
Faster Real-Time Classification Using Compilation

[Final Report]

Gilbert Bernstein Morgan Dixon Amit Levy

University of Washington
Seattle, WA

{gilbazoid,mdixon,levya}@cs.washington.edu

ABSTRACT
We introduce new methods for optimizing the performance
of machine learning classifiers. Building from the property
that prediction algorithms interpret a model output by a
learner, we explore optimizations that can be made during
prediction by replacing the interpreter with a compiler. We
explore this idea in the context of decision-tree classifiers and
use our findings to discuss potential optimizations that could
be made in the context of other models. We validate our
optimizations on predictors that are used by several classes
of applications, including a decision tree classifier used in
Prefab, a research project lead by one of the authors.

General Terms
Compilers, Machine Learning

1. INTRODUCTION
Machine Learning has become an extremely effective strat-
egy for solving complex problems [6]. While traditional pro-
grams are manually specified, the machine learning pipeline
automates some of the difficult components of this process.
For example, consider the task of determining whether an
image contains a human face. Without machine learning,
humans manually program the computer to make this de-
cision, which could be impossible. In supervised machine
learning, humans instead program a “learner” and a “predic-
tor,” both of which are easier to implement than the manu-
ally specified program. To program a learner, humans pro-
vide a set of relevant features that can be extracted from
training examples and code that will automatically use these
features to make a decision. This data structure is called
the model. A decision tree learner, for example, is a learner
that constructs a decision tree using attributes from train-
ing examples. To program a predictor, humans program an
interpreter that will interpret the learned model to provide
labels for unlabeled data. This is much easier to program
because determining the structure of the decision-making al-
gorithm has been automated and only requires humans to
provide labeled training examples to the learner.

Much of the work in optimizing supervised machine learn-
ing pipelines focuses on improving prediction accuracy and
speeding up the performance of the learner. This is because
the predictors are typically not considered to be algorithmi-
cally complex compared to the learning phase of the pipeline
and they are not considered to be a bottleneck. For example,
the runtime of a decision tree classifier is at worse linear in

the number of variables in the input data, while learning a
decision tree can be quadratic in the number of variables in
the training examples. Is is likely that more time is spent in
the learning phase than in the classification phase for many
applications. However, consider the class of machine learn-
ing applications that require real-time prediction of large
amounts of data, such as real-time computer vision, or re-
quire classification of extremely large corpora of data, such
as web site bounce-rate prediction. For such applications,
even relatively small improvements in the performance of
the predictor can have a large impact in terms of resource
cost or usability to end-users. Additionally, for these types
of problems, it is typical that the size of the unlabeled input
during the prediction phase is orders of magnitude greater
than the number of labeled training examples provided dur-
ing the learning phase. In this work, we propose to explore
the optimization of supervised machine learning classifiers.

Building upon the insight that a predictor is in essence an
interpreter, we hypothesize that reasonable gains in
performance can be obtained by compiling the pre-
dictor along with the output from the learner. At a
high level, we believe that compiling the predictor and the
learned model can provide performance gains for several rea-
sons. First compiling the predictor introduces a potential for
specialization and inlining. For example, decision tree classi-
fiers may be compiled to a series of nested if-else statements,
where specialized optimizations can be made for each node
in the tree. Compilation also enables object fields to be em-
bedded in the program as constants. This reduces the over-
head for computing an offset to obtain a field value from an
object. Similarly, compilation reduces overhead created by
dynamic dispatch. In graphical models, for example, nodes
are often objects that implement some interface. Travers-
ing a graph and executing each node’s implementation of a
function requires many dynamic dispatch operations. This
is common in models such as Bayes networks, decision trees,
and Hidden Markov models [6].

As an initial exploration of this hypothesis, we will specif-
ically examine decision tree classifiers within two domains,
pixel-based methods for reverse engineering graphical inter-
faces and Weka ID3 classification of diverse machine learn-
ing datasets. We believe decision tree models are ideal for
an initial exploration of this hypothesis for several reasons.
First, decision trees are frequently used and improving their
performance would be beneficial. In bounce-rate prediction
task, for example, reducing the prediction time by 5



Model

Learning
Algorithm

Predictor

Predictor

Proposed
Compiler

Labeled
Data

Unlabeled
Data

Labeled
Data

Compile
Time

Run
Time

 10100 ?
101100 ?
111000 ?
110100 ?

