of value types (AnyVal) and reference
types (AnyRef). AnyRef is analogous to Java’s Object class
type.
3Note that type arguments are passed via square brackets
and value arguments are passed by parentheses.

We force dynamic dispatch of methods by transforming all
function applications into calls to DuctileScala’s runtime li-
brary, as seen in Figure 2. Arguments to this library function
are roughly the original arguments, their declared types (if
resolvable), the invocation receiver, the function name, and
the declared return type. A similar transformation is per-
formed for constructor invocations, but they must be han-
dled differently due to slightly different dynamic dispatch
rules. Construction of arrays of primitive values also war-
rants a special case due to limitations of the JVM.

// Original code

var a: String = "foo"

scala.Predef.println(a) //returns Unit

// Transformed code

var a: Any = "foo"

RT.invoke(scala.Predef, //call receiver

typeOf(scala.Predef), //receiver type

"println", //method name

List(a), //actual arguments

List(typeOf(a)), //resolved arg. types

Unit) //declared return type4

Figure 2: Transforming a function application.

Note that RT.invoke and other library calls have return type
Any.

3.3 Method declarations
Our goal is to allow methods to take any arguments, as in
dynamically-typed languages. To achieve this, we must ad-
just function types to be as general as possible. A simple
solution would be to replace every formal parameter type
with Any (first example in Figure 3). This is inadequate
in the face of method overloading: two methods with the
same name and arity would be translated to the same de-
typed function type signature, and the compiler will termi-
nate when it encounters two method declarations with the
same function type and name. A workaround for this was
used by DuctileJ (second example in Figure 3): in essence,
dummy formal parameters are introduced for each original
type, and the correct version of the overloaded method is
picked at runtime based on actual parameter types. The
dummy parameters exist solely to differentiate function sig-
natures, so arbitrary arguments are passed at runtime and
are unused.

Unfortunately, even DuctileJ’s transformation is insufficient
in a language with first-class functions. External library
code that has not been detyped may have constraints on
the types of functions passed as arguments. For example,
suppose there is a library method foo that takes functions
of type A => B as an argument. Even if a programmer calls
foo correctly in her code, DuctileScala’s detyping transfor-
mation may change the type of the argument to be Any =>

Any, resulting in a compile-time error at foo if passed to
a library function, or a runtime error if called by external
code.

To handle this case, we duplicate the original method, leav-
ing one copy un-mangled and one copy mangled (with dummy

//original code

def gcd(a: Int, b: Int) : Int = { ... }

//naive translation

def gcd(a: Any, b: Any) : Int = { ... }

//DuctileJ translation

def gcd(a: Any, a$dummy: Int,

b: Any, b$dummy: Int) : Any = { ... }

//DuctileScala translation

def gcd$(a: Any, a$dummy: Int,

b: Any, b$dummy: Int) : Any = { ... }

def gcd(a: Int, b: Int) : Int { ... }

Figure 3: Varying approaches for transforming func-
tion declarations in Scala.

// library code

def foo(fun: A => B): Unit = { ... }

// user code

def bar(a:A): B = { ... }

foo(bar) //correct in original code

Figure 4: DuctileScala will change the type of bar

from Function1[A,B] to Function2[Any,A,Any].

parameters). A similar procedure is also applied to construc-
tors. The benefit is that we can call into external libraries
without detyping them. However, this effectively doubles
the code size and number of functions. One way to reduce
code explosion is to turn the original function into a wrap-
per that calls the detyped version of the function. Building
off of the example in Figure 3, we could replace the last line
with:

def gcd(a: Int, b: Int) = {

gcd$(a, b)

}

3.4 Generics, type variables, and bounds
In order to be compatible with Java and the JVM platform,
Scala performs type erasure of generics and type variables,
and removes type parameter constraints (bounds, type re-
finements) after typechecking. All type parameters will be
converted to the type Any in the erasure phase of the com-
piler, so we don’t have to explicitly handle them. Similarly,
type variables behave like type aliases and are replaced with
their definition at compile-time by the existing compiler in-
frastructure. Type bounds are completely ignored in our
detyping transformation, since they have no effect on the
language’s runtime semantics.

3.5 Other features
Inferred types The Scala compiler infers the type of all
expressions which do not have an explicit type annotation.
Since we transform the type of all fields to Any and all invo-
cations through the runtime library return Any, all inferred
types will be be Any as well.

First-class functions and Closures First-class functions
and closures are converted to anonymous classes with an
apply method. This is a syntactic transformation done by
the parser, so nothing special has to be done.

Views The availability of implicit type conversions is con-
trolled by a scoping mechanism. Selection of a most-specific
implicit conversion among several alternatives is governed
by normal rules of overloading and overriding for methods.
Static implicit type conversions are applied by the compiler
during typechecking. To defer the application of these con-
versions until runtime, all scopes and the implicits available
within them must be consulted at runtime.

