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Abstract

Inlining trials are a general mechanism for making better automaticprohibitively. Inlining should only be applied where the benefits
decisions about whether a routine is profitable to inline. Unlike obtained by inlining outweigh the costs.

standard source-level inlining heuristics, an inlining trial captures the o o ) o
effects of optimizations applied to the body of the inlined routine !N many systems, the profitability of inlining a particular routine is
when calculating the costs and benefits of inlining. The results ofhard-wired into the compilerFor example, the Smalltalk-80
inlining trials are stored in a persistent database to be reused whefompiler hard-wires the definition and optimized implementation of
making future inlining decisions at similar call sitegpd@ group ~ Several basic functions from its standard libramyd the Haskell
analysis can determine the amount of available static informationStandard prelude is fixed so that compilers can implement the
exploited during compilation, and the results of analyzing the functions in the standard library moréi@éntly [Hudaket al.90]. A
compilation of an inlined routine help decide when a future call site drawback of the hard-wiring approach is that built-in routines usually
would lead to substantially the same generated code as a givef¥n much faster than useefined routines, discouraging
inlining trial. We have implemented inlining trials and type group Programmers from defining and using their own abstractions. Other
analysis in an optimizing compiler foESF, and by making wiser ~ Systems, including C++, Modul- T Scheme, SchemeXerox,
inlining decisions we were able to cut compilation time and compiled €ommon Lisp, Similix, and Schism [Stroustrup 91, Nelson 91, Slade
code space with virtually no loss of execution speaslbileve that 87, Adamset al. 93, Steele 90], allow programmers to indicate

inlining trials and type group analysis could be appliéetéfely to explicitly Whlch routines are profltable_ to inline. While granting
many high-level languages where procedural or functional Programmers fine control over the compilation process, this approach
abstraction is used heavily requires programmers to have a fair understanding of the language’
implementation issues (an assumption becoming less likely as
1 Introduction implementations become more sophisticated) and can be tedious if

inlining must be applied heavily to get good performance.
Inlining is an important implementation technique for reducing the Additionally, most explicit declaration-based mechanisms do not
performance costs of language abstraction mechanisms. Inlining?llow programmers to specify that inlining is profitable only in
(also known as procedure integration and unfolding) not only conferscertain contexts, or that inlining should only take place at particular
the direct benefits of eliminating the procedure call and return high-frequency calls of some routine.
sequences but also facilitates optimizing the body of the called
routine in the context of the call site; sometimes these indirect post
inlining benefits dwarf the direct benefits. Inlining has long been
applied to languages like C and Fortran, but it may be even mor
beneficial in the context of highlavel languages. Functional
languages such as Scheme and ML [Rees & Clinger 86, Miladr
90], pure object-oriented languages such as Smalltalk afel Eif
[Goldbeg & Robson 83, Meyer 92], and reflective systems such as
CLOS and SchemeXerox [Bobroet al. 88, Adamset al. 93]
encourage programmers to write general, reusable routines and sol
problems by composing existing functionaligading to programs
with very high call frequencies. Compilers and partial evaluators, Qur system assesses the costs and benefits of inlining by first
such as Similix and Schism [Bondorf 91, Consel 90], can exploit experimentally inlining the tget routine, in the process measuring
inlining to reduce the cost of these abstraction mechanisms andhe actual costs and benefits of that particular inline-expansion, and
thereby foster better programming styles. then amortizing the cost of the experiment (calleéhkming trial)
across future calls to that routine by storing the results of the trial in
a persistent database. Because the indirect costs and benefits of
inlining can depend greatly on the amount of the static information
vailable at the call site (e.g., the static value or class ofjamant),
our system perfornmtype goup analysigo determine the amount of
available call-site-specific static information that was exploited
during optimization. Each database entry is guarded with type group
information, restricting reuse of the information derived from an
inlining trial to those call sites that would generate substantially the
same compiled code.

Our research investigates techniques for automatically deciding
‘when inlining is profitable. Making good inlining decisions depends
crucially on accurately assessing the costs and benefits of inlining.
®Previous automatic decision makers used simple techniques for
estimating costs based on an examination of thgettaoutines
source code (or unoptimized intermediate code), and consequently
they failed to take into account thefeet of post-inlining
optimization of the tayet routine. Our work corrects this deficigncy
VIeading to more accurate cost and benefit estimates and therefore
Better inlining decisions.

Inlining is possible only when the compiler can determine statically
the single taget routine invoked by a call; in functional and object-
oriented languages, this determination can require sophisticate
analysis [Shivers 88, Hall & Kennedy 92, Chambers & Ungar 90,
Palsbeg & Schwartzbach 91]. But even if the call sitpatentially
inlinable, inlining may not berofitable Care must be taken not to
inline too much, or compilation time and compiled code could swell

We implemented and measured this approach in the context of an
|optimizing compiler for &LF [Ungar & Smith 87, Chambers &
Ungar 91], a pure object-oriented language similar to Smalltalk but
without any hard-wired operations or control structures. Tig S
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compiler exploits dynamic compilation, interleaving compilation
with execution, to get fast turnaround times and to benefit from a

inlining trials does not incorporate profile data, instead relying on
static estimates of execution frequeteyt profiling information

form of profile information. By replacing the original heuristics for would be easy to incorporate into an inlining trial-based system.

