
TaintSNIFFER: A Robust Dynamic Taint Tracking System
For a Homogenous Web Browsing Environment

Aaron Miller Paramjit Singh Sandhu
{ajmiller, paramsan}@cs.washington.edu

ABSTRACT
In this paper we have implemented a fairly robust taint
tracking facility in the JavaScript language implementation
of the Microsoft Research’s C3 system. We have also imple-
mented a comprehensive suite of test cases (in JavaScript)
along with a framework (in C#) ensuring that our sematics
have been correctly implemented. Using our taint tracking
system, we have illustrated a proof of concept test case that
enables us to track the flow of taint in the DOM (effectively
the browser).

1. INTRODUCTION
Over the past decade computing has shifted increasingly to-
wards web-based applications and services, affording more
opportunities for malicious exploits aimed at stealing user-
sensitive information such as passwords, credit card infor-
mation and Social Security Numbers. Domain-crossing ex-
ploits such as cross-site scripting (XSS) and cross-site re-
quest forgery (CSRF) attacks are commonly employed by
modern ne’er-do-wells to steal others’ personal data and
identities. Recently, dynamic taint tracking has been shown
effective in sniffing-out such exploits. However, the com-
ponents of many modern web browsers - the layout engine,
Document Object Model (DOM)1, JavaScript handler and
HTML and CSS parser - are implemented in different lan-
guages and styles which complicates taint tracking across
the entire browser. Furthermore, the dynamic, prototype-
based nature of the JavaScript language complicates the im-
plementation of dynamic taint tracking. Microsoft Research
resolves difficulties tied to heterogeneous browser implemen-
tations with their new C3 Web browser. Designed as a
client product for accessing cloud-computing resources, all of
the C3 browser’s subsystems are integrated within the com-
mon .NET framework. We extend the C3 browser to create
TaintSNIFFER, a dynamic taint tracking system for C3’s
JavaScript engine and DOM subsytem. We author a suite
of correctness benchmarks for validating implementations of
dynamic taint tracking in JavaScript and web browsing sys-
tems in general, then use TaintSNIFFER to verify the suite’s
robustness and practicality.

The remainder of this paper is organized as follows. Sec-
tion 2 describes our approach in technical detail. Section 3
presents relevant related work of others in leveraging dy-

1The Document Object Model (DOM) is a platform- and
language-neutral interface that allows programs and scripts
to dynamically access and update the content, structure and
style of documents displayed in a Web browser.

namic taint tracking for preventing malicious attacks in Web
browsers, specifically in their JavaScript engines. Section 4
presents our experimental methodology for evaluating our
dynamic taint tracking system. In Section 5 we present and
discuss the empirical results obtained during our evaluation.
We discuss the limitations of TaintSNIFFER and our test
suite in Section 6. Finally we summarize and conclude our
work in Section 7.

2. TECHNICAL DESCRIPTION
Dynamic taint tracking is the process of marking (tainting)
and following (tracking) certain pieces of data as they are
used during the execution of a program. The process can
be subdivided into three core tasks: tainting desired values
at their sources, propagating taint when tainted values are
used and enforcing policies which ensure that tainted values
are not used in pre-defined ways during execution.

2.1 Source Tainting
For most applications of dynamic taint tracking for web
browsing systems, tainted values need to originate from user-
provided data and from certain properties of DOM objects
such as document.URL, document.referrer, document.location,
and window.location. It is important to taint these sources
before they are used because they hold information that can
be abused by an adversary to launch an attack to surrepti-
tiously gain sensitive user information. Table 1 summarizes
a list of sources which should be initially tainted for test-
ing an implementation of dynamic taint tracking for web
browsing systems.

2.2 Taint Propagation
In any taint tracking system, taint must be propagated -
copied from one tainted value to another - according to a
set of rules. For dynamic taint tracking in web browsing
systems, these rules are best described by the following set
of semantics:

• Literals (e.g. true, false, 1, 2, -1.0, quoted string) are
never tainted.

• The resulting value of any evaulated expression (e.g.
+, -, in, return) whose result depends on a tainted
value is tainted.

• Only the data-holding properties of a JavaScript object
can be tainted, not the object itself.

• Tainting one property of an object only taints the data
referred to by that property and not other properties

Object Tainted properties

Document cookie, domain, forms, lastModified, links, referrer, title, URL
Form action
Any form input element checked, defaultChecked, defaultValue, name, selectedIndex, toString,

value
History current, next, previous, toString
Select option defaultSelected, selected, text, value
Location and Link hash, host, hostname, href, pathname, port, protocol, search, toString
Window defaultStatus, status, location

Table 1: Sensitive Data Sources. We initially focus on those in bold.

of the object (unless both properties are aliased to the
same data).

• Since functions are properties of objects, they may be-
come tainted. The return value of a tainted function is
always tainted, even for functions with implicit return
statements (e.g. constructors).

• Taint does not propagate between values in different
scopes solely due to variable shadowing.

2.3 Tracking Policies
As taint propagates during the execution of a document’s
associated JavaScript, actions need to be taken to prevent
the use of tainted values in certain situations. An exam-
ple of such a situation would be the execution of the eval

function on a tainted value. Collectively these situations
can be viewed as a set of security policies for protecting
user-sensitive data as well as internal application state. We
suggest prohibiting the execution of any tainted data or the
assignment of DOM object properties described in Table 1 to
tainted values for protection against a wide range of doman-
crossing and SQL-injecting exploits.

2.4 TaintSNIFFER Implementation
We extend the C3 browser’s Javascript engine, SPUR [1],
and its DOM subsystem to dynamically taint and track user-
provided data and sensitive internal data of certain DOM
nodes. Like other JavaScript engines, SPUR initially in-
terprets executing JavaScript code at a bytecode level to
trace execution paths for future optimization. We instru-
ment SPUR’s bytecode interpreter to implement our dy-
namic taint tracking system. We also add taint fields to
C3’s internal representation of DOM nodes so that we can
taint their properties as necessary.

2.4.1 Taint Representation
We taint values by adding and setting a boolean flag of each
JavaScript object property which contains the data. While
this approach incurs a minimum one byte of overhead for
each object property, constant time taint-checking and taint
propagation are preserved. Additionally, in the C3 system
JavaScript values are already boxed with a generic wrapper
object.