Multiple argument lists Method signatures with multi-
ple argument lists are converted by the Scala compiler to
methods with only one argument list by concatenating all
the argument lists in the type erasure phase. The compiler
ensures that no two functions have the same signature af-
ter type erasure. A valid transformation compliant with our
detyping is then to concatenate the different argument lists
when creating the RT.invoke calls.

Pattern Matching Pattern Matching matches objects based
on their runtime types and their constructor parameters. In
our transformation, the case selectors containing the pat-
tern to match are not detyped, though the contents of the
if statement guarding the case selector and the code inside
each case are detyped.

4. IMPLEMENTATION
DuctileScala is comprised of two interacting components:
a compile-time syntactic transformation that simulates the
“detyping” of a Scala program to an equivalent dynamically-
typed program, and a runtime support library that reimple-
ments many of the decisions usually made at compile-time
by the Scala compiler. We explain the architecture of each
major component, and how the compile-time and runtime
parts interact.

4.1 Compiler phases
Scala exposes a flexible, extensible plugin and compiler phase
interface [20] that allows plugins to add several new compiler
phases, replace old phases, or skip entire phases. We imple-
ment the detyping transformation as a plugin for the Scala
2.8.1 compiler. Figure 5 shows the resulting compiler phases.

First, we summarize several original Scala compiler phases
that are important to our work:

• parser phase: The compiler’s frontend phase. It
parses the source code text and produces an abstract
syntax tree (AST).

• namer phase: This phase creates the symbols corre-
sponding to program entities, and assigns their types,
if explicitly annotated.

• packageobjects phase: This phase loads the pack-
ages imported in the code.

• typer phase: Infers the types of all symbols that re-
main untyped after the namer phase, and does some
simple typechecking.

parser
signature * (Signature mangling)
earlynamer* (Early namer)
earlypackageobjects* (Early package objects)
earlytyper* (Early typer)
detyper* (Detyping)
namer (Create symbols)
packageobjects (Loads packages)
typer (Infer types)
...
pickler (Pickle symbols and types)
peekpickle* (Peek at pickle)
refchecks
...
terminal

Figure 5: Phases of the compiler when the Duc-
tileScala plugin is active. Asterisks mark phases be-
longing to DuctileScala.

• pickler phase: The pickler serializes type and symbol
information that is needed to support separate compi-
lation. For every top-level class5, it pickles the neces-
sary information into a binary format, which is then
stored in the classfile as a runtime annotation.

• refchecks phase: Does more advanced typechecking
than typer and simplifies the intermediate code.

The new phases are described below, in order of execution.

Signature Mangling (Phase signature)
This phase performs several syntactic transformations on
the source program.

1. First, it duplicates and mangles the signatures of meth-
ods and constructors, as described in Section 3.3.

2. It inserts import statements to include our runtime
library.

3. Certain basic types are added into the definition, which
forces these types to get pickled into the classfile. Since
only the type and symbol information for fields, meth-
ods, objects, and classes are needed for separate com-
pilation, this is all that is pickled by the compiler. An
alternative is to recreate the pickle phase, deciding
what to write into the pickle, but this approach has
not been explored yet.

Early Namer, Early Package Objects and Early Typer
(earlynamer, earlyobjects, earlytyper)
The detyper needs type information to resolve methods and
pass in declared types when rewriting a method invocation.
Type information comes from the namer, packageobjects

and typer, but if incorrect types are specified, those phases
will terminate compilation with a type error. The early-

namer, earlypackageobjects and earlytyper phases mimic

5In Scala, a top-level class is not lexically enclosed by any
other class or module. It is equivalent to the granularity of
a single Java source file. Scala allows several classes to be
defined in the same source file.

the original versions of those phases, with one important
difference: they silently record errors, instead of halting the
entire compilation process. If the type of an expression can-
not be inferred/resolved, then it is set to Any and resolution
is deferred until runtime.

The original namer, packageobjects and typer phases run
after detyper, but they do not affect type annotations at-
tached to symbols. In effect, our early phases fully annotate
the AST with types, and the built-in phases need not anno-
tate anything.

Detyper (Phase detyper)
The detyper phase traverses the AST twice. The first time,
it replaces method, select and constructor invocations with
a call to the corresponding RT.invoke and RT.construct

methods in the runtime library, using the types produced
by the earlynamer and earlytyper phases: the receiver ob-
ject type, argument types, and method return type. The
second traversal replaces all type annotations with Any, ex-
cept for the arguments of main (which cannot be detyped)
and method and constructor signatures, which are already
mangled, and case selector in match statements, used for
pattern matching.