making automatic inlining decisions with an inlining trial-based
approach, we sought to reduce compilation time while retaining the
same level of run-time performance. Inlining trials wefeotize at

this task: for four medium and two dgr ELF programs, compile
time was reduced by an average of 20% with virtually no loss in run-
time performance. ¥ believe that in systems with more
opportunities to inline than the optimizingl3- compiler we studied,

3 Inlining Trials

To make better inlining decisions, the compiler needs more accurate

information on the actual costs and benefits of inlining a routine in the
context of a particular call site. Accurate information can be obtained
by tentatively inlining the routine, optimizing the inlined routine in

inlining trials and type group analysis could make an even biggerthe context of the call site, and then examining the resulting code. If

improvement in the compile-time/run-time tradeof

The next section of the paper reviews previous techniques for making
inlining decisions automaticallysection 3 describes inlining trials,
with type group analysis detailed in section 4. In section 5 we presen
experimental measurements of our implementation. Section 6
describes some other related work, and section 7 concludes.

the costs outweigh the benefits, thfe@s of inlining on the program

representation can be undone. Such a conditional inline expansion,
used to calculate the costs and benefits of inlining including the
effects of optimization, we call anlining trial.

Clearly performing an inlining trial is much more time-consuming

than estimating costs and benefits based on unoptimized source code.

To regain acceptable compile-time costs, we save the results of each

2 Previous Work on Automatic Decision Making

Existing compilers typically make automatic inlining decisions using

inlining trial in aninlining databasethat persists across compiles.
Future opportunities to inline the same routine at other call sites
consult the database instead of repeating the trial, thereby amortizing

an estimate of the cost of inlining based on an examination of theya st of the trial over all uses of the information in the database. If

routines unoptimized source code or intermediate representation
For example, the original EBF compiler counts the number of
message sends in the candidate routine and inlines the routine if thi
number is below some threshold [Chambers 92]. The @bitJC
compiler inlines a routine only if the number of instructions in its
RTL (register transfer language) representation is less than som
threshold [Stallman 90].

Source-level heuristics daf from the problem that they do not
consider the &ct of optimizations applied to the body of the called
routine after inlining, in particular those optimizations derived from
static information available at the call site. For example, a hash table
lookup routine may normally be considered too big to inline
profitably But if the key to the hash table is a compile-time constant,
then some of the code of the lookup (such as computing the hash ¢
the key) could be optimized away after inlining, making the lookup
routine more attractive to inline. If the hash table itself is a compile-
time constant, then the entire lookup routine can be constant foldec
away Some partial evaluators can perform this sort of optimization
already but compilers typically are not tuned to inline so
aggressively Inlining trials allow the décts of post-inlining
optimizations to be considered when making inlining decisions, and
type group analysis allows call sites withfeling amounts of
available static information to be treated separately

Source-level heuristics can be overly sensitive to the superficial form
of the taget routine. For example, theElS- compilets original
source-level heuristics had been tuned so that important routines suc
as the one implementing ar -loop were inlined. Several years later
the standard library was re@amnized, and the definition of ther -

loop routine was changed in a superficial way to be easier to read. Th
changed version appeared more complex to the contpileever

and the compiler (silently) ceased to inlfr@r loops. Performance

on loop-intensive code mysteriously plummeted as a result. Suct
experiences, as well as only modestly-successful attempts to improw:
the source-level heuristics, provided the motivation for us to develop
inlining trials. By assessing costs and benefits of inlining on the
routine after optimization, inlining trials are much less sensitive to
superficial details of the source code and can adapt as the source co
evolves.

The Impact C compiler uses profile information to help guide the
inlining process [Chanegt al. 92]. The profile information is used to
weight arcs in the program'call graph, allowing the cost/benefit
estimates to be weighted by the expected execution frequanty
leading to better inlining decisions. Our current implementation of

a routine is called from many call sites, the amortized compile time
cost of the trial can be small. Furthermore, if a few routines are
identified that turn out to be bad choices to inline, the savings reaped
by not inlining those routines carfsdt the cost of all the trials. Our
experience using this approach in tteLiScompiler is that many
routines are invoked from multiple call sites; as reported in section 5,
overall compilation time for an application actualgceasesvhen

using inlining trials.

The process involved in making an inlining decision is summarized

by the following pseudocode:
F: the estimated execution frequency of the call site
R: the target routine
T: static information available at the call site

TG: type group information describing call site-specific static
information exploited during inlining trial

¢, b: cost and benefit information for inlining trial
D: inlining database Rx TG - ¢cxb

should-inline(R, T, F, D) =

if 0(R, TG) O dom(D) such thafl 00 TG then
-- use database entry if available
(c,b) -« D(R, TG)

elseif source-level-length(R) < thresholdhen
-- do inlining trial if simple source-level heuristic passes
(c, b, TG) ~ perform-trial(R, T)
add (R, TG) - (c, b)) toD

ese
-- don't bother with trial
(Cv b) - (Ool O)

end

return make-decision(c, b, F)

The remainder of this section discusses inlining trials in more detail.
Sections 3.1 and 3.2 describe how we estimate costs and benefits of
inlining during a trial, respectiveland section 3.3 discusses how to
make the final inlining decision given cost and benefit information.
Section 3.4 addresses what happens when inlining is invoked
recursively within a trial. Section 4 explains type group analysis, the
mechanism whereby our system describes the amount of call-site-
specific type information exploited when optimizing the inlined
routine.