2.4.2 Source Tainting
We add two functions, taint() and untaint(), to SPUR’s
set of pre-defined functions for programmatically tainting
and clearing the taint of JavaScript variables. This allows
us to taint the property p of an object o with the statement
o.p = taint(o.p and clear its taint with the statement o.p

= untaint(o.p). This idea can be extended for tainting
the initial properties of the global DOM window, document
and history objects in the window.onload function which
is invoked immediately after the browser completes parsing
the associated document’s XHTML content into its DOM
representation.

2.4.3 Taint Propagation
We propagate taint according to the set of rules outlined in
Section 2.2.

2.4.4 Tracking Policies
We add an additional function, checkTaint(), to SPUR’s
set of pre-defined functions for checking the taint of a vari-
able at any point in execution. checkTaint(x) returns true
if x is tainted and false otherwise. We call checkTaint()
at various points in our test suite for verifying the correct
functioning of our dynamic taint tracking system.

3. RELATED WORK
The Netscape group was one of the first to employ dynamic
taint tracking within a browser’s JavaScript engine for pro-
tecting against domain-crossing exploits [2]. The group out-
lined what sources must be tainted for effective prevention
and proposed including a domain name label for each tainted
variable to track its origin. We adopt their set of must-taint
sources, listed in bold in Table 1 and several of their sug-
gested sources for initial tainting, also summarized in the
same table.

Recently several groups have implemented their own Web
browsers which use dynamic taint tracking to prevent against
known domain-crossing attacks and exploits. Tang et al.’s
Alhambra browser [3] uses fine-grained security policies to
increase the robustness of policy-enhanced web browsing via
a dynamic taint-tracking system built into the JavaScript
and DOM subsystems. We adopt their rules for propagat-
ing taint at the JavaScript object level when tainted object
properties are used in an assignment, logical, arithmetic or
string mainpulating operation.

Other recent work has extended existing Web browsers to in-
corporate and evaluate the use of dynamic taint tracking for
exploit and attack prevention. Vogt et al. extend Mozilla’s
Firefox browser to perform both static and dynamic taint
tracking [4]. Their static component is used to cover infor-
mation flows which cannot be dynamically detected which
attackers are free to use to launch domain-crossing attacks.
An example of such a flow is the use of a tainted value in

a logical operation where the result short-circuits around a
tainted operand. We adopt their rules for propagating taint
to the return value of function calls, including eval() re-
quests.

Some recent work focuses on protecting both the client and
server side resources used during the lifetime of a web ap-
plication. Xu et. al. use fine-grained taint analysis in [5] to
strengthen security in the browser and in server-side scripts
and applications by augmenting security policies with infor-
mation about the trustworthiness of data used in security-
sensitive operations. Taints are represented as a boolean
array called the tagmap which is indexed with a variable’s
memory address and propagated in a similar fashion as our
work. By using a tagmap for tainting and tracking the client-
side execution of a web page’s JavaScript as well as a tagmap
for taint tracking during the execution of any server-side
scripts they are able to effectively prevent against a wide
range of web-based attacks including SQL- and command-
injection, cross-site scripting, format string corruption, mem-
ory error exploits and access-privilege-hijacking attacks. We
leverage their idea of adding functions for tainting, untaint-
ing, and checking the taint of a value via its container to our
JavaScript engine for evaluating the correctness of our taint
propagation rules and performing intermediate, unit-style
testing during development.

None of the aforementioned related works discuss dynamic
taint tracking issues related to scoping and object proto-
types. Hence, we focus a significant portion of our test suite
development to creating tests which propagate taint through
object prototype properties. We also test issues related to
variable shadowing and lexical environment closures for en-
suring taint is propagated with respect to scope.

4. EXPERIMENTAL METHODOLOGY
We evaluate TaintSNIFFER along lines of semantic correct-
ness. We add a basic test framework written in C# to
C3’s JavaScript engine for our evaluation. This framework
exposes a built-in function called assertFunc that accepts
four arguments: the result of invoking checkTaint() on a
JavaScript variable, the expected result, a test class descrip-
tion, and a detailed test description. We write test cases in
JavaScript and report their results by calling the assertFunc
function. The framework executes all the JavaScript files in
a specified directory of test cases which use the assertFunc

function, executes each case with our modified version of
SPUR’s bytecode interpreter and outputs the results of all
the test cases in the specified directory with additional in-
formation about any cases which failed.

Overall the semantic correctness of our taint tracking sub-
system is separated into five categories: core operations,
simple operations, object operations, scope operations, and
DOM operations.

4.1 Core Operations
The core operations tests verify the correct functioning of
our taint(), untaint() and checkTaint() functions. The
tests not only verify that a variable has been correctly tainted
but also that no other objects or properties are tainted be-
cause of the previous taint operation. This is necessary since
a variable in a JavaScript function is actually a property of

the global or the enclosing scope’s object and an incorrectly
implemented taint() function can pollute the global object
and all of its properties. Also, constant literals are tested
to make sure that they are never tainted (yet when they are
used in an expression, the taint is propagated). Refer to
Appendix Section A.1 for more details.

4.2 Simple Operations
The simple operational tests verify that taint is propagated
when tainted values are used as operands in arithmetic, logi-
cal, bitwise, comparison, string and complex assignment ex-
pressions. They exhaustively test that the taint is propa-
gated whenver a tainted value is used in an expression con-
sisting of the aforementioned “simple” operators. Refer to
Appendix Section A.2 for more details.

4.3 Object Operations
The object operational test cases cover different operations
which modify object properties and object prototype prop-
erties. These are important to test since JavaScript is a
loosely of Appendix Btyped prototype based language. It is
natural to have mutable data in the objects and any com-
mom (immutable) properties as a part of an object’s pro-
totype property (which is shared by every object instance
constructed from the same constructor). Hence, it can be
disastrous to accidentally taint the prototype property of an
object since then every object which have a reference to the
same prototype are tainted. In general, thesee test cases
add properties and functions to the prototype dynamically
and test for the correct behavior, initialize an object from
tainted data, and also ensure that not every object becomes
tainted.

For example, Figure 1 illustrates a block of code from Ap-
pendix Section A.3 that illustrates one of our object oper-
ations test cases. In Figure 1 the last two checkTaint()

calls are worth noticing, since hello() is a function that
returns the name property, which is tainted for the object
myTaintedPropertyPet and not tainted for myPet. Refer to
Appendix Section A.3 for more details.