PeekPickle (Phase peekpickle)
Since types and symbols are possibly cyclic, we pass types
to the runtime as indices into a pickle instead of specifying a
class object. The pickler runs after the detyper. Peekpickle
retrieves the type references needed in the transformed code,
and converts these type references to something the runtime
can understand. Using the pickled symbol and type infor-
mation, for each type we insert the byte offset of that type
in its respective pickle and a string representing the class-
name where the pickle is. Figure 6 shows the final form for
transformed method calls.

To find a type’s offset, we first try to look in the pickle of
the current lexically enclosing top-level class. If that pickle
doesn’t contain the type, we look in the pickle of the top-
level class of the type’s owner symbol. If it is still not found,
two possibilities arise. For types with instantiated type ar-
guments, the erased types can be used to reference that type,
since the runtime cannot distinguish between the different
instantiations of the types6. For types of that are defined in
Java classes, the fully qualified name of the erased type can
be used to uniquely identify them, so a special dummy index
and the fully qualified name are passed to the runtime, to
be specially processed using Java’s reflection library. If none
of these apply, we can default and reference to Scala’s Any

type.

For example, to reference the String type in Figure 6, we
first search the pickle of the Test class. If that search is
unsuccessful, the algorithm retrieves the symbol that owns
String and searches there.

4.2 Runtime support
The runtime library provides three methods which imple-
ment method dispatch at runtime: RT.invoke for calling

6This doesn’t hold for the construction of Arrays of primi-
tive types as explained in Section 3.3.

// Original code

object Test {

var a: String = "foo"

scala.Predef.println(a)

}

// Transformed code

object Test {

var a: Any = "foo"

RT.invoke(scala.Predef, //call receiver

32, //re-

ceiver type offset

"scala.Predef", //re-

ceiver type classname

"println", //method name

List[Any](a), //actual arguments

List[Int]47), //argu-

ment type offset

List[String]("Test"), //argu-

ment type classname

47, //return type offset

"Test") //re-

turn type classname

}

Figure 6: Final method call transformation, type
Any has offset 47 in the classfile Test and type
scala.Predef has the offset 32 in the classfile
scala.Predef.

methods, RT.construct for calling constructors, and
RT.constructArray for constructing arrays. Unlike Duc-
tileJ’s runtime library, we do not have a function for access-
ing fields: the Scala compiler desugars all field accesses into
getter and setter methods before typechecking, so they are
unneccessary. The runtime invoke and construct methods
take as arguments the call receiver, the method or construc-
tor name, the original types of arguments, the original ar-
guments themselves, and the return type. The library code
then uses the compiler’s type inference engine to determine
what (if any) method should be called, given the argument
types, method name, and return type. If it finds a matching
method, then it converts the Scala types to the correspond-
ing JVM classes. With these JVM-friendly classes, we can
load and invoke the appropriate method or constructor using
normal Java reflection.

Implementation details:

• Passing types Because Scala types cannot be repre-
sented fully as JVM classes due to potential circular
dependencies, and Scala lacks its own reflection library,
there is no simple way to pass types as arguments to
the runtime library’s methods. Our approach, as de-
scribed in 4.1, is to reuse the top-level class pickles
along with a copied version of the compiler’s unpick-
ler routine to recreate the compiler’s representation of
the full Scala types at runtime. This representation is
also used by the compiler itself during compilation, so
reuse of the type inference algorithm, type, and symbol
methods is simple.

• Primitive operations Scala does not compile all Scala
method calls to JVM-bytecode method calls. Although
Scala presents a uniform object abstraction across both
reference and value types , it compiles arithmetic oper-
ations, string concatenation, and array construction in
a more efficient manner. The Scala typechecker treats
these operations as methods, but the bytecode gener-
ator converts them into JVM primitive bytecodes.

The compiler plugin does not need to handle these
cases specially, but the runtime library must be aware
of and handle them. In some instances it may need
to execute a primitive operation instead of a method
call. This requires a large case block of repetitive code
to call the right operation for each special-cased type.
To create both regular and primitive arrays, the Duc-
tileScala runtime passes in the types to the Java run-
time, which handles array creation.

• Static and dynamic type mismatch In the ideal
case, the runtime type of an object is always a subtype
of the statically declared type. However, if there is an
error that halts execution (for example, no method
of the specified name is found), the runtime should
try to dispatch on the actual dynamic types of the
objects before giving up and throwing an exception. If
no exact match is found, our alternate semantics tries
several heuristics to find a similar method to call. For
example, it assumes that the static type of the receiver
is more likely to be correct than the static type of the
arguments, so methods with differing argument types
are examined first. In order to get the dynamic Scala
type, the Java Object.getClass() method is called on
the object and the compiler code looks up the resulting
name to get the equivalent Scala type, with special
cases for null, arrays, and primitives.