3.1 Estimating Costs inlining decision, but some controlling mechanism still needs to
make a decision. For our implementation, we use a simple function
that considers compiled code space cost and relative execution time
savings and inlines the routine if the ratio of time savings to space
cost is above a particular threshold; dynamic profile data could be
include easily by weighting the expected execution time savings.

The major costs of inlining are increased compiled code size anc
increased compile times. Computing the space cost of inlining a
routine is easy to measure: after optimizing the routine in the contexi
of the call-site, the compiler sums the expected space needed t
generate machine code for each control flow graph node in the bod'
of the inlined routine; in our implementation this is an estimate since o
register allocation and instruction scheduling have not yet been3.-4  Nested Inlining
performed. The compiled code space needed to generate a call is the

subtracted from the space taken by the inlined routine to determiné/Vhen optimizing an inlined routine, calls within the inlined routine
the total expected space cost for inlining. may themselves be candidates for inlining. Optimizing these

candidates can lead to recursive inlining trials. Such recursion poses
no problems, and in fact occurs often in our implementation. The
costs of inlining a routine include the costs associated with inlining
any of its calls, and the benefits of inlining a routine include any
benefits derived as part of inlining calls within the routine. The
Fortunately compilation time in our system seems to be roughly cpmpiler must track the.flow of stat.ic information from the oyter call
proportional to compiled code space usage: we measured th(sne.through. any contained cal.ls,. in prder to correctly. attribute the
compilation of 1,972 ELF procedures and found a correlation Savings derived from some optimization to the appropriate source of
coeficient r = 0.93. Consequentlypur implementation considers ~Static information.

only compiled code space usage in the cost/benefit tfadeof

Estimating the compile time required to inline a routine is more
difficult. Simply using a timer to measure compilation timdessif
from the low resolution of most hardware clocks. It also fecdif to
calibrate across dérent compilation platforms and across versions
of the compiler with dfering levels of debugging instrumentation.

3.2 Estimating Benefits 4 Type Group Analysis

The major benefit of inlining we consider is reduced execution time During an inlining trial, the compiler uses any information available
through elimination of executed instructionsm& savings can be statically at the call site to optimize the body of the inlined routine.
viewed either as an absolute savings or as a relative savings. OtConsequentlythe costs and benefits of the trial reflect this call-site-
implementation supports both views by computing two execution specific information. For example, if at some call site the compiler
time estimates: the amount of time taken by an execution of theknows the concrete type of amyament, accesses to thgament in
inlined routine and the number of instructions saved as a result othe body of the inlined routine are likely to get optimized
inlining, after optimizations have been applied. Absolute and relative substantiallyincreasing the apparent benefits of inlining the routine.
estimated execution time savings can be calculated from these twiHowever a diferent call site that lacked static information about the
numbers. arguments type would be attributed a lower inlining benefit. If the

Computing an estimate of time taken in an invocation of the inlined results of an inlining trial for one of these two call sites were applied
routine requires estimating the time taken for each control flow graphto the otherinappropriate inlining decisions might be made.

node, after optimization, weighting it by its expected execution ) . . . .
frequencyand summing. This calculation is mostly straightforward, 10 avoid these potential problems, an inlining trial database entry is
using standard compiler static estimates for execution frequencyguarded with a description of the kind of static information that
(Due to space constraints, some of the subtleties involved with thisshould be present at the candidate call site for the results of the trial
calculation are relegated to a separate technical report [Dean &0 be reasonably predictive. During an inlining trial, the compiler
Chambers 93].) monitors uses of static information derived from the caller and
records the amount of static information that enabled (or disabled, in
the case of a lack of static information) each optimization. This
summary information is added to the inlining database entry storing

instructions skipped as a result of the optimization, weighted bythe results of the trial_. When a future_ call site searches_the inlining
expected execution frequenejowever the compiler considers only databa§e, thg static information available at the call site must be
those optimizations enabled by static information that was availablecompatible with the summary of an entry for it to match.

at the call site; other optimizations would be performed whether or . .
not the routine was inlined. During an inlining trial, the compiler !N OUr system, concrete type information about theraents to the
maintains a data structure describing the subset of available statiinlined call are the principal sources of optimization. Guarding an
information derived from the call site. Only optimizations based on inlining trial’'s database entry with the actual concrete type
information in the subsetfatt the execution time saved as a result information available about thegaments would be too specific,

of inlining. The savings attributed to these optimizations, plus the however: few call sites would have exactly the same static type
direct savings of the eliminated call and return sequence, form theinformation as the inlining trial, and consequently there would be

To determine the execution time saved as a result of inlining, the
compiler monitors each optimization performed on the body of the
inlined routine and estimates the number of dynamic machine

estimated savings in execution time due to inlining. little reuse of the results of inlining trials. Instead, the inlining entry
. ) o o should be guarded with description of the kinds of static type
3.3 Making Final Inlining Decisions information that lead to roughly the same degree of optimizatien. W

