
Craig Chambers CSE 501 Homework Assignments

5

Homework Assignment #3

Due Monday, March 6, at the start of lecture

1. Put the following program in SSA form (you may draw a control flow graph to illustrate your
solution):

x := 0;
do {

x := x + 1;
z := x;
y := 0;
if (...) {

y := 1;
}
w := y + z;

} while (...);
print(x, y, z, w);

2. Give an algorithm for constant propagation that exploits def/use chains to work faster than the
propagation-based algorithm presented in class. What is the time complexity of your
algorithm, assuming def/use chains are already constructed? How, if at all, would converting
the program to SSA form before constructing def/use chains help your analysis?

3. Give an algorithm for dead assignment elimination that exploits def/use chains to work faster
than the propagation-based algorithm that used live variables analysis presented in class. Your
algorithm should not miss any optimization opportunities found by the best live variables-
based algorithm presented in class. What is the time complexity of your algorithm, assuming
def/use chains are already constructed? How, if at all, would converting the program to SSA
form before constructing def/use chains help your analysis?

4. Consider integer range analysis, with the dataflow information at each program point taking
the form of a map from each integer variable in scope at that point to a pair (lo,hi), where lo
and hi are integer constants, with the meaning that at that program point, the value v of each
integer variable satisfies lo ≤ v ≤ hi. You’d like to design an analysis that can prove statically
that the assertions in the following examples are all true:

int i = 10;
while (i < 20) {

assert(i >= 10 && i <= 19);
i = i + 1;

}

int j = 20;
while (10 < j) {

assert(j >= 11 && j <= 20);
j = j - 1;

}

You can assume that the simple flow functions for X := C and X := Y OP Z defined in class
are part of your analysis.

a. Define the IRA lattice formally, specifying at least the set of elements and the partial

Craig Chambers CSE 501 Homework Assignments

6

ordering relation over them.

b. Define the flow function for compare-and-branch instructions of the form if (I < J)
goto L1 else goto L2 where I and J are integer variables or constants. Such
compare-and-branch instructions have one incoming control flow edge and two outgoing
control flow edges, for the true- and false-outcome successors, respectively. Thus, you are
to define the function IRAif (I < J) goto L1 else goto L2(in) → (outL1, outL2). Exploit
the different knowledge gained about the truth of I<J in each of the successor edges to
refine the possible ranges of I and J.

c. Define the flow function for non-loop-head merges. For simplicity, assume that a merge is
a node with exactly two incoming control flow edges and one outgoing control flow edge.
Thus, you are to define the function IRAmerge(in1, in2) → out.

d. Define the flow function for loop-head merges. For simplicity, assume that a loop-head
merge is a node with exactly two incoming control flow edges (for the loop entry edge and
the loop back edge, respectively) and one outgoing control flow edge. Thus, you are to
define the function IRAloophead(inentry, inbackedge) → out. Include sufficient widening to
ensure that optimistic iterative analysis completes in a reasonable amount of time, but be
sufficiently precise to identify that the assertions in the examples above are true.

e. Illustrate the results of running your analysis on the CFG derived from the C example
above. Treat each assertion statement as a single CFG node that has no run-time effect.
Show each step of iterative analysis separately.

f. Illustrate the results of running your analysis on the following example:

int j = 20;
do {

assert(j >= 10 && j <= 20);
j = j - 1;

} while (j >= 10);

Does your analysis succeed in proving the assertion true? If not, what sort of “ loop
normalization” step might you invoke to transform your program into an equivalent one in
which the assertion can be proved true?

5. Consider extending your integer range analysis from the previous question to be
interprocedural.

a. Explain what kind of information would be computed by a bottom-up callee summary vs.
a top-down caller summary? What intraprocedural analysis information would be
improved by each kind of summary?

b. Discuss the tradeoffs among versions of interprocedural integer range analysis that are (1)
context-oblivious, (2) context-insensitive, (3) context-sensitive keyed by call strings, and
(4) context-sensitive keyed by calling context. Explain how precise the results of the
different versions are likely to be, and long different versions are likely to take to compute
their results. Give an example program which illustrates the differences, at least in
precision. Which approach would you pick for a practical compiler, if any?