In type-incorrect code, it is possible that the method
that was intended to be invoked is found but the dy-
namic types of the arguments are invalid for the method.
If the method is not detyped, as with external library
code, DuctileScala throws an exception. If the method
is user code, then its signature may simply be wrong,
so we should invoke the method anyway using the man-
gled version with detyped arguments as described in
Section 3.3. The runtime also recognizes that library
classes do not have mangled methods and falls back to
calling unmangled methods if mangled equivalents are
not found.

• Implicit parameters If a caller does not pass in a ar-
gument for a parameter marked implicit, then Scala
searches the environment for a type-correct match (which
also must be marked implicit). (See Section 2.5.) At
its current state, the runtime can only find implicit
objects defined in scala.Predef, which is imported
by default in all Scala programs (and thus always in
scope for implicits selection).

Scala’s typechecker automatically resolves missing im-
plicit parameters. To use it, the runtime constructs a
syntax tree for the method call and passes it to the
typechecker, which modifies the tree to fill in the miss-
ing arguments. The runtime converts the modified
AST to Scala runtime values, and takes the relevant

objects as values to pass to the method. Note that cur-
rently the typechecker only considers implicit objects
defined in scala.Predef.

• Views (implicit conversions) Implicit conversions
(see Section 2.6), can be applied to call receivers or
arguments. 7 To find implicit conversions for the re-
ceiver, the runtime builds an AST for the method call
and run the compiler’s typechecker on it. If an implicit
conversion is supposed to be applied to the receiver,
the typechecker will modify the AST correspondingly.
If the runtime detects a modification it will deconstruct
the AST to find the inserted conversion and apply it.
Similarly for arguments, when the runtime uses the
typechecker to determine the correct method to call,
that method may have formal parameter types which
do not match the actual argument types given to the
typechecker. That means the typechecker needs to be
asked for each pair of argument and parameter types
what implicit conversion to use to convert that argu-
ment to the proper type; that conversion is then ap-
plied.

It bears repeating that we are able to reuse much of the ac-
tual Scala compiler, since it is self-hosted. This reuse has
saved a lot of effort and avoided a lot of possible reimple-
mentation bugs. The runtime hooks into parts of the com-
piler comprising thousands of lines of code with thousands
of lines of code with myriad obscure edge cases and implicit
(and fragile) assumptions. If we observe the correct types
at runtime, the method dispatch algorithm will mimic what
Scala would have done at compile time.

On the other hand, there are some issues in reworking the
Scala compiler as a dynamic Scala runtime. In order to
get it to act as such, we create stubbed versions of some
Scala compiler objects. Creating these compiler objects may
trigger slower and useless compilation code, and some code
duplication was inevitable for compiler classes with private
members that needed to be modified in our implementation.
Loading the Scala compiler JAR for every program execu-
tion could also be detrimental to performance.

5. EVALUATION
Our primary contribution is to determine whether the core
idea of DuctileJ scales (in a technical sense) to more complex
type systems. Another possible contribution is to obtain a
first approximation to the question of whether such always-
available dynamic feedback is more, less, or equally useful in
a language with a more sophisticated type system. To val-
idate our first contribution, we need to qualify the kinds of
type-correct and type-incorrect programs that our transfor-
mation and runtime can support. The second contribution is
hard to quantify, but supporting evidence could be gathered
in a similar fashion as in the user study of DuctileJ. Instead,
we provide use cases to motivate our choice of permissive
semantics for type-incorrect code, and defer 3rd-party test-
ing of these semantics to future work. To evaluate our first
contribution, we assembled a suite of 62 programs that test
various aspects of Scala on these.

7Scala allows at most one implicit type conversion to be
applied to any value.

At the lowest level, our transformation must preserve the
runtime semantics of type-correct input programs. We plan
to use an informal approach to verifying equivalent (up to
observable output) runtime semantics by running transformed
and original versions of type-correct programs from our test
suite and comparing their output.

The real power of the Ductile approach to combining static
and dynamic typing is that type-incorrect programs can still
in some cases provide meaningful feedback through execu-
tion. Thus, we can measure the outcome of our approach
by the set of classes of type-incorrect programs that we can
execute using more permissive semantics. To demonstrate
these permissive semantics, we will create several test cases
for each class of type error that we can work around.

6. RESULTS
Currently, we are able to run a limited subset of type-correct
Scala programs in addition to variants with certain kinds of
type errors.

The features we support include:

• Method invocation, including recursive methods with
method dispatch for class hierarchies, as in Figure 7.

• Object construction with parameters.

• Closures, including for loops and other Scala control
structures which use them, as shown in Figure 8.