Once the cost and benefit information for a call site has beencall these descriptions of static type informatigpe groups. A type
obtained, either by performing an inlining trial or by locating an 9roup specifies a set of types, where all member types lead to
applicable entry in the database, the compiler must make a decisiorsubstantially the same optimizations being performed as part of
This decision depends on the environment to determine the relativeinlining. Types themselves in our system describe sets of values that
value of compile time, compiled code space, and execution time.share common properties relevant to the optimizations performed by
Inlining trials provide better information upon which to base an the compiler The main types represented in tlgIScompiler are



the following { is the set of all possible values, which is partitioned 4.2  Computing Type Group Information

into a set of classe&, ...,C.}: . ) )
i ) To compute type group information for eachuament, the compiler

Set performstype group analysis. Type group analysis is unusual in that
Type name d . Meaning it does not compute some abstraction of the values manipulated by
escription ! ) . : o
the program being compiled, but rather it monitors the compilation
UnknownType |V Expressions of unknown concrete type process itself, computing how the compiler manipulates static type
Class(C) c Instances of a class; most general tybe er\g);r;ﬁgjon_.sﬁom this standpoint, type group analysis is a kind of
supporting inlining ys
Constant(v O V)|{ v} Compile-time constant Type group analy3|s is _performe_d in parallel \_NI'[I’_I regular concrete
type analysis during an inlining trial. At the beginning of a trial, each
Union(ty, ...,ty) |ty 0...0Ot, |Combined types, from mge CFG argument to the inlined routine is associated witHth&ersal type
nodes group, indicating that, so famo static information about the
Difference(ty, t,)|t; - t, Certain types excluded, from failed arguments has been used. Whenever an optimization is performed
value- and type-tests based on static type information derived from @uament, the type

group associated with thatgament is narrowed by intersecting it

In the same way that types represent sets of values, type group‘é’ith a type group t.hat.repres.er]ts the kind of static ir.1f0.rma.1tionI that
represent sets of types. The following type groups are used in oufnabled the optimization. Similaylywhenever an optimization is

extension of the _F compiler T stands for the set of all types): disabled because of a lack of precision in the static type of an
argument, the type group for thatgament is intersected with an
Tvpe Groub hame Set description Meanin ExcludeGroup type group that rule_s out types that could have
P P P g enabled the optimization. The following table indicates, for some of
Universal T Any type the more common optimizations performed in tBeFcompiler the
SubtypeGroup(s0T) |{tOT|tOs} Any type which is at type group |r_1tersected if th_e static mformatlon about thanaent
least as precise as enabled or disabled the optimization:
AClass {tuT] Any type with class- optimization if enabled if disabled
t OC, C aclass type(}evel information
perform SubtypeGroup(the class) ExcludeGroup(AClass)
AClosure {tOT| Any closure type (3 message lookup
tis a closure type } isneg;:ial kind of class at compile-time
constant folding AConstant ExcludeGroup(AConstant
AConstant (tOT|H =1} Any type describin 9 p(
a compile-time eliminate SubtypeGroup(the class)| ExcludeGroup(AClass)
constant fixnum, float,
- etc. type tests
IntersectGroup(tl, ...,tn) tin..nt, Intersection of
several type group: eliminate true, [AConstant ExcludeGroup(AConstant;
- false value tests
ExcludeGroup(s O T) {tOT|tOs} Any type not in a
certain type group inline-expand |AClosure ExcludeGroup(AClosure)
body of closure

4.1 Using Type Group Information The type groups calculated as part of type group analysis are intended

to represent the Igest set of gument types that would lead to the

Each agument of a database entry is guarded with a type group. Forsame optimizations being performed at a future call site. Further

a database entry to be applicable to the call site, the static YPQiatails of type group analysis and its implementation in & S
information for each actualgument must be a member of the set compiler can be found in a separate technical report [Dean &
specified by the corresponding type group. If for example the tYPe chambers 93]

group of some gument is th&Jniversal type group, then any actual '

argument type will match; this implies that the optimization of the 43 aAp Example

inlined routine does not depend on the static type information

available for that gument. If instead the type group was We will use the following inlining candidate to illustrate how type
IntersectGroup(SubtypeGroup(Fixnum), AConstant), then only analysis and type group analysis interact:

actual aguments whose static type information conveyed that the method growable_sequence::fetch(index) {

argument was soméxnum constant would match. Such a precise if index < 0 or index > self.max_index then
type group implies that the compilation of the inlined routine is able _error(*index out of bounds”)

to exploit the information that thecarment is somfixnum constant, endif . _

say through constant folding within the inlined routine, that would return self.elems(index + self.base_index]

not be possible if less static information were available. As a final
example, if the type group wexcludeGroup(AClass), then only
static types that were less specific than a concrete class type woulssume that the compiler knows the concrete class type séthe
match. Tpe groups that exclude the more precise kinds of type variable statically and it has statically-bound theq.fetch
information ensure that inlining candidates do not match againstmessage to thgrowable_sequence::fetch method above.
database entries for trials that were unable to perform optimizationsConsider the case the static type of tlguarenti is fixnum. The

due to a lack of static information at the call site. In this specific compiler consults the inlining database for a matching entry; assume
example, the lack of class-level type information during the trial this fails. Since the tget method is not unreasonablygkr the
prevented some optimization, such as performing message lookup atompiler begins an inlining trial. Initially the type group associated
compile-time or eliminating a run-time type check. with the agumentndex is Universal; no optimizations yet exploit