4.4 Scope Operations
JavaScript introduces a new scope only in the context of a
function call. Variables declared anywhere inside a func-
tion are semantically equivalent to the varables declared
in the beginning (except nested functions). Moreover, the
JavaScript uses lexical scoping rules for functions, which im-
plies that the scope chain inside a function is always the
same. This leads to interesting behavior such as closures
when used in combination with nested functions. It is im-
portant to make sure that any variables in a closure retain
their taint across different execution contexts. Another im-
portant test case is when scope changes with the use of the
with operator as the shadowed properties have their taint
status preserved as well as the other properties with the
same name that are now in the current scope have their
taint status preserved.

For example, Figure 2 illustrates one of the test cases where
the InsideScope function toggles storing its property from
tainted to untainted. Refer to Appendix Section A.4 for
more details.

// Simple Object

var Pet = function (name, gender) {

if (!this instanceof Pet) {

return new Pet(name, gender);

}

this.name = name;

this.gender = gender;

this.hello = function ()

{ return "Hello, I am " + name + "."; };

}

var myPet = new Pet("T", ’M’);

var taintedName = "J";

taintedName = taint(taintedName);

var myTaintedPropertyPet = new Pet(taintedName, ’F’);

var myTPPHello = myTaintedPropertyPet.hello();

// Should be true

checkTaint(myTaintedPropertyPet.hello());

// Should be false

checkTaint(myPet.hello());

Figure 1: An example test case for the Object Op-
eration Test case category.

function Scoping(a, b) {

var exposedProperty = "";

var taintedClosure = taint("taint");

var untaintedClosure = "untaint";

var boolValue = false;

function InsideScope() {

if (boolValue) {

exposedProperty = taintedClosure;

}

else {

exposedProperty = untaintedClosure;

}

boolValue = !boolValue;

return exposedProperty;

}

return InsideScope;

}

var closedScope = Scoping(2, 3);

checkTaint(closedScope()); // Should be false

checkTaint(closedScope()); // Should be true

checkTaint(closedScope()); // Should be false

checkTaint(closedScope()); // Should be true

Figure 2: An example test case for the Scope Oper-
ation Test case category.

window.onload = function() {

var someStr = "Hello World!";

someStr = taint(someStr);

alert(checkTaint(someStr));

// Append the tainted string into some DOM element

var p = document.getElementById(’a_p’);

p.textContent += someStr;

// textContent should be tainted

alert("node(’a_p’).textContent isTainted = " +

checkTaint(p.textContent));

// innerHTML should NOT be tainted

alert("node(’a_p’).innerHTML isTainted = " +

checkTaint(p.innerHTML));

// p should be tainted

alert("node(’a_p’) isTainted = " +

checkTaint(p));

// window (global obj) should not be tainted

alert("window " +

checkTaint(window));

}

Figure 3: An example test case for the Scope Oper-
ation Test case category.

4.5 DOM Operations
The DOM operations test cases examine the storage of tainted
values into properties of DOM objects and the use of tainted
values stored in DOM object properties to verify that taint
is preserved. The code shown in Figure 3 illustrates a very
simple example where a a tainted string is stored in a prop-
erty of a paragraph element and is later retrieved. Refer to
Appendix Section A.5 for more details.

5. RESULTS AND DISCUSSION
5.1 Core Operations
The results of our core operations tests (summariazed in
Table 2 of Appendix B) demonstrate the correct functioning
of our taint() and untaint() additions to the set of pre-
defined functions of C3’s JavaScript engine. The results of
the tests also show the correct propagation of taint through
direct assignment and the clearing of taint by assignment of
a previously tainted variable to an untainted value.

5.2 Simple Operations
The results from our simple operations tests (summarized
in Table 3 of Appendix B) demonstrate the correct prop-
agation of taint for arithmetic, logical, bitwise, compari-
sion, and compound assignment expressions in which one
or more source values that the resulting value depends upon
is tainted. It is important to note, as is the case with the
logical AND (&&) and logical OR (||) operations, that taint
is not propagated to the result when the logic “short cir-
cuits” around a tainted operand. This behavior highlights
the dynamic nature of our system.

5.3 Object Operations
The results of our object-based testing regarding object prop-
erties, prototypes, and built-in JavaScript objects (e.g. Ar-

ray, Date) demonstrate our strict adherence to keeping taint
information as close to the data which it is associated with
as possible. We achieve this goal by tainting the properties
of an object, rather than an object itself (since they are what
hold the data). For functional object properties, our imple-
mentation taints the entire function and therefore its return
value as outlined in our taint propagation semantics in Sec-
tion 2.2. We only fail one test case in this test category, the
case where the contents of an Array which contains tainted
values are joined together. This shortcoming is due to our
system’s inability to propagate taint from within a function
which returns a tainted value. The full results of these tests
are summarized in Table 4 of Appendix B.

5.4 Scope Operations
The results from our scoping tests (summarized in table
form in Table 5 of Appendix B) raise several issues with
how scope is handled by our system. Firstly, our false re-
porting of newObj’s a property in the scope of with(newObj)
indicates that the proper scope is not being explored upon
checking the taint of newObj.a. This may be a shortcom-
ing of our implementation, or may be a failure in the cur-
rent state of the C3 JavaScript engine in handling such a
scope. We are unable to determine which assesment is cor-
rect without further research. Secondly, our false reporting
of closedScope()’s return value in our elementary scoping
test highlights a deeper issue related to returning tainted
values from a function or any nested scope. Finally, our test
case failures in the if-else conditional case shows our lack
of implementation for such cases where information leakage
about tainted data is possible.

5.5 DOM Operations
Our test cases are not fully exhaustive for testing the manip-
ulation of DOM objects by JavaScript. However, they suf-
fice for confirming the inability to launder taint through the
DOM and therefore only focus on ensuring that any tainted
values stored into the DOM remain tainted until they are
reassigned to untainted values. Our system passes both the
case of writing tainted data into the property of a DOM
object and reading tainted data from a property of a DOM
object by JavaScript code. The full results for these tests
are summarized in Table 6 of Appendix B.

6. LIMITATIONS
There are several limitations with our test suite and dy-
namic taint tracking system. Most notably, the C3 browser’s
Document Object Model is not yet fully implemented and
still lacks components of essential nodes (input, textarea,

form) for collecting user input from an XHTML-formatted
documents. Furthermore, the cases in our test suite may not
be fully exhaustive and certainly require further study and
experimentation. Since our ideal application of TaintSNIF-
FER falls within the realm of web security, there may exist
loopholes unknown to us in the C3 browser and its sub-
systems which require patching. Finally, TaintSNIFFER’s
requirement that all JavaScript be interpreted by SPUR sig-
nificantly hampers the performance gains that SPUR affords
with its tracing just-in-time compilation opportunities.