 10100 0
101100 0
111000 1
110100 1

 10110 0
101101 1
011000 0
100100 1

Figure 1: The Machine Learning Pipeline: The top path through this diagram depicts the traditional machine learning
pipeline. Given labeled data, a model is produced using a learning algorithm. Then this model, along with unlabeled data
are fed into a predictor in order to predict labels. We propose modifying the pipeline to take the bottom path. Since the
same model is run over and over again on different unlabeled data, we can compile it into a specialized predictor.

The specific contributions of this work are:

1. A novel approach to optimizing the performance of
machine learning classifiers through compiliation

2. Performance improvements on decision tree classifica-
tion by as much as a factor of three.

3. A realistic evaluation of our approach on a realistic
research prototype that directly benefits from the per-
formance of decision tree classification.

4. A diverse evaluation of our approach using a standard
machine learning library using a popular decision tree
model.

2. RELATED WORK
Decision trees are a popular machine learning model. They
are conceptually simple, easy to implement and human-
interpretable. For instance, Google uses large decision trees
(∼7000-12000 nodes) as one step of their speech processing
in voicemail transcription and search by voice features[4].
Because of their simplicity, decision trees are also frequently
chosen as base models for ensemble methods. These meth-
ods train a collection of smaller decision trees to make a joint
decision by averaging or voting on their outputs. Ensemble
decision trees are widely used, e.g. in computer vision[3] and
for predicting advertiser churn[8]. In all three of these ex-
amples, decision trees are either run on web-scale data (e.g.
every Google phone user’s voicemail) or tens of thousands
of times per image, with potential real-time constraints for
some applications.

Surprisingly, there has been relatively little previous work on
accelerating classification speed. Chen[1] considers the prob-
lem of compiling a decision tree for speech processing into a
finite state transducer. However, he is not concerned with
the resulting run-time of the resulting transducer. Mulvaney
and Phatak[7] describe a method to merge an ensemble of
decision trees into a single decision tree. Rather than accel-
erate classification time, they aim to produce more human-
interpretable models. Lowd and Domingos[5] look at the
problem of compiling graphical models (such as Bayesian
networks) into arithmetic circuits. They use the size of the
resulting circuits as a learning penalty, but also note a dra-
matic classification time speed up due to their compilation.

3. ARCHITECTURE
Decision trees classify data by traversing a tree, making
branching decisions at each node in the tree based on the
data in question. Leaf nodes in the decision tree contain
labeling information, so data labeling happens as soon as a
leaf node is reached. Conceptually, this process is similar to
how an abstract syntax tree interpreter executes a program.
This insight leads to the intuition that classification with de-
cision trees can be done more efficiently by first converting
the tree into sequential code.

We chose decision trees for their simplicity and relatively
constant structure. Each inner node of the tree performs
a test on the input data and recurses to a child node ac-
cordingly. In turn, the child node performs a similar com-
putation if it is an inner node, or returns a label if it is a
leaf node. Prefab uses a slight extension to this basic model
for traversing the tree, which we discuss in section 4.2. We
translate this computation into nested conditional clauses:



function classify(String[] data) {

if (data[0] == "Hello") {

if (data[3] == null) {

return INFORMAL_SALUTATION;

} else if(data[2] == "Mr.") {

if (data[4] == null) {

return FORMAL_SALUTATION;

} else {

return INTRODUCTION;

}

} else {

return HELLO;

}

} else if (data[0] == "Don’t") {

...

}

else {

return UNCLASSIFIED;

}

}

Figure 2: Structure of generated decision tree code

each node becomes a series of if-else statement where each
body is either another such conditional (for inner nodes) or
simply a return statement (for leaf nodes). Figure 2 gives
an example of the code structure our system generates for a
simple decision tree.