... seq.fetch(j) ...



any static information aboutndex. The first operation within the  with more accurate information upon which to make decisions, and

routine sends the message tondex. The compiler examines the  type groups enable the compiler to distinguish among call sites with

static type ofi ndex, discovers that ndex is a class type, and different available static information.

statically-binds and inline-expands thiei xnum : < method

(perhaps invoking a recursive inlining trial in the processyeflect 5 Experimental Results

using class-level type information about thedex amgument, the

compiler narrows the type group ohdex from Universal to Our original motivation for developing the technology of inlining

IntersectGroup(Universal, SubtypeGroup(fixnum)), or simply trials was to improve the response time of the optimiziBgFS

SubtypeGroup(fixnum). The compiler also updates the benefit compiler In the ELF system, compilation is interleaved with

information for the trial to reflect saving more than a dozen cycles byprogram execution, and a slow compiler leads to slowly running

eliminating the overhead of dynamic binding and the call/return programs. Consequentlyve attempted to construct an inlining

sequences for themessage. decision maker that would lead to a significant decrease in
. o o compilation time without a major loss in execution speed; other

The compiler analyzes the body of the inlirathethod. The built-in environments might choose fdifent tradeds, such as improving

fixnum : < method first tests that itsgument type is also a  gyecution speed without a major loss of compilation speed.
fixnum. It is, but since the gument to< is not being monitored as

part of the inlining trial forf et ch, no type group information is  To assess thefettiveness of inlining trials, we compared our new
affected. After verifying that its guments aréixnum’s, the compiler inlining decision making system using inlining trials against the
attempts to constant-fold the comparison. This requires bothsource-level heuristics found in the existindELE compiler
arguments to be integer constants, which does not succeed. Thmeasuring compilation time, execution time, and compiled code
compiler again narrows the typeiaiidex to indicate that its static =~ space consumptionoTmake a more direct comparison, we set the
type was not specific enough to enable the optimization, intersectincinitial “reasonably short” threshold (identifying routines where

i ndex’s type group withExcludeGroup(AConstant) to give performing an inlining trial seems feasible) to exactly the same value
IntersectGroup(SubtypeGroup(fixnum), used by the source-level heuristics. Thus the orfigrdifice between
ExcludeGroup(AConstant)). This type group matches all types that the two decision makers is that the new system might choose not to
are at least as specificfagium type but that are less specific than a inline something that the existing system would inline.&%amined

fixnum  constant. Such types includefixnum and the following suite of progranis:
Union(Constant(3), Constant(4)) but excludesConstant(17),
UnknownType, and Union(fixnum, flonum). Note that the type Source .
group ofi ndex excludes types that are constants, but clearly it does|Program (lines) Description
not exclude integer values reaching that part of the progrgme. T -
group information can exclude overly spedifipe information, but parser 400 Parser for an old version of&r
thevalues described by the excluded types can still appseong as primMaker 1,300 Program to generate wrapper functions from
some more general type including the value is included in the type an interface description file
roup.
group pathCache 300| Traverses theELF object graph and assigng
The compiler visits each of the remaining operations in the inlined path names to objects
routine, bUt. no ad.dmonal narrowing of the typ_e group pﬂe_x deltaBlue 600| Incremental constraint solving program
occurs; additional time savings accrue, howelating optimization
of the> and+ messages. The compiler then completes the trial by |cecilinterp 10,70 Interpreter for the Cecil language
creating a new database entry that records the compiled code size « cecilCompiler | 12,500 Compiler for the Cecil language
the inlinedf et ch method, the expected cycle count of an execution

of the inlined method, and the expected number of cycles saved as\ye gyspected that the existing heuristics, tuned initially on small
result of inlining thef et ch method. This entry is added to the  panchmarks. ovenlined for these lager programs. This over
database, guarded by the type group calculated for iuex inlining led to slower compiles and more space-consuming compiled
argument. Finallythe compiler makes a decision about whether the ;e without much benefit in execution speeelHaped that inlining
fetch method should be inlined, undoing tffees of the trial if not.  yi515 would make better decisions on what routines were profitable to