7. CONCLUSION

In this project we developed TaintSNIFFER, a dynamic
taint tracking system within Microsoft Research’s novel ho-
mogenous C3 web browser. By taking a test-driven ap-
proach for implementing TaintSNIFFER we were able to
compile a robust and practical test suite for use in the de-
velopment of dynamic taint tracking systems for JavaScript
and web browsers in general. We began our project by
studying previous and current uses of dynamic taint track-
ing in web browsing systems for preventing the clandes-
tine transfer of sensitive information by domain-crossing ex-
ploits. Upon reviewing this work, we noticed a lack of in-
formation regarding taint propagation in the properties and
prototypes of JavaScript objects. It was at this point that we
shelved our plans for extending and evaluating TaintSNIF-
FER’s ability to prevent the transfer of sensitive informa-
tion by domain-crossing exploits and reshifted our focus to
authoring a rich suite of tests for dynamic taint tracking
systems in the JavaScript language.

By categorizing our tests into five distinct categories we were
able to rapidly author unit-style tests which we then vali-
dated with TaintSNIFFER. While TaintSNIFFER did not
correctly propagate taint in all of the test cases, we were
able to identify concrete shortcomings in our implementa-
tion. We also were able to extend our test suite to include
the DOM subsystem and experienced success in preventing
the laundering of tainted values through the DOM. Given
the current state of TaintSNIFFER’s implementation and
the coverage of our test suite we expect handling the failing
cases to be a simple process involving further study of the
C3 JavaScript engine’s bytecode interpreter. Once we ver-
ify TaintSNIFFER’s robustness, we can move foward with
adding a policy engine for preventing the compromise of sen-
sitive data by domain-crossing attacks.

8. REFERENCES
[1] M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo,

W. Schulte, N. Tillmann, , and H. Venter. SPUR: A
trace-based JIT compiler for CIL. Technical Report
MSR-TR-2010-27, Microsoft Research, 2010.

[2] Netscape. Using data tainting for security.
http://wp.netscape.com/eng/mozilla/3.0/

handbook/javascript/advtopic.htm, 2006.

[3] Shuo Tang, Chris Grier, Onur Aciicmez, and Samuel T.
King. Alhambra: a system for creating, enforcing, and
testing browser security policies. In WWW ’10:
Proceedings of the 19th international conference on
World wide web, pages 941–950, New York, NY, USA,
2010. ACM.

[4] Philipp Vogt, Florian Nentwich, Nenad Jovanovic,
Engin Kirda, Christopher Kruegel, and Giovanni
Vigna. Cross-site scripting prevention with dynamic
data tainting and static analysis. In Proceedings of the
Network and Distributed System Security Symposium
(NDSS), 2007.

[5] Wei Xu, Eep Bhatkar, and R. Sekar. Taint-enhanced
policy enforcement: A practical approach to defeat a
wide range of attacks. In Proceedings of the 15th
USENIX Security Symposium, pages 121–136, 2006.

APPENDIX
A. TEST SUITE
A.1 Core Operations
//

// Basic taint functionality
//

var a = taint(a);
assertFunc(checkTaint(a), true, "Taint", "Simple

variable tainted");
assertFunc(checkTaint(this.a), true, "Global", "

Property of global object tainted");
assertFunc(checkTaint(this), false, "Global", "

Global object untainted");

var b = a;
assertFunc(checkTaint(b), true, "Assignment", "

Simple assignment statement");
assertFunc(checkTaint(this.b), true, "Global", "

Property of global object tainted");
assertFunc(checkTaint(this), false, "Global", "

Global object untainted after assignment
statement");

a = untaint(a);
assertFunc(checkTaint(a), false, "Untaint", "

Simple variable untainted");
assertFunc(checkTaint(this.a), false, "Global", "

Property of global object untainted");
assertFunc(checkTaint(this), false, "Global", "

Global object untainted");

assertFunc(checkTaint(b), true, "Persist", "Taint
from assignment persists");

assertFunc(checkTaint(this.b), true, "Global", "
Property assigned to of global object remains
tainted");

assertFunc(checkTaint(this), false, "Global", "
Global object remains untainted");

//

// Reassinging...
//

b = "untainted";
assertFunc(checkTaint(b), false, "Reassign", "

Untaint due to reassignment");

//

// Tainting Literals
//

var a1 = taint(true);
var a2 = taint("Hello World");
var a3 = taint(1);
var a4 = taint(-1.0);

assertFunc(checkTaint(a1), true, "taint literals",
"boolean assigned variable");

assertFunc(checkTaint(true), false, "taint
literals", "boolean literal");

assertFunc(checkTaint(a2), true, "taint literals",
"string assigned variable");

assertFunc(checkTaint("Hello World"), false, "
taint literals", "string literal");

assertFunc(checkTaint(a3), true, "taint literals",
"integers/floats assigned variable");

assertFunc(checkTaint(1), false, "taint literals",
"integers/floats literal");

assertFunc(checkTaint(-1.0), false, "taint
literals", "floats literal");

A.2 Simple Operations
// Arithmetic
var a = 10;
a = taint(a);

var b = a + 4;
var b1 = 4 + a;
assertFunc(checkTaint(b), true, "Binary Add", "b =

a + 4");
assertFunc(checkTaint(b1), true, "Binary Add", "b1

= 4 + a");

var c = a - 4;
var c1 = 4 - a;
assertFunc(checkTaint(c), true, "Binary Subtract",

"c = a - 4");
assertFunc(checkTaint(c1), true, "Binary Subtract"

, "c1 = 4 - a");

var d = a * 2;
var d1 = 2 * a;
assertFunc(checkTaint(d), true, "Binary Multiply",

"d = a * 2");
assertFunc(checkTaint(d1), true, "Binary Multiply"

, "d1 = 2 * a");

var e = a / 2;
var e1 = 2 / a;
assertFunc(checkTaint(e), true, "Binary Division",

"e = a / 2");
assertFunc(checkTaint(e1), true, "Binary Division"