• All primitive operations (+,−, ∗, <=), including string
concatenation.

• Static implicit conversions (views), for conversions that
can be determined at compile-time.

• Dynamic implicit conversion (views) for receivers for
views in Predef, as as shown in Figure 9.

• Static implicit parameters.

• Dynamic implicit parameters for implicits in Predef.

• Multiple argument lists.

• Pattern matching, including correct handling of case
classes, which can be constructed without a new state-
ment.

• Import of Scala packages.

• Correct handling of Java class.

The detyping transformation also allows us to run code with
incorrect static types but correct dynamic types, interacting
with a diversity of Scala features as shown in Figures 7 and
9.

7. RELATED WORK
There are many other approaches besides our own that try
to combine the strengths of static and dynamic typing. We
can categorize these approaches by the strengths they aim
to import from dynamically-typed languages into statically-
typed languages (or vice versa).

Figure 7: Allowing incorrect static types, the invo-
cation of speak is done based on runtime types, even
if the static types are incorrectly declared.

object Test {

class Cat {

def speak() = println("I’m a cat!")

}

class Cow {

def speak() = println("I’m a cow!")

}

def main(args: Array[String]) = {

val b:Cat = new Cow

b.speak() // prints "I’m a cow!"

}

}

Figure 8: Closures and function objects are both
handled correctly: the argument {a()} is a simple
closure that calls method a and the argument b is
passed as Function0[Unit] object.

object Test {

def a() : Boolean = {return true}

def b() = {println("In body!")}

def main(args: Array[String]) = {

def ifLoop(cond: => Boolean, body: => Unit) = {

if (cond) body

}

ifLoop ({a()}, b) //prints "In body!"

}

}

Figure 9: Implicit runtime conversion of String

into StringOps, note that this example doesn’t type
check because the type Any has no capitalize method
and also the runtime type String has no capitalize

method defined.

object Test {

def main(args: Array[String]) {

println(someString.capitalize) // prints "Testing."

}

def someString : Any = "testing."

}

7.1 Improving statically-typed languages
Our approach attempts to integrate the quick development
cycle of dynamic languages into a statically-typed language
by deferring typechecking until the last possible moment
(namely, runtime). This technique was pioneered in Java
by Bayne, et al. with DuctileJ [6]. Though Java and Scala
are similar and we employ a similar “detyping” transforma-
tion as DuctileJ, our implementation strategy differs signifi-
cantly. DuctileJ reimplemented many of the type resolution
routines at compile-time, whereas we could reuse most of the
existing compiler code. Similarly, their runtime system had
to reimplement the dispatch algorithm in its entirety, while

we were able to reuse the machinery of the Scala compiler.
On the other hand, DuctileScala requires much more infor-
mation at runtime to match the language’s dispatch seman-
tics, so our approach has a larger space and time overhead.

Another way to speed up the development cycle is through
use of an interactive read-eval-print loop (REPL). While
REPLs are historically associated with dynamic languages
such as Lisp, Scheme, and Python, several modern statically-
typed languages include a REPL-like program in their stan-
dard distribution. REPL-ready languages include Haskell [24],
Scala [23], and Ocaml [16]. REPL programs accelerate the
process of obtaining feedback from the compiler (relative to
whole-program batch compilation), but they are still funda-
mentally more restrictive than our approach in that dynamic
feedback always follows static feedback.

Sometimes the explicit goal is not development speed, but
program flexibility. With dynamic typing, variables may ref-
erence several different types freely without any constraints.
In contrast, consider a variable with type Any: this vari-
able could be a reference to objects with any real type, but
the typechecker ensures that Any actually declares all meth-
ods that the variable is a receiver of. The Dynamic type [7]
recently introduced to C# 4.0 allows the programmer to
sidestep typechecking of any variable with type Dynamic.
Compared to DuctileScala, their approach limits the scope
of dynamism to just those variables with type Dynamic. This
has advantages and disadvantages: only certain annotated
parts of the program become more dynamic, and the rest of
the program remains statically typed (through automatically-
inserted runtime checks and casts). This can also be viewed
negatively: the programmer must painstakingly reason about
and manage the boundary between dynamic and static types
in the program. Our approach also provides dynamism and
flexibility, but transparently without any extra annotation
burden.

Some dynamically-typed programming languages are designed
as sister languages to specific statically-typed languages,
with the intent of providing a more lightweight and flexible
syntax but allowing equivalent program structure and us-
age of familiar libraries. The Groovy scripting language [18]
is one such “dynamic doppelganger” to the static Java lan-
guage, and BeanShell [21] is an even more faithful dynamic
version of Java. Using two distinct but related languages has
obvious drawbacks: the application must be implemented
in both languages, an unacceptable increase in required de-
veloper effort. Conceptually, DuctileScala’s detyping trans-
formation and runtime library support the execution of a
“dynamic version” of the original program. However, this
doppelganger has identical semantics as the static language
by construction, and is transparent to the tool user.