Our design extends existing decision tree learning frame-
works by adding a generic compilation path that generates
code to traverse three as well as encapsulate its structure.
We design our system to work as follows:

1. A programmer writes code to generate a decision tree
from labeled data using an existing machine learning
framework, such as Weka. For this step, the program-
mer can choose any learning algorithm that results in
a decision tree (e.g, Id3 or Best First).

2. Instead of classifying unlabeled data directly on the
resulting tree, the programmer first passes the tree
through our compiler. This steps generates a separate
executable encoding the structure and logic of their
tree as described above.

3. Finally, the programmer invokes the generated exe-
cutable, passing in her unlabeled data. Running the
compiled executable results in exactly the same output
as classifying with the original tree.

4. IMPLEMENTATION
We implemented two prototypes of our system: one for the
popular Java machine learning framework Weka, and an-
other for Prefab. We chose to implement the prototypes
in C# because Prefab is written in C# and compiled to
.NET bytecode, and Weka can be easily compiled to .NET
bytecode as well using IKVM. Moreover, C# has a conve-
nient interface for generating callable bytecode dynamically,
which made implementation and evaluation simpler.

For both of our implementations, we extended the exist-
ing decision tree framework by adding a compile method
to the nodes of the tree. The end-user constructs a tree
using normal learning process for that framework. Instead
of directly classifying unlabeled data, the user invokes the
compiler by calling the compile method on the root node of
the tree. The output of this method is a dynamic library
containing a single static method which takes one unlabeled
data instance as an argument and returns a label. To fa-
cilitate convenient comparison between the performance of
compiled versions of decision trees and the performance of
the unmodified frameworks, we directly called the generated
library function. However, it is trivial to output this library
into a .NET DLL and use it from another application en-
tirely.

Traverse at compile time and output MSIL switch state-
ments.

4.1 Weka
Weka is a popular, open-source machine learning framework
for Java. It ships with several decision tree learners as well as
learners for other classifiers such as rule based classifiers and
Bayes models. We chose to modify the Weka’s Id3 tree to
perform our experiments. Our modifications, however, are
not specific to Id3 and could be trivially replicated for sim-
ilar classifiers. Alternatively, it would be simple to expose
the necessary components of these trees (e.g., the successor
list) by forcing them to implement a common interface, and
writing a single compile method for all of them.

To make implementation of out compiler convenient, we first
used IKVM to generate .NET bytecode for the Weka Java
source. This allowed us to interface with the Weka trees in
C#. We then extended the Weka Id3 tree in a C# class,
adding a recursive compile method, and use this subclass in
the learning phase to construct an Id3 tree. At is a leaf node
of the tree, the output of the method is bytecode removes
any arguments from the stack, pushes corresponding label
onto the stack and returns. At an inner node, the output is
bytecode that retrieves an index to the successor list based
on the attribute the node uses to split the data, and switches
into code for that successor. Figure 3 lists the code we added
to Weka’s Id3 nodes.

4.2 Prefab
Prefab is a system for implementing custom user interface
behaviors across arbitrary graphical user interfaces. To pro-
vide this functionality, Prefab performs online classification
of graphical components at the pixel level based on a large
corpus of learned GUI components. Each change in the ap-
pearance of an interface is analyzed online by Prefab. Be-
fore online analysis, Prefab decomposes training examples
of widgets into an arrangement of small patterns of pixels.
Some of these decomposed parts are used as features. A fea-
ture stores an exact patch of pixels (exact colors in a spatial
arrangement of an exact size). To interpret the structure
of an interface from an image, Prefab first searches for the
provided features from a library of prototypes. Prefab then
examines the surrounding pixels of the features to identify
interface elements. In this work, we are concerned with im-
proving the performance of feature detection. Currently in
Prefab, a classification is done on each pixel in the changed



public void compile ()

{

// Stack: bottom: [Instance]

if (this.attribute == null) { // Leaf

Emit(OpCodes.Pop);

// Stack: bottom: []

Emit (OpCodes.Ldc_R4, this.classValue);

// Stack: bottom: [classValue]

Emit(OpCodes.Ret);

} else {

// Inner node

Emit(OpCodes.Dup);

// Stack: bottom: [Instance, Instance]