, "e1 = 2 / a");

var f = a % 4;
var f1 = 4 % a;
assertFunc(checkTaint(f), true, "Binary Modulus",

"f = a % 4");
assertFunc(checkTaint(f1), true, "Binary Modulus",

"f = 4 % a");

var g = +a;
assertFunc(checkTaint(g), true, "Unary Plus", "g =

+a");

var h = -a;
assertFunc(checkTaint(h), true, "Unary Minus", "h

= -a");

a++;
++a;
assertFunc(checkTaint(a), true, "Postfix increment

", "a++");
assertFunc(checkTaint(a), true, "Prefix increment"

, "++a");

a--;
--a;
assertFunc(checkTaint(a), true, "Postfix decrement

", "a--");

assertFunc(checkTaint(a), true, "Prefix decrement"
, "--a");

/*
var k = 4;
k += a;
assertFunc(checkTaint(k), true, "Composite

increment", "k += a");

var l = 6;
l -= a;
assertFunc(checkTaint(l), true, "Composite

decrement", "l -= a");
*/

// Bitwise
var aa = a & 4;
var aa1 = 4 & a;
assertFunc(checkTaint(aa), true, "Bitwise And", "

aa = a & 4");
assertFunc(checkTaint(aa1), true, "Bitwise And", "

aa1 = 4 & a");

var bb = a | 5;
var bb1 = 5 | a;
assertFunc(checkTaint(bb), true, "Bitwise Or", "bb

= a | 5");
assertFunc(checkTaint(bb1), true, "Bitwise Or", "

bb1 = 5 | a");

var cc = ~a;
assertFunc(checkTaint(cc), true, "Bitwise Not", "

cc = ~a");

var dd = a << 3;
var dd1 = 3 << a;
assertFunc(checkTaint(dd), true, "Bitshift Left",

"dd = a << 3");
assertFunc(checkTaint(dd1), true, "Bitshift Left",

"dd1 = 3 << a");

var ee = a >> 1;
var ee1 = 204050 >> a;
assertFunc(checkTaint(ee), true, "Bitshift Right",

"ee = a >> 1");
assertFunc(checkTaint(ee1), true, "Bitshift Right"

, "ee1 = 204050 >> a");

var ff = a >>> 1;
var ff1 = 204050 >>> a;
assertFunc(checkTaint(ff), true, "Shift Right With

Sign", "ff = a >>> 1");
assertFunc(checkTaint(ff1), true, "Shift Right

With Sign", "ff1 = 204050 >>> a");

var gg = a ^ 4;
var gg1 = 4 ^ a;
assertFunc(checkTaint(gg), true, "XOR", "gg = a ^

4");
assertFunc(checkTaint(gg1), true, "XOR", "gg1 = 4

^ a");

// Logical
var a1 = true;
//a1 = taint(a1);
var a2 = true;
a2 = taint(a2);

var aaa = a1 && a2;
var aaa1 = a2 && a1;
var aaa2 = true && a2;
var aaa3 = a2 && false;
assertFunc(checkTaint(aaa), true, "Logical And", "

aaa = a1 && a2'");
assertFunc(checkTaint(aaa1), false, "Logical And",

"aaa1 = a2' && a1");
assertFunc(checkTaint(aaa2), true, "Logical And",

"aaa2 = true && a2'");
assertFunc(checkTaint(aaa3), false, "Logical And",

"aaa3 = a2' && false");

var bbb = a2 || a1;
var bbb1 = a1 || a2;
var bbb2 = a2 || false;
var bbb3 = true || a2;
assertFunc(checkTaint(bbb), true, "Logical Or", "

bbb = a2' || a1");
assertFunc(checkTaint(bbb1), false, "Logical Or",

"bbb1 = a1 || a2'");
assertFunc(checkTaint(bbb2), true, "Logical Or", "

bbb2 = a2' || false");
assertFunc(checkTaint(bbb3), false, "Logical Or",

"bbb3 = true || a2'");

var ccc = !a2;
assertFunc(checkTaint(ccc), true, "Logical Not", "

ccc = !a2'");

// Comparison
var aaaa = a < 2;
var aaaa1 = 2 < a;
assertFunc(checkTaint(aaaa), true, "Less Than", "

aaaa = a < 2");
assertFunc(checkTaint(aaaa1), true, "Less Than", "

aaaa1 = 2 < a");

var bbbb = a > 4;
var bbbb1 = 4 > a;
assertFunc(checkTaint(bbbb), true, "Greater Than",

"bbbb = a > 4");
assertFunc(checkTaint(bbbb1), true, "Greater Than"

, "bbbb1 = 4 > a");

var cccc = a <= 2;
var cccc1 = 2 <= a;
assertFunc(checkTaint(cccc), true, "Less Than Or

Equal", "cccc = a <= 2");
assertFunc(checkTaint(cccc1), true, "Less Than Or

Equal", "cccc1 = 2 <= a");

var dddd = a >= 4;
var dddd1 = 4 >= a;
assertFunc(checkTaint(dddd), true, "Greater Than

Or Equal", "dddd = a >= 4");
assertFunc(checkTaint(dddd1), true, "Greater Than

Or Equal", "dddd1 = 4 >= a");

var eeee = a == 2;
var eeee1 = 2 == a;
assertFunc(checkTaint(eeee), true, "Equals Equals"

, "eeee = a == 2");
assertFunc(checkTaint(eeee1), true, "Equals Equals

", "eeee1 = 2 == a");

var ffff = a != 2;
var ffff1 = 2 != a;
assertFunc(checkTaint(ffff), true, "Not Equals", "

ffff = a != 2");
assertFunc(checkTaint(ffff1), true, "Not Equals",

"ffff1 = 2 != a");

// String
var a3 = "asdf";
a3 = taint(a3);

var aaaaa = a3 + 2;
var aaaaa1 = 2 + a3;
assertFunc(checkTaint(aaaaa), true, "String Concat

.", "aaaaa = a3' + 2");
assertFunc(checkTaint(aaaaa1), true, "String

Concat.", "aaaaa1 = 2 + a3'");

var bbbbb = a3 < "foo";
var bbbbb1 = "foo" < a3;
assertFunc(checkTaint(bbbbb), true, "String Less

Than", "bbbbb = a3' < \"foo\"");
assertFunc(checkTaint(bbbbb1), true, "String Less

Than", "bbbbb1 = \"foo\" < a3'");

var ccccc = a3 > "foo";
var ccccc1 = "foo" > a3;
assertFunc(checkTaint(ccccc), true, "String

Greater Than", "ccccc = a3' > \"foo\"");
assertFunc(checkTaint(ccccc1), true, "String