The two previous approaches, along with our approach, make
static type systems more flexible by way of diluting their
power; an alternative approach to increasing a type system’s
flexibility is to increase the type system’s power. For exam-
ple, Scala’s statically-typed implicit type conversions can
emulate the primitive type coercions of dynamic languages
without syntactic overhead. In some sense, adding support
for generic programming [15, 22, 25] is one way to approach
the raw flexibility of dynamic types by making statically-

typed programs more general.

7.2 Improving dynamically-typed languages
Though DuctileScala focuses on importing the benefits of
dynamism into a statically-typed language, most work at
the intersection of static and dynamic typing has taken the
path of enriching dynamically-typed languages with the ben-
efits of static typing (most importantly, static feedback). All
such approaches essentially create a new static type system
for the dynamic language. Use of the type system is ac-
complished by transparently inferring types of dynamic pro-
grams during compilation, by adding language/parser sup-
port for explicit type annotations, or other techniques.

Automatically inferring types in dynamic languages imposes
the least burden on programmers (comparable to DuctileJ
or DuctileScala). Unfortunately, this convenience comes
at a cost: such inference-friendly type systems are typi-
cally weak or unsound (unable to provide safety guaran-
tees) or brittle (small program changes may cause large
changes to inferred types). Static type inference of dy-
namic languages was first investigated as “soft typing” in
Scheme [10, 30]; more recent work has targeted Ruby [14],
Python [3, 4, 9, 26], JavaScript [2, 17], and other languages.
Some researchers have abandoned purely static inference in
favor of approaches that combine static inference with run-
time feedback [13] with moderate success. Others have in-
vestigated tractable subsets of existing dynamically-typed
languages [1,28] or entirely new languages [8] that are more
suitable for static type analysis and inference; these ap-
proaches are much more successful but require refactoring
or rewriting of programs.

Finally, adding explicit type annotations to dynamically-
typed languages has been proposed many times as a means
to aid program verification and optimization. A goal com-
mon to our work and several works based on annotating is
to support typed and untyped code within the same pro-
gram. We support this at the granularity of entire execu-
tions: an execution can either be typed normally, or de-
typed8 in its entirety. At this resolution, there is nothing
to annotate. Others have investigated more fine-grained
divisions at the granularity of modules [29] or individual
types [27, 31]. These approaches allow for better control
and program evolution, but also require extra reasoning
by the programmer. There are many other type systems
for dynamically-typed languages (e.g. for verifying security
properties), but they are ou[tside the scope of this discus-
sion.

8. FUTURE WORK
We have implemented a substantial subset of Scala, but
there are still several language features that must be ad-
dressed to run real-world code. Most missing features are
omitted for a lack of time, but a few features lack a simple,
straightforward translation. Below, we describe some of the
more challenging implementation obstacles that remain. A
fuller list of partial and unsupported features exists in the
feature matrix of Table 1.
8Remember that even after DuctileScala’s detyping trans-
formation, external library code is still “typed” though the
runtime semantics of typed and detyped code are intended
to be equivalent.

General support for implicits and views
We are unsure how to tractably implement selection of im-
plicit type conversions and implicit parameters at runtime.
A brute-force approach to selecting implicits would be to
pass names and types of all available (i.e., in scope) implicit
type conversion methods to every program expression where
such conversions could be applied. This approach has obvi-
ous code explosion issues.

A more conventional approach would be to serialize the scop-
ing“topology”of the running program, and have the runtime
library simulate the program’s current scope with calls like
RT.enterScope and RT.exitScope at entry and exit from
scopes. When an implicit argument or implicit type con-
version is necessary, the runtime will know (based on the
simulated scope) the context from which these implicits can
be selected. While less brute-force, this scope simulation
approach is greatly complicated by exceptional control flow
and its effects on the current scope.

Call-by-name function arguments
Scala supports thunks(call-by-name arguments), values that
are not evaluated prior to function application. The type of
an A passed by name is written as (=>A) The Scala compiler
desugars these into anonymous classes with a nullary apply

method. Since these closures are anonymous and their sig-
natures are not pickled, there is no way to know their return
type. This means that dispatching methods based on call-
by-name values is unsupported by DuctileScala.

We also leave to future work the task of evaluating Duc-
tileScala in realistic programming situations. A user study
similar to that conducted for DuctileJ would permit a useful
comparison between the two in terms of impact on software
development.