Subsequent statically-bound invocations of fret ch method inline. Flgu_re 1 on the following page reports the ;ompllatlon time,
examine this database entiytheiri ndex agument type is at least execution time, and code space usage of these six programs for our
afixnum but not afixnum constant, then the results of the database N€W System, relative to the existing systefAppendix A includes
entry are consulted to determine whether inlining is warranted. If the raw data.) Shorter bars indicate better performance for the new
i ndex is known statically to be a particular fixnum constant, then a System. The chart shows compilation times both for starting with an
new inlining trial is performed. During such a trial, thedex < 0 empty inlining database for each program (“cold") and for starting
expression can be constant-folded, resulting in additional savings irVith @ filled inlining database (“warm”). The warm compiles were
execution time and compiled code space that might change themeasured by reusing the database generated during the "cold
decision about whether the call site is profitable to inline. Similarly cOmpile” for the benchmark. In practice, since the database is
if the static type of the gument is less specific tharfienum, or is persistent and entries are shared across programs, the compilation
some other class type, then a new inlining trial is performed to asses
the costs and benefits of afeient kind of static type information  * We also examined a large number of small benchmarks, used during the
abouti ndex. original development of the EBF compiler. The inlining trial-based
system achieved the same compile-time and run-time performance as the
Without some mechanism like inlining trials and type groups, the existing system, as we hoped.
compiler could examine only the unoptimized source code for the T The values in the chart are calculated as the compilation time, execution
f et ch method. In this and many similar cases, the kind of static time, and compiled code space usage for the new system divided by that
information about the guments to the call can have a significant  for the existing system, converted to a percentage. Execution time denotes
effect on the nature of the final code; some calls will be profitable to just the time spent executing compiled code, not the time spent compiling
inline, while others will not be. Inlining trials provide the compiler ~ the code.
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performance is closer to the warm compile figures than to the coldmore robust in the face of future superficial changes to the source
compile figures. code of libraries and applications, such as the superficial rewrite of

On average (using geometric mean), compilation time decreases bthe forloop implementation described in section 2.

20%, execution time increases by an average of 1%, and code spac
usage decreases by 6%. On an absolute scale, the compilation tirr
savings of 20% represents a savings of 68 seconds of the 291 secon ) ? .
required to compile all six programs; in our environment, raw data). The first six columns represent the number of entries

compilation time is a significant cost worthy of optimizatioionr:f _cr_e_ated when compiling each program |_nd|V|duaIIy against an
Based on these results, we consider inlining trials tofbetie® at initially empty database. In our implementation, each database entry
meeting our goal of balanced compilation and execution times. takes up approximately 75 bytes of space; the savings in compiled
] ) _code space for using inlining trials compensates for the additional
The parser program shows particularly good improvement in gspace cost of the database entries, and the compiled code space
compilation time. Under the old source-level heuristics, the gayings persist after program development ceases. The rightmost
advance routine, called to move the current character position ¢\, indicates the total number of entries generated by compiling
ZJ(;\C,:LC::Qctigzsmr?gttSgﬁgf},tvﬁqsulgilwl?sodnglsgF;gfrgrtrigtimoisé\t'aﬁgﬁ\lge;t the six programs in succession, starting with an initially empty
the call site, so there is little indirect benefit to inlining. The inlining database. Th_e numbers to the right of this column !ndlca_lte the num_ber
trial-based system detected this and consequently never inlined th‘Of new entries generated by each program in this successive
advance routine, saving a lot of compilation time and code space in COMPilation. Because many database entries are used by more than
the process. one of the programs, such as entries for functions in the standard
library, the total number of entries generated by compiling all six
The compilation improvement shown by these programs, while quiteprograms in succession (1275) is only half of the sum of the number

significant, is not as impressive as it might be in another environment of entries generated by compiling each program separately (2612).
For these programs, the curreBLS compiler is unable to statically

bind many messages because of a lack of static type information
Future compilers for B.F and other object-oriented languages
[Chienet al. 93, Holzle & Ungar 93, Chambestsal. 93] are expected ) . L
fo incorporate interprocedural type analysis and extract typePrevious work on automatic inlining has focused primarily on
information from execution profiles, leading to many more messagesattemptlng to maximize the direct benefits of inlining without too
being statically bound and thus eligible for inlininge \kpect the ~ Much increase in compiled code space [Scheifler 77, Allen &
importance of making good inlining decisions to grow as other partsJohnson 88, Chang al. 92]. In the context of this related work,
of the compiler become mordegtive. indirect benefits of inlining tend to be relatively unimportant.
Automatic inliners for highelevel functional and object-oriented
languages have quite afdifent flavor particularly because many
things which would be built-in operators and control structures in

Figure 3 on the previous page reports the number of database entries
generated by compiling the ¢gr programs (Appendix A includes the

6 Related Work

The above experiments used the same initial threshold for both
systems. @ see how sensitive the two approaches are to the choice o
this threshold, we repeated the comparison of the two systems on th

large programs for a range of thresholds. In figure 2, on the previous:ower'level Ianguak?es teggrtodbe ugletfmed 'g hlggebv?.l d
page, we report the geometric mean of compilation time and'@nguages, and these usefined routines need to be Inline

execution time for the two systems on the six-program benchmark@dgressively to get good performance. Additionatiyhe context of
suite for several diérent thresholds. The values in the chart have higherlevel languages, the indirect benefits of inlining often are more
been normalized to the performance of the old inlining heuristics important in determining profitability than the simple direct costs.