Greater Than", "ccccc1 = \"foo\" > a3'");

var ddddd = a3 <= "foo";
var ddddd1 = "foo" <= a3;
assertFunc(checkTaint(ddddd), true, "String Less

Than Or Equal", "ddddd = a3' <= \"foo\"");
assertFunc(checkTaint(ddddd1), true, "String Less

Than Or Equal", "ddddd1 = \"foo\" <= a3'");

var eeeee = a3 >= "foo";
var eeeee1 = "foo" >= a3;
assertFunc(checkTaint(eeeee), true, "String

Greater Than Or Equal", "eeeee = a3' >= \"foo\"
");

assertFunc(checkTaint(eeeee1), true, "String
Greater Than Or Equal", "eeeee1 = \"foo\" >=
a3'");

// Complex Assignment
var aaaaaa = 4;
aaaaaa += a;
assertFunc(checkTaint(aaaaaa), true, "Plus Equals"

, "aaaaaa += a");

var bbbbbb = 4;
bbbbbb -= a;
assertFunc(checkTaint(bbbbbb), true, "Minus Equals

", "bbbbbb -= a");

var cccccc = 4;
cccccc *= a;
assertFunc(checkTaint(cccccc), true, "Times Equals

", "cccccc *= a");

var dddddd = 0;
dddddd /= a;
assertFunc(checkTaint(dddddd), true, "Divide

Equals", "dddddd /= a");

var eeeeee = 3;
eeeeee %= a;
assertFunc(checkTaint(eeeeee), true, "Modulo

Equals", "eeeeee %= a");

var ffffff = 2;
ffffff <<= a;
assertFunc(checkTaint(ffffff), true, "Shift Left

Equals", "ffffff <<= a");

var gggggg = 2048;
gggggg >>= a;
assertFunc(checkTaint(gggggg), true, "Shift Right

Equals", "gggggg >>= a");

var hhhhhh = 2048;
hhhhhh >>>= a;
assertFunc(checkTaint(hhhhhh), true, "Shift Right

With Sign Equals", "hhhhhh >>>= a");

var iiiiii = 5;
iiiiii &= a;
assertFunc(checkTaint(iiiiii), true, "And Equals",

"iiiiii &= a");

var jjjjjj = 7;
jjjjjj |= a;
assertFunc(checkTaint(jjjjjj), true, "Or Equals",

"jjjjjj |= a");

var kkkkkk = 9;
kkkkkk ^= a;
assertFunc(checkTaint(kkkkkk), true, "XOR Equals",

"kkkkkk ^= a");

A.3 Object Operations
// Simple Object
var Pet = function (name, gender) {

if (!this instanceof Pet) {
return new Pet(name, gender);

}
this.name = name;
this.gender = gender;
this.hello = function () { return "Hello, I am

" + name + "."; };
}

var myPet = new Pet("Trevor", 'M');
assertFunc(checkTaint(myPet), false, "Simple

Object", "Untainted construction of simple
object");

//assertFunc(checkTaint(myPet.prototype), false, "
Simple Object", "Untainted prototype of
untainted simple object");

var taintedName = "Justine";
taintedName = taint(taintedName);
var myTaintedPropertyPet = new Pet(taintedName, 'F'

);
var myTPPHello = myTaintedPropertyPet.hello();
assertFunc(checkTaint(myTaintedPropertyPet.name),

true, "Simple Object", "Tainted object
property");

assertFunc(checkTaint(myTaintedPropertyPet.hello),
false, "Simple Object", "Untainted property
of object w/ tainted property");

assertFunc(checkTaint(myTPPHello), true, "Simple
Object", "Tainted return value of object
property which uses tainted property"); //I
think this is right...

assertFunc(checkTaint(myTaintedPropertyPet), false
, "Simple Object", "Untainted object with
tainted property");

assertFunc(checkTaint(myPet.hello()), false, "
Simple Object", "Untainted name property of
untainted Object Pet");

var myTaintedPet = new Pet("Param", 'M');
myTaintedPet = taint(myTaintedPet);
assertFunc(checkTaint(myTaintedPet), true, "Simple

Object", "Tainted object");
assertFunc(checkTaint(myTaintedPet.name), false, "

Simple Object", "Property of tainted object");
assertFunc(checkTaint(myTaintedPet.prototype),

false, "Simple Object", "Untainted prototype
of tainted object");

// Prototypes
var x = "Aaron";
x = taint(x);
Pet.prototype.owner = x;

var newPet = new Pet("Spike", 'M');
assertFunc(checkTaint(newPet.owner), true, "

Prototype", "Tainted prototype property");
assertFunc(checkTaint(newPet), false, "Prototype",

"Object instance untainted");
assertFunc(checkTaint(myPet.owner), true, "

Prototype", "Shared tainted prototype property
");

Pet.prototype = taint(Pet.prototype);
assertFunc(checkTaint(newPet), false, "Prototype",

"Object instance w/ tainted prototype
untainted");

assertFunc(checkTaint(newPet.prototype), false, "
Prototype", "Tainted prototype property of
object");

Pet.prototype.greet = function () { return "Hi, I'm
" + this.name + " and I belong to " + this.
owner; };

var g = newPet.greet();
assertFunc(checkTaint(g), true, "Prototype", "

Return value of prototype method which uses
tainted data");

// Array
var arrElement = "foo";
arrElement = taint(arrElement);

var simpleArr = new Array(1, 2, "duck", arrElement
, "orange");

assertFunc(checkTaint(simpleArr), false, "Array",
"Array after initialization w/ tainted value")
;

assertFunc(checkTaint(simpleArr[3]), true, "Array"
, "Array access of tainted value");

var isInArr = arrElement in simpleArr;
assertFunc(checkTaint(isInArr), true, "In", "

Result of in operation looking for tainted
value");

var joinedArrContents = simpleArr.join();
assertFunc(checkTaint(joinedArrContents), true, "

Array", "Joined array contents containing
tainted data");

var concatArr = simpleArr.concat("stuff");
assertFunc(checkTaint(concatArr), false, "Array",

"Result of array concatentation");
assertFunc(checkTaint(concatArr[3]), true, "Array"

, "Element in result of array concatentation")
;

var sliceArr = simpleArr.slice(1, -1);
assertFunc(checkTaint(sliceArr), false, "Array", "

Result of array slice");
assertFunc(checkTaint(sliceArr[2]), true, "Array",

"Element in result of array slice");

var assocArr = new Array();
assocArr[arrElement] = "Hello World!";
assertFunc(checkTaint(assocArr[arrElement]), false