9. CONCLUSION
From both a theory and implementation standpoint, de-
typing Scala code is much more involved and tricky than
detyping Java code. We present DuctileScala, a detyping
approach based on compile-time transformations and run-
time support. Our conclusion is that such an approach is
too buggy and troublesome to be feasible for complex Scala
programs. Emulating the semantics of typed Scala code at
runtime requires a lot of reified compiler context (compared
to Java). Passing this context to the runtime libary is error-
prone in the face of compiler-controlled serialization of types
and symbols.

We believe that a dynamic Scala interpreter (a la Bean-
Shell [21]) endowed with a more relaxed typechecker has a
better chance of running real-world Scala programs. With
full access to the program AST at runtime, there is virtu-
ally no engineering necessary to pass compiler context to
runtime: they are one in the same. Regardless, our work is
a useful data point for other researchers who may be curi-
ous as to the limits of the compiler transformation/runtime
library approach for detyping.

10. REFERENCES
[1] Davide Ancona, Massimo Ancona, Antonio Cuni, and

Nicholas D. Matsakis. RPython: a step towards

reconciling dynamically and statically typed OO
languages. In Proceedings of the 2007 symposium on
Dynamic languages (DLS), pages 53–64, New York,
NY, USA, 2007. ACM.

[2] Christopher Anderson. Type inference for JavaScript.
PhD thesis, Department of Computing, Imperial
College London, March 2006.

[3] Joe Angell. Gradual Python with colored local type
inference.
http://www.cs.colorado.edu/ bec/courses/csci5535-
s09/slides/angell-presentation.pdf,
2009.

[4] John Aycock. Aggressive type inference. In
Proceedings of the 8th International Python
Conference, pages 11–20, 2005.

[5] Michael Bayne, Richard Cook, and Michael D. Ernst.
DuctileJ project page.
http://code.google.com/p/ductilej/.

[6] Michael Bayne, Richard Cook, and Michael D. Ernst.
Always-available static and dynamic feedback. In 33rd
International Conference on Software Engineering
(ICSE), 2011. To appear.

[7] Gavin Bierman, Erik Meijer, and Mads Torgersen.
Adding dynamic types to C#. In Proceedings of the
24th European conference on Object-Oriented
Programming (ECOOP), 2010.

[8] Bard Bloom, John Field, Nathaniel Nystrom, Johan
Östlund, Gregor Richards, Rok Strnǐsa, Jan Vitek,
and Tobias Wrigstad. Thorn: robust, concurrent,
extensible scripting on the JVM. In Proceeding of the
24th ACM SIGPLAN conference on Object oriented
programming systems languages and applications
(OOPSLA), pages 117–136, New York, NY, USA,
2009. ACM.

[9] Brett Cannon. Localized type inference of atomic
types in Python. Master’s thesis, California
Polytechnic State University, 2005.

[10] Robert Cartwright and Mike Fagan. Soft typing. In
Proceedings of the ACM SIGPLAN 1991 conference
on Programming language design and implementation
(PLDI), pages 278–292, New York, NY, USA, 1991.
ACM.

[11] EPFL. The Scala programming language.
http://www.scala-lang.org/.

[12] EPFL. A tour of Scala.
http://www.scala-lang.org/node/104.

[13] Michael Furr, Jong-hoon (David) An, and Jeffrey S.
Foster. Profile-guided static typing for dynamic
scripting languages. In Proceeding of the 24th ACM
SIGPLAN conference on Object oriented programming
systems languages and applications (OOPSLA), pages
283–300, New York, NY, USA, 2009. ACM.

[14] Michael Furr, Jong-hoon (David) An, Jeffrey S.
Foster, and Michael Hicks. Static type inference for
Ruby. In Proceedings of the 2009 ACM symposium on
Applied Computing (SAC), pages 1859–1866, New
York, NY, USA, 2009. ACM.

[15] Ronald Garcia, Jaakko Järvi, Andrew Lumsdaine,
Jeremy G. Siek, and Jeremiah Willcock. An extended
comparative study of language support for generic
programming. Journal of Functional Programming, 17,
March 2007.

[16] INRIA. The toplevel system (ocaml command).
http://caml.inria.fr/pub/docs/manual-

ocaml/manual023.html.

[17] Simon Holm Jensen, Anders Møller, and Peter
Thiemann. Type analysis for JavaScript. In
Proceedings of the 16th International Symposium on
Static Analysis, pages 238–255, Berlin, Heidelberg,
2009. Springer-Verlag.

[18] Dierk Koenig, Andrew Glover, Paul King, Guillaume
Laforge, and Jon Skeet. Groovy in Action. Manning
Publications Co., Greenwich, CT, USA, 2007.

[19] Benjamin S. Lerner, Matthew Flower, Dan Grossman,
and Craig Chambers. Searching for type-error
messages. In Proceedings of the 2007 ACM SIGPLAN
conference on Programming language design and
implementation, pages 425–434, New York, NY, USA,
2007. ACM.