when using the default threshold of 8. Increasing the threshold value . ) . .
increases the number of routines considered for inlining. Ruf and \eise describe a technique for avoiding redundant

specialization in a partial evaluator for Scheme [Ruf &s4/91, Ruf
Compilation time is much less sensitive to the choice of thresholdg \weise 92]. When specializing a called routine using the static
under the new inlining trial-based heuristics than under the oldnformation available at a call site, their technique computes a
source-length heuristics, and the new approach has Signiﬁcaml)generalization of the actual types that still leads to the same
better compilation time behavior than the old system. Also, the newspecialized version of the called routine. Other call sites with

inlining trial-based - decision-making achieves nearly the Same jitro ot static information can then share the specialized version of
execution speed as under the old heuristiogether these results . . L
the called routine, as long as they satisfy the same generalization. Our

illustrate some of the dérent compile-time/run-time traddésfthat . o . X
can be made. In our system we set the threshold to 8, leading to a 20&YP€ 9roup analysis computes similar summary information about
amgument types, although the details of the two analysies. dif

reduction in compilation time with a negligible loss of execution
speed. If instead we set the threshold to 10, compilation time would . . o
still drop by 9% but run time would also drop by 4%. Because Cooper Hall, a_md Kenne_dy_ presentgtechnlque for identifying when
compilation speed does not degrade much when using a higher initiaC’€ating multiple, specialized copies of a procedure can enable

threshold under the new system, we can use a higher threshold and [oPtimizations [Coopeet al. 92]. They apply this algorithm to the
interprocedural constant propagation problearetuce the number

. o o . of specialized copies of a procedure, their system evaluates when
The existing source-level length heuristic is computed by summing meing two specialized versions of a procedure would not sacrifice
weighted values for non-trivial message sends within the target routine. ging pecialized versi p ure wou m

Certain messages which the compiler expects to be optimized (su¢h as * an important optimization. Our type group guards on database entries
and ‘at: ") are assigned a weight of 1 and other message sends areaccomplish a similar task, enabling the results of an inlining trial to

assigned a weight of 2. A routine is eligible for inlining if the weighted be reused for those call sites where similar optimizations are enabled,
sum of its messages is less than or equal to the inlining threshold. but over a richer domain of types.




7 Conclusion

Inlining trials are a promising mechanism for gathering more
accurate information about the costs and benefits of inlining in an
optimizing compiler Better information can in turn lead to better
automatic decisions about which call sites to inline. If these automatic
decisions are good enough, standard library routines weed to be
hard-wired into the compiler for performance and programmers
won't need to annotate routines with explicit inline directives.
Ultimately, good automatic inlining can foster a better programming
style by making the use of abstraction cheaper

Unlike standard source-level inlining heuristics, inlining trials can
consider the &fct of post-inlining optimizations when assessing the
costs and benefits of inlining. This provides the compiler with more
accurate data upon which to base its inlining decision, and the post
optimization data is much less sensitive to superficial details of the
source code. By storing the results of trials in a persistent database
the extra cost of a trial can be amortized across uses of the
information. Type group analysis is key to reusing database entries
for exactly those call sites whose static information would lead to the
same set of optimizations being performegergroup analysis may

be applicable to other compilation problems, such as deciding wher
procedure specialization is profitable.

We have applied the language-independent ideas of inlining trials anc
type group analysis to improving the response time of the optimizing
SELF compiler In our implementation, the use of inlining trials cut
compile time by 20% with virtually nofetct on execution speed. By
changing the cost/benefit tradeembodied by the final inlining
decision-maker we could have saved both compile tirard
execution time by making more intelligent inlining decisions. The
extra compile-time cost of inlining trials is more than paid for by
avoiding ovetinlining. Incorporating dynamic profile information
could improve the results even more.

Inlining trials and type group analysis appear most useful for
languages where procedural abstraction is used heavigre the
compiler can determine statically the singlgéaof a call, and where
the efects of post-inlining optimizations are substantial and can vary
across call sites. Many high-level functional and object-oriented
languages meet this description. As the analyses of getsaf call
sites improve, the compiler will have more opportunities to inline and
consequently bear more responsibility for making wise decisions.
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Appendix A Raw Data

The following table shows the raw data for the experiments. All times are in milliseconds, and all ratios are relative to the compilation and
execution times for the old heuristics with the default threshold of 8 (shown in bold):

Threshold 6 7 8 9 10 11 12
Program Time|Ratiq Time| Ratig| Time| Ratig Time| Ratig Time| Ratig Time| Ratig Time|Ratio|
parser 13278| 0.40|| 15836| 0.48/| 32834, 1.00/| 35322| 1.08|| 42748 1.30|| 87252| 2.66|| 92358| 2.81