Emit(OpCodes.Ldc_I4, this.attribute.index());

// Stack: bottom: [Instance, Instance, index]

MethodInfo valueMethod = ...;

Emit(OpCodes.Callvirt, valueMethod);

// Stack: bottom: [Instance, result_idx]

Label[] labels = new Label[this.successors.Length];

for (int i = 0; i < this.successors.Length; ++i)

{

labels[i] = DefineLabel();

}

Emit(OpCodes.Switch, labels);

// Stack: bottom: [Instance]

for (int i = 0; i < this.successors.Length; ++i)

{

MarkLabel(labels[i]);

this.successors[i].compile();

}

}

}

Figure 3: The compile method for Weka’s Id3 nodes.

region to determine if it contains a feature. Using a relatively
small corpus of widgets and with high CPU load, Prefab
typically processes a frame change under 50ms. While the
current process is adequitely fast for detecting small regions
or regions that contain few features, large, rapidly chang-
ing portions of an interface (such as scrolling regions) that
contain a large number of features suffer. This may take
over 100ms. For some applications that require fast, real-
time tracking of many interface elements, this could present
noticeable lag. Improving the performance of Prefab’s fea-
ture detection is an important step to providing sufficient
performance for future applications. This improvement in
performance may also help in providing sufficient perfor-
mance for larger resolution interfaces. For example, Prefab
is currently limited to relatively small windows, but many
interesting applications may span multiple large windows or
the entire desktop.

Prefab uses a slightly modified model of a decision tree to
perform feature detection. When a library of prototypes is
created, Prefb chooses a non-transparent hotspot within the
patch of pixels defining each feature in the library. Prefab
constructs a decision tree for determining whether a pixel
in an image is the hotspot of any feature in the tree, as
in Figure 4. Each internal node specifies an offset relative
to the hotspot, each edge corresponds to the color at that
offset, and each leaf corresponds to a feature. Traversing the
tree to a leaf tests every pixel in the figure. In addition to
branching to a single child at each inner node, Prefab also
branches on a “transparent” node. Each transparent node
corresponds to a pixel that should be ignored by a feature.
Each node has at most one transparent child. This extension
departs from our generic implementation for decision trees,
but requires only a simple addition to our system. Instead
of one set of nested conditionals, for Prefab we output two
sets: one for normal branching, and a similarly structured
one to follow the transparent path.

Our implementation recursively traverses a given Prefab de-
cision tree. Each inner node computes an offset relative to
the current offset being examined in the image. The node
then observes the pixel value of the image at this offset and
uses this value to potentially branch on a child. Prefab uses
a C# implementation of a hash table to efficiently determine
if the observed pixel value corresponds to a child or not. We
compiled our own simple hash function that directly maps
the pixel values of child nodes to indices in a jump table.
This allows us to compute a hash value of a pixel and switch
on that value. Our hash function simply computes the ob-
served pixel value modulo a prime number. Collisions in a
hash table are resolved after the jump instruction has been
performed, where the pixel value corresponding to each po-
tential child node is directly evaluated against the observed
pixel value in a series of if-else statements. If none of the cor-
responding children match the observed pixel, the program
immediately recurses on the transparent child of the current
node. Otherwise, the program recurses on the correspond-
ing child and then recurses on the transparent node. The
relative offset and the pixel values to compare against are all
hard coded as constant values. Prefab leaf nodes construct
an object with fields corresponding to an ID mapping to a
feature in the given feature library, the offset of the iden-
tified feature occurrence, and it’s bounding region. All of



(0,0)

= pixel color at the tested offset

(x,y) = current pixel offset to test

(-1,2) (2,2)

(0,1) (2,4) (-1,4) (3,4)

(0,2)

Figure 4: Prefab constructs a decision tree that tests
whether a pixel is the hotspot of a feature from the prototype
library. It uses this tree to scan an image of an interface,
detecting all features in a single pass.

these parameters are compiled as constants as well. Finally,
each node passes a label to the next execution point dur-
ing our traversal. This allows inner nodes return control to
transparent nodes after a child has been traversed and exit
the function after transparent children have been traversed.