[20] Anders Bach Nielsen. Scala compiler phase and
plug-in initialization for Scala 2.8.
http://www.scala-lang.org/sid/2.

[21] Pat Niemeyer. BeanShell: Lightweight scripting for
Java. http://www.beanshell.org.

[22] Bruno C.d.S. Oliveira and Jeremy Gibbons. Scala for
generic programmers. In Proceedings of the ACM
SIGPLAN workshop on Generic programming (WGP),
pages 25–36, New York, NY, USA, 2008. ACM.

[23] Paul Phillips. The interactive interpreter (REPL).
http://www.scala-lang.org/node/2097, 2009.

[24] Bernie Pope. Step inside the GHCi debugger. Monad
Reader, 1(10), March 2008.

[25] Alexey Rodriguez, Johan Jeuring, Patrik Jansson,
Alex Gerdes, Oleg Kiselyov, and Bruno C. d. S.
Oliveira. Comparing libraries for generic programming
in Haskell. In Proceedings of the first ACM SIGPLAN
symposium on Haskell, Haskell ’08, pages 111–122,
New York, NY, USA, 2008. ACM.

[26] Michael Salib. Starkiller: a static type inferencer and
compiler for Python. Master’s thesis, Massachusetts
Institute of Technology, May 2004.

[27] Jeremy Siek and Walid Taha. Gradual typing for
objects. In Proceedings of the 21st European conference
on ECOOP 2007: Object-Oriented Programming,
pages 2–27, Berlin, Heidelberg, 2007. Springer-Verlag.

[28] The Caja Team. Caja: a source-to-source translator
for securing JavaScript-based web content.
http://code.google.com/p/google-caja/, 2010.

[29] Sam Tobin-Hochstadt and Matthias Felleisen.
Interlanguage migration: from scripts to programs. In
Companion to the 21st ACM SIGPLAN symposium on
Object-oriented programming systems, languages, and
applications, pages 964–974, New York, NY, USA,
2006. ACM.

[30] Andrew K. Wright and Robert Cartwright. A
practical soft type system for Scheme. ACM Trans.
Program. Lang. Syst., 19:87–152, January 1997.

[31] Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain
Lebresne, Johan Östlund, and Jan Vitek. Integrating
typed and untyped code in a scripting language. In
Proceedings of the 37th annual ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’10, pages 377–388,
New York, NY, USA, 2010. ACM.

Table 1: A Feature Matrix for DuctileScala

Language Feature Support Level Related test cases Details

Variable declarations Full various

Method declarations Full various

Function application Partial no_args_call, one_arg_call,
various

Object construction Partial construct_type_param,
construct_type_param2,
constructors various

We do not support construc-
tors with type arguments (as de-
scribed in Section 8).

Array construction Full array_construct,
array_primitive_construct,
array_primitive_class

Multiple argument lists Full multiple_argument_list

Implicit type conversions Partial arg_view, arg_view_int,
arg_view_int_typed,
captialize,
captialize_detyped,
captialize_runtime

Only with type conversions de-
fined in scala.Predef or in cor-
rectly typed code (found at com-
pile time).

Partial function application Partial partial_application It is syntactic sugar that creates a
function object that calls the orig-
inal function with all parameters.

Abstract type members Full abstract_types

Module objects Full various

Nested classes/objects Partial nested_objects,
nested_classes

Only nested objects supported.

Polymorphic methods Partial poly_dispatch,
poly_dispatch_detyped

Polymorphic dispatch not sup-
ported with detyped objects.

Closures Full closure, for_loop

Primitive binary operators Full int_add, byte_shift

Pattern Matching Full case_case_class_no_arg,
case_case_class_one_arg,
case_int, case_trivial,
unapply_case, pattern_polar

Generated code signatures are not
mangled, but the code inside is.

Implicit arguments Partial implicit_arg,
implicit_arg_detyped,
implicit_arg_detyped_only,
implicit_arg_typed,
implicit_argument

Only implicit arguments defined
in scala.Predef are used.

Java types/Module imports Full java_types, pattern_polar

Type Variances No explicit support It is a check done only at compile
time.

Type bounds No explicit support It is a check done only at compile
time and it can’t be used dispatch
at runtime since only erased types
are available.

Traits No explicit support It is a check done only at compile
time.

Self references No explicit support It is a check done only at compile
time.

Pass-by-name values None Not implemented, as a new inter-
face to the runtime library would
be needed.

Varargs None Very important since List’s and
other collections’ constructors de-
pend on varargs. Requires a
change to the runtime to make it
properly recognize the difference
between varargs and regular Seq

arguments.