-s—i primitiveMaker 33773| 0.71)| 34849| 0.73|| 47666| 1.00/| 49218 1.03|| 68345| 1.43|| 250143| 5.25/| 256611 5.38
% pathCache 5021| 0.88] 4922| 0.87|| 5683| 1.00 6816 1.20 7108| 1.25 7209 1.27 7700| 1.35
E deltaBlue 9216| 0.92 9148| 0.92/| 9969| 1.00{| 11821| 1.19|| 11784| 1.18|| 12166, 1.22/| 12253| 1.23
o
o|cecilinterp 79425| 0.82|| 87456, 0.90|| 96895| 1.00(| 104681| 1.08/| 157452| 1.62|| 306041 3.16|| 363681| 3.75
ElcecilCompiler 78919| 0.80|| 84398, 0.85/| 98719| 1.00|| 105818| 1.07|| 196308 1.99|| 507091 5.14i| 536549| 5.44
S| Geometric mean 0.73 0.77 1.00 1.11] 1.44 2.66 2.83
parser 14327| 0.44{| 17518| 0.53| 23304| 0.71)| 25212 0.77|| 26014| 0.79|| 36510/ 1.11j| 38554 1.17
% primitiveMaker 33836 0.71)| 34613| 0.73|| 37942| 0.80|| 42553 0.89|| 43948| 0.92|| 78707| 1.65/| 81599 1.71
o
9| ;| pathCache 5401| 0.95 5374| 095/ 5488 0.97 6062| 1.07| 5949| 1.05 6125| 1.08 6291| 1.11
%’-E deltaBlue 9454| 0.95 9463| 0.95(| 9706| 0.97|| 10459 1.05 9746| 0.98|| 10303 1.03| 10361| 1.04
o Ececillnterp 85486| 0.88|| 85721 0.88|| 89775| 0.93|| 104063| 1.07|| 102252| 1.06|| 122176| 1.26|| 128032| 1.32
ElcecilCompiler 80398| 0.81|| 83439 0.85| 86947| 0.88| 97378| 0.99|| 97302 0.99|| 103427| 1.05/| 104016/ 1.05
S| Geometric mean 0.77 0.80) 0.87 0.97 0.96) 1.18 1.22
| parser 13444| 0.41}| 15080| 0.46|| 17042| 0.52|| 21488 0.65|| 20785| 0.63|| 24530/ 0.75/| 27405/ 0.83
gprimitiveMaker 33549| 0.70|| 35000, 0.73|| 36805| 0.77|| 41529| 0.87|| 42988 0.90|| 58341 1.22/| 76548| 1.61
»| pathCache 5148| 0.91 5248| 0.92(| 5227| 0.92 5693| 1.00 5897| 1.04 5652| 0.99 5823| 1.02
o
‘E|deltaBlue 9362| 0.94 9484| 0.95(| 9514| 0.95 9591| 0.96 9680 0.97 9669 0.97 9712| 0.97
Ececillnterp 82777| 0.85|| 84771 0.87|| 85181| 0.88| 93261| 0.96/| 95259 0.98|| 107946/ 1.11)| 105125| 1.08
écecilCompiler 81034 0.82|| 82892| 0.84|| 86749| 0.88|| 91747 0.93|| 97294| 0.99|| 102350| 1.04{| 102949 1.04
S| Geometric mean 0.75) 0.78, 0.80] 0.89 0.91] 1.00 1.07
parser 972| 2.14 764| 1.68 455| 1.00 446| 0.98 412  0.91 428| 0.94 432| 0.95
.E_i primitiveM aker 1877| 1.80 1501 1.44| 1042| 1.00 1030, 0.99 1001, 0.96 1037| 1.00 949| 0.91
% pathCache 3019| 1.33 2418| 1.06/| 2274| 1.00 2274| 1.00 2282| 1.00 2286 1.01 2130| 0.94
% deltaBlue 2364| 1.70 1522| 1.09/| 1391| 1.00 1329| 0.96 1247 0.90 1254| 0.90 1257| 0.90
Zcecillnterp 32475 1.11|| 29124| 0.99|| 29293| 1.00|| 30492 1.04|| 29452| 1.01)| 29169| 1.00/| 32059 1.09
‘gceciICompiler 2871| 1.74 2232| 1.35/| 1649| 1.00 1642| 1.00 1628 0.99 1559| 0.95 1621| 0.98
[}
?ﬂ (| Geometric mean 1.60 1.25 1.00 0.99 0.96 0.96 0.96
oSl |parser 963| 2.12 750| 1.65 466| 1.02 466| 1.02] 446| 0.98 430| 0.95 425| 0.93
primitiveM aker 1891 1.81 1540, 1.48| 1088| 1.04 1070, 1.03 1032 0.99 1053| 1.01 1023| 0.98
pathCache 3129| 1.38 2406/ 1.06/| 2293| 1.01 2308 1.01 2191| 0.96 2225| 0.98 2229| 0.98
% deltaBlue 2409| 1.73] 1567| 1.13|| 1381| 0.99 1348 0.97, 1274 0.92 1257 0.90 1269| 0.91
‘q.:cecillnterp 32853| 1.12|| 30649| 1.05/| 29487| 1.01j| 29929 1.02|| 28907| 0.99|| 29104/ 0.99|| 30745 1.05
‘gceciICompiler 2971| 1.80 2228| 1.35| 1597| 0.97 1593| 0.97 1556, 0.94 1560| 0.95 1640 0.99
1| Geometric mean 1.63 1.27| 1.01 1.00 0.96] 0.96 0.97

The following table shows code sizes for the six programs compiled with the old heuristics and with inlining trials (with a threshold of 8):

Program Codesize-old || Codesize- trials
parser 107676, 1.00 83040| 0.77
primitiveM aker 233148, 1.00 225812  0.97
pathCache 30164| 1.00 30160 1.00
deltaBlue 51036 1.00] 30616 0.99
cecillnterp 421400/ 1.00 399428 0.95
cecil Compiler 429948| 1.00 407080 0.95
Total 1273372| 100 1196136| 0.94
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