5. EVALUATION
5.1 Weka
In order to test WEKA, we downloaded two datasets from
the UCI machine learning repository[2]: Covertype and KDD
Cup 1999. Both datasets were chosen because they are (a)
large and (b) come with well defined classification tasks.
The Covertype dataset was originally used to predict the
type of ground cover on a 30 × 30 meter plot of land, using
only cartographic variables. It contains 581,012 instances.
The KDD Cup 1999 consists of 4,000,000 instances of user
connection records used to detect system intrusions. The
dataset was compiled for a data mining competition.

We evaluated our Id3 decision tree compiler by classifying a
large number of test data instances for each workload. We
used 11,340 designated instances from the Covertype dataset
as a training set and the first 100,000 provided testing in-
stances. We used the first 50,000 entries in the KDD Cup
dataset as a training dataset and the subsequent 100,000 en-
tries for testing. All the data was loaded into memory first
to avoid incurring the performance cost of streaming data
from disk.

To avoid costs associated with the IKVM library, we per-
formed this experiment both in C# and directly in Java for
the uncompiled tree. Since Java performance was uniformly
better, we used those results for our comparison. We mea-
sured the wall time of classifying all the data instances 100
times. The compiled trees performed much better on both
workloads. Figure 5 shows the different in classification time
between compiled trees and normal Weka. In both cases
the compiled trees perform more than twice as fast, and in

0	  

0.05	  

0.1	  

0.15	  

0.2	  

0.25	  

0.3	  

Covtype	   KDDCUP	  

M
ic
ro
se
co
nd

s	  

Workload	  

Interpreted	  

Compiled	  

Figure 5: Average classification time for a single data in-
stance in compiled and uncompiled versions of Weka Id3
tree.

0 20 40 60 80 100 120

MS Calculator

Google Chrome Running Youtube

Visual Studio

Microsoft Excel

Microsoft Itunes

Compiled

Original

Figure 6: Prefab results.

the KDD Cup case, the compiled tree performed over three
times faster.

5.2 Prefab
We evaluated the performance of Prefab’s decision tree clas-
sifier over a corpus of captured video from a Windows 7
machine. The videos were taken from 5 common Windows
7 applications and vary in resolution from 228 by 322 pixels
to 1382 by 1079 pixels in resolution. Each capture contains
roughly 2 minutes of footage at a frame rate of 100 frames
per second. Only the changed portions of the interface were
inspected for features and we only computed the duration
for times where some pixels changed between frames. Fig-
ure 6 shows a table of each application and the average per-
formances for our system and the original Prefab system.
The decision tree model used for this evaluation consists of
297 nodes from a library of 163 features. The features come
from a prototype library that was built specifically for these
particular applications. The authors of Prefab have noted
that one common use of the system may be to construct
or download prototypes chosen for specific target applica-



tions, so this approach is consistent with their vision. The
decision tree has a depth of 5. Prefab decision trees have a
wide branching factor and a shallow depth, because Prefab
intentionally tries to reduce the height of the tree during
construction to minimize the number of pixels to be eval-
uated during runtime. The applications and window sizes
were chosen to be a representative set of applications com-
monly used on Windows 7 machine on a 23 inch display.
Each video contains footage of constant interactions from a
user (users were instructed to manipulate the widgets that
they identify). The average number of pixels explored per
frame was 1152 pixels.

On average our compiled implementation of the tree ran 1.9
times faster per frame. Our goal was to evaluate the per-
formance of a compiled decision tree obtained from a real
application running on realistic data. These results show
promise in this approach, but there could be several rea-
sons why the performance gains seem quite high. First, the
attributes tested in Prefab’s decision trees are very simple.
They only require an integer comparison. In other common
decision trees, the cost of testing an attribute could be more
expensive. This cost could potentially mask some of the
performance gains introduced by compilation. Additionally,
Prefab is implemented in a language that uses a JIT. This
could be using hot paths to highly optimize performance.
For languages that do not use a JIT, it may be that op-
timizations would not be made to the compiled code. We
believe evaluations of performance in the context of other
applications is an interesting area for future work.