, "Array", "Associative array access w/
tainted key");

//debugger;
assocArr["asdf"] = arrElement; // same as assocArr

.asdf = arrElement;
assertFunc(checkTaint(assocArr["asdf"]), true, "

Array", "Associative array access of tainted
value"); // Fails

assertFunc(checkTaint(assocArr), false, "Array", "
Associative array with tainted key and tainted
value");

A.4 Scope Operations
ı̈z //
//

// with tests
//

//
var newObj = { a: "foo", b: "blah" };
newObj.a = taint(newObj.a);
var a = "untainted";
assertFunc(checkTaint(a), false, "With test", "'a'

untainted in global scope");
assertFunc(checkTaint(newObj.a), true, "With test"

, "obj.a tainted in global scope");

with (newObj) {
print("Value of a is: " + a);
assertFunc(checkTaint(a), true, "With test", "'

a' tainted in newObj scope");
var c = a;
assertFunc(checkTaint(c), true, "With test", "

One of the vars assigned from the tainted
obj property");

var d = b;
assertFunc(checkTaint(d), false, "With test", "

One of the vars assigned from the untainted
obj property");

};
assertFunc(checkTaint(a), false, "With test", "a

remains untainted in the global scope");

//
//

// elementary closure test
//

//
function Scoping(a, b) {

var exposedProperty = "";
var taintedClosure = taint("taint");
var untaintedClosure = "untaint";
var boolValue = false;

function InsideScope() {
if (boolValue) {

exposedProperty = taintedClosure;
}
else {

exposedProperty = untaintedClosure;
}
print("Boolean is: " + boolValue);
print("Taint is: " + checkTaint(

exposedProperty));

boolValue = !boolValue;

return taintedClosure;
}

return InsideScope;
}

var closedScope = Scoping(2, 3);
assertFunc(checkTaint(closedScope()), false, "

Closure Test", "First time return value is
untainted");

assertFunc(checkTaint(closedScope()), true, "
Closure Test", "Next time return value IS
tainted");

assertFunc(checkTaint(closedScope()), false, "
Closure Test", "Third time return value is
again untainted");

assertFunc(checkTaint(closedScope()), true, "
Closure Test", "Next time return value IS
tainted (and the cycle repeats)");

//
//

// elementary closure test: Setting/Getting of
private object properties.

//

//
// Code taken from: JavaScript the Definitive

Guide, 5E, David Flanagan
// This function adds property accessor methods

for a property with
// the specified name to the object o. The methods

are named get<name>
// and set<name>. If a predicate function is

supplied, the setter
// method uses it to test its argument for

validity before storing it.
// If the predicate returns false, the setter

method throws an exception.
//
// The unusual thing about this function is that

the property value
// that is manipulated by the getter and setter

methods is not stored in
// the object o. Instead, the value is stored only

in a local variable
// in this function. The getter and setter methods

are also defined
// locally to this function and therefore have

access to this local variable.
// Note that the value is private to the two

accessor methods, and it cannot
// be set or modified except through the setter.
function makeProperty(o, name, predicate) {

var value; // This is the property value

// The getter method simply returns the value.
o["get" + name] = function () { return value;

};

// The setter method stores the value or throws
an exception if

// the predicate rejects the value.
o["set" + name] = function (v) {

if (predicate && !predicate(v))
throw "set" + name + ": invalid value "

+ v;
else

value = v;
};

}

// The following code demonstrates the
makeProperty() method.

var o = {}; // Here is an empty object

// Add property accessor methods getName and
setName()

// Ensure that only string values are allowed
makeProperty(o, "Name", function (x) { return

typeof x == "string"; });

o.setName("Frank"); // Set the property value
print(o.getName()); // Get the property value

var taintedName = "Tainted Name";
taintedName = taint(taintedName);

assertFunc(checkTaint(o.getName()), false, "
Private Scoped Props", "Setting prop to
untainted value");

o.setName(taintedName);

assertFunc(checkTaint(o.getName()), true, "Private
Scoped Props", "Setting prop name to tainted
value");

o.setName("Frank");
assertFunc(checkTaint(o.getName()), false, "

Private Scoped Props", "Setting prop name back
to untainted value");

//
//

// conditionals
//

function TestTaintReturn() {
var a = taint("taint");
return a;

}
//debugger;
var abc = checkTaint(TestTaintReturn());

assertFunc(abc, true, "Function tainted return", "
Function returns a tainted value");

//
//

// conditionals
//

var a = "if taint test";
var b = true;
b = taint(b);

if (a && b) {
var c = a;

}
else (b)
{

var c = b;

}

assertFunc(checkTaint(c), false, "Conditionals", "
Dynamically");

A.5 DOM Operations
<html>

<head>
<script type="text/javascript">

window.onload = function() {

var someStr = "Hello World!";
someStr = taint(someStr);

var p = document.getElementById('a_p'

);
p.textContent += someStr;

assertFunc(checkTaint(p.textContent)
, true, "DOM Write", "node's
textContent property tainted");

assertFunc(checkTaint(p.innerHTML),
true, "DOM Write", "node's
innerHTML property tainted");

assertFunc(checkTaint(p), false, "
DOM Write", "node tainted");

var someOtherStr = document.
getElementById('a_p').textContent
;

assertFunc(checkTaint(someOtherStr),
true, "DOM Read", "assigning to
node's textContent propagates
taint");

var someUntaintedOtherStr = document.
getElementById('other_p').textContent;

assertFunc(checkTaint(someUntaintedOtherStr
), false, "DOM Read", "other node's
textContent property untainted");
}

</script>
</head>

<body>
<p id="a_p">This is a paragraph.</p>

</body>
</html>

B. TEST RESULTS

Test Case Description Passed Expected Actual

Taint Simple variable tainted True True True
Taint Simple variable tainted True True True
Global Property of global object tainted True True True
Global Global object untainted True False False
Assignment Simple assignment statement True True True
Global Property of global object tainted True True True
Global Global object untainted after assignment statement True False False
Untaint Simple variable untainted True False False
Global Property of global object untainted True False False
Global Global object untainted True False False
Persist Taint from assignment persists True True True
Global Property assigned to of global object remains tainted True True True
Global Global object remains untainted True False False
Reassign Untaint due to reassignment True False False
taint literals boolean assigned variable True True True
taint literals boolean literal True False False
taint literals string assigned variable True True True
taint literals string literal True False False
taint literals integers/floats assigned variable True True True
taint literals integers/floats literal True False False
taint literals floats literal True False False