The authors of Prefab have been discussing an entirely auto-
mated approach to Prefab where larger prototype libraries
are used rather than allowing developers choose a proto-
type library. Additionally, we suspected that as the size of
our trees increase, the code size of our compiled trees could
be detrimental to performance because of instruction cache
misses. We tested a much larger decision tree with 1,977
nodes on the internet explorer and Microsoft Word videos
to get a sense of whether this might be true. This in fact
seems to be the case. We do not present a detailed anal-
ysis here, but the performance was on average a factor of
two times worse than the original Prefab tree. We present
a more fine-grained evaluation of this problem below.

5.3 Tree Size
Our results evaluating Prefab implies some relationship be-
tween the size of the learned tree and the relative perfor-
mance of compiled versus uncompiled classification. In par-
ticular, while for small tree heights a compiled tree per-
formed classification about as fast or faster than the normal
Prefab code, compiled trees performed much worse for large
heights. We explored this relationship by implementing a
random binary tree generator and compiler and feeding it
random data.

The tree generator chooses a random number K to split on
at each node. Inner nodes test if K is a factor of the data
(a random integer), and branches left or right accordingly.
Each generated tree is perfect – that is, the tree is full and all
leaves are at the same depth. We evaluated the performance
at different heights by generating a random tree, choosing
100,000 random data instances, measuring the classification

-‐0.3	  

0.2	  

0.7	  

1.2	  

1.7	  

2.2	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	   11	   12	   13	  

M
ic
ro
se
co
nd

s	  

Depth	  of	  Tree	  

Uncompiled	  

Compiled	  

Figure 7: Average classification times for randomly gener-
ated decision trees

speed of normally traversing the tree, and finally measuring
the performance of passing data to a compiled version of the
tree. Figure 7 shows our initial results for trees of height 1
through 13.

As seen in the graph, performance of compiled versions of
this simple binary tree is much better for short trees. How-
ever, the trend is exponential with the height of the tree, and
therefore linear with the number of nodes in the tree. This
is surprising since each classification traverses log(n) nodes
of the tree, so performance should be linear in the height,
and sublinear in the number of nodes. We hypothesized that
the .NET JIT compiler is responsible for part of this per-
formance degradation. Since code size of the compiled tree
is linear with the number of nodes in the tree, if the JIT
kicks in sometime during our evaluation it is likely to be-
gin have a dominating effect on performance when tree sizes
are large. To test this we performed a similar experiment,
but ran the experiment on the compiled and uncompiled
trees twice, only reporting the second trial. The result was
a linear growth in performance with respect to the height
of the tree. Figrure 8 shows the results of this experiment.
We also ran a similar experiment timing both runs together,
and averaging the times. The results for this experiment
were essentially identical, probably because the the cost of
JIT optimizations was amortized over enough runs.

6. DISCUSSION
Our results were mixed. While we observed uniformly faster
runtimes from compiling smaller trees, the compiled versions
of the larger Prefab trees were up to 2 times slower than
their uncompiled counterparts. Consequently, we conclude
that compilation is a reliable optimization strategy for rel-
atively small decision trees, but unreliable when applied to
relatively large decision trees.

Compilation is necessary to enable a number of optimiza-
tions that we benefit from. Fundamentally, these optimiza-
tions are a result of “unrolling” the tree, allowing us to spe-
cialize the code for individual nodes. First, we can eliminate
dynamic dispatches (i.e. on different internal node types)
and base case tests (i.e. “Are we at a leaf yet?”). Second,
constants can be baked into the instructions now, avoiding



0	  

0.05	  

0.1	  

0.15	  

0.2	  

0.25	  

0.3	  

0.35	  

0.4	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	   11	   12	   13	  

M
ic
ro
se
co
nd

s	  

Depth	  of	  Tree	  

Uncompiled	  

Compiled	  

Figure 8: Average classification times for randomly gener-
ated decision trees after pre-optimizations

an extra memory load/pointer dereference. Third, now that
decision tree is laid out in code, both the JIT compiler and
hardware branch prediction can optimize the code based on
likely traversals. So long as the tree remains in memory,
processed by a single “generic” recursive function, these run-
time optimizations will be blocked.

Unfortunately, we do not know precisely why the large Pre-
fab trees have poorer performance. One hint might come
from the relative performance between the Visual Studio
and Excel benchmarks. On average, Visual Studio contains
1662 features per frame while Excel contains only 37 fea-
tures per frame. Since each feature corresponds to a unique
leaf of the decision tree, this means that the Visual Studio
benchmark is exercising a much larger percentage of the de-
cision tree than the Excel benchmark. As a result, we would
expect the hot path optimizations in the JIT and instruc-
tion caching to be comparatively more effective on the Excel
benchmark. This poses an interesting challenge for future
investigation: Given a large decision tree, how can we best
exploit the reliable performance gains from compiling small
decision trees?

7. FUTURE WORK
Although we presented evidence that converting a decision
tree into specialized code can yield speedups, we would like
to better characterize when a speedup can be expected. To
this end it would be good to explore the effect of function
size/granularity by partitioning the tree and generating mul-
tiple functions instead of one monolithic function. It would
also be good to explore the relative benefit of compiling
decision trees in a statically rather than dynamically com-
piled language such as C or C++, especially since optimized
implementations are more likely to target those languages.
These investigations would help confirm our observations.

Building on this work, it would be interesting to build op-
timizations into our decision tree compiler. One such op-
timization might attempt to rebuild a functionally equiva-
lent decision tree using execution-time-cost heuristics rather
than the entropy/information gain heuristics that learning
algorithms use. These execution-time-cost heuristics could
be derived from a set of example inputs (e.g. the training

data) that are assumed to be statistically representative.
Alternatively, we could also explore the possibility of dy-
namically rebuilding the tree, guided by runtime profiling.

We also believe that it would be good to look at the benefit of
compiling models beyond simple decision trees. While some
models (e.g. linear/logistic regression) are unlikely to be ac-
celerated by compilation, others (e.g. Bayesian networks[5])
are very likely to benefit. One particularly interesting av-
enue is to investigate is the compilation of ensemble models
that aggregate the output of multiple models via voting or
averaging. Models in the ensemble are very likely to perform
redundant computation due to the way in which ensembles
are built. This makes ensembles prime targets for common
sub-expression elimination.

Finally, our prototype decision tree compilers were written
with custom byte code emission. It would be good to in-
vestigate appropriate abstractions and intermediate repre-
sentations. This way, we could integrate our compiler more
quickly with new applications and models.

8. CONCLUSION
We have shown that performing classification on a compiled
decision tree can provide meaningful performance gains. More-
over, we tackled one of the challenges associated with code
explosion. Specifically we found that JIT optimizations are a
significant performance drain when method sizes are large.
In the future we hope to refine our approach and explore
similar approaches for other classification models.

9. ACKNOWLEDGEMENTS
We would like to thank Ben Lerner for his help teaching us
how to use the MSIL bytecode emitter, and Mike Ernst for
his feedback on draft copies of this paper. We would also like
to thank UCI for maintaining their online machine learning
repository[2], from which we obtained the Covertype and
KDD Cup 1999 datasets.

10. REFERENCES
[1] S. F. Chen. Compiling large-context phonetic decision

trees into finite-state transducers. EUROSPEECH,
2003.

[2] A. Frank and A. Asuncion. UCI machine learning
repository, 2010.

[3] D. Hoiem, A. A. Efros, and M. Hebert. Recovering
surface layout from an image. Int. J. Comput. Vision,
75(1):151–172, 2007.

[4] H. Liao, C. Alberti, M. Bacchiani, and O. Siohan.
Decision tree state clustering with word and syllable
features. INTERSPEECH, 2010.

[5] D. Lowd and P. Domingos. Learning arithmetic
circuits, 2008.

[6] T. Michell. Machine Learning. McGraw Hill, 1997.

[7] M. R and P. DS. A method to merge ensembles of
bagged orboosted forced-split decision trees. 2003.

[8] S. Yoon, J. Koehler, and A. Ghobarah. Prediction of
advertiser churn for google adwords. JSM Proceedings,
2010.