Table 2: Core Operations Test Results

Test Case Description Passed Expected Actual

Binary Add b = a + 4 True True True
Binary Add b1 = 4 + a True True True
Binary Subtract c = a − 4 True True True
Binary Subtract c1 = 4 − a True True True
Binary Multiply d = a ∗ 2 True True True
Binary Multiply d1 = 2 ∗ a True True True
Binary Division e = a / 2 True True True
Binary Division e1 = 2 / a True True True
Binary Modulus f = a % 4 True True True
Binary Modulus f = 4 % a True True True
Unary Plus g = +a True True True
Unary Minus h = −a True True True
Postfix increment a++ True True True
Prefix increment ++a True True True
Postfix decrement a−− True True True
Prefix decrement −−a True True True
Bitwise And aa = a & 4 True True True
Bitwise And aa1 = 4 & a True True True
Bitwise Or bb = a | 5 True True True
Bitwise Or bb1 = 5 | a True True True
Bitwise Not cc = a True True True
Bitshift Left dd = a << 3 True True True
Bitshift Left dd1 = 3 << a True True True
Bitshift Right ee = a >> 1 True True True
Bitshift Right ee1 = 204050 >> a True True True
Shift Right With Sign ff = a >>> 1 True True True
Shift Right With Sign ff1 = 204050 >>> a True True True
XOR gg = a ˆ 4 True True True
XOR gg1 = 4 ˆ a True True True
Logical And aaa = a1 && a2’ True True True
Logical And aaa1 = a2’ && a1 True False False
Logical And aaa2 = true && a2’ True True True
Logical And aaa3 = a2’ && false True False False
Logical Or bbb = a2’ || a1 True True True
Logical Or bbb1 = a1 || a2’ True False False
Logical Or bbb2 = a2’ || false True True True
Logical Or bbb3 = true || a2’ True False False
Logical Not ccc = !a2’ True True True
Less Than aaaa = a < 2 True True True
Less Than aaaa1 = 2 < a True True True
Greater Than bbbb = a > 4 True True True
Greater Than bbbb1 = 4 > a True True True
Less Than Or Equal cccc = a <= 2 True True True
Less Than Or Equal cccc1 = 2 <= a True True True
Greater Than Or Equal dddd = a >= 4 True True True
Greater Than Or Equal dddd1 = 4 >= a True True True
Equals Equals eeee = a == 2 True True True
Equals Equals eeee1 = 2 == a True True True
Not Equals ffff = a ! = 2 True True True
Not Equals ffff1 = 2 ! = a True True True
String Concat. aaaaa = a3 + 2 True True True
String Concat. aaaaa1 = 2 + a3 True True True
String Less Than bbbbb = a3 < “foo” True True True
String Less Than bbbbb1 = “foo” < a3 True True True
String Greater Than ccccc = a3 > “foo” True True True
String Greater Than ccccc1 = “foo” > a3 True True True
String Less Than Or Equal ddddd = a3 <= “foo” True True True
String Less Than Or Equal ddddd1 = “foo” <= a3 True True True
String Greater Than Or Equal eeeee = a3 >= “foo” True True True
String Greater Than Or Equal eeeee1 = “foo” >= a3 True True True

Test Case Description Passed Expected Actual

Plus Equals aaaaaa + = a True True True
Minus Equals bbbbbb − = a True True True
Times Equals cccccc ∗ = a True True True
Divide Equals dddddd / = a True True True
Modulo Equals eeeeee % = a True True True
Shift Left Equals ffffff <<= a True True True
Shift Right Equals gggggg >>= a True True True
Shift Right With Sign Equals hhhhhh >>>= a True True True
And Equals iiiiii & = a True True True
Or Equals jjjjjj | = a True True True
XOR Equals kkkkkk ˆ = a True True True

Table 3: Simple Operations Test Results. For cases with multiple operands, an apostrophe(’) indicates which
value is tainted.

Test Case Description Passed Expected Actual

Simple Object Untainted construction of simple object True False False
Simple Object Tainted object property True True True
Simple Object Untainted property of object w/ tainted property True False False
Simple Object Tainted return value of object property which uses tainted property True True True
Simple Object Untainted object with tainted property False False True
Simple Object Untainted name property of untainted Object Pet True False False
Simple Object Tainted object True True True
Simple Object Property of tainted object True False False
Simple Object Untainted prototype of tainted object True False False
Prototype Tainted prototype property True True True
Prototype Object instance untainted True False False
Prototype Shared tainted prototype property True True True
Prototype Object instance w/ tainted prototype untainted True False False
Prototype Tainted prototype property of object True False False
Prototype Return value of prototype method which uses tainted data True True True
Array Array after initialization w/ tainted value True False False
Array Array access of tainted value True True True
In Result of in operation looking for tainted value True True True
Array Joined array contents containing tainted data False True False
Array Result of array concatentation True False False
Array Element in result of array concatentation True True True
Array Result of array slice True False False
Array Element in result of array slice True True True
Array Associative array access w/ tainted key True False False
Array Associative array access of tainted value True True True
Array Associative array with tainted key and tainted value True False False

Table 4: Object Operations Test Results

Test Case Description Passed Expected Actual

With test ’a’ untainted in global scope True False False
With test obj.a tainted in global scope True True True
With test ’a’ tainted in newObj scope False True False
With test One of the vars assigned from the tainted obj property False True False
With test One of the vars assigned from the untainted obj property True False False
With test a remains untainted in the global scope True False False
Closure Test First time return value is untainted True False False
Closure Test Next time return value IS tainted False True False
Closure Test Third time return value is again untainted True False False
Closure Test Next time return value IS tainted (and the cycle repeats) False True False
Private Scoped Props Setting prop to untainted value True False False
Private Scoped Props Setting prop name to tainted value False True False
Private Scoped Props Setting prop name back to untainted value True False False
Function tainted return Function returns a tainted value False True False
Conditionals Dynamically False False True

Table 5: Scope Operations Test Results

Test Case Description Passed Expected Actual

DOM Write node’s textContent property tainted True True True
DOM Write node’s innerHTML property tainted True True True
DOM Write node tainted True False False
DOM Read assigning to node’s textContent propagates taint True True True
DOM Read other node’s textContent property untainted True False False

Table 6: DOM Operations Test Results

