
Craig Chambers CSE 501 Homework Assignments

3

Homework Assignment #2

Due Wednesday 2/8, at the start of lecture

1. Given a set S1 and a lattice D2=(S2,≤2), one can construct the lattice S1→D2=(S→,≤→) of all
total functions from S1 to S2. A element of S1→D2 is a set of pairs (a,b) where a∈S1, b∈S2,
and each element of S1 appears in the set exactly once. One element f of S1→D2 is ordered
less than or equal to another element g of S1→D2 iff, for all elements a of S1, f(a) ≤2 g(a),
where f(a)=b iff (a,b)∈f.

a. Define formally the lattice S1→D2 by defining S→ and ≤→ in terms of S1, S2, and ≤2.

b. Define ∩→, T→, ⊥→, and the height of S1→D2 in terms of S1, S2, ≤2, ∩2, T2, ⊥2, and the
height of D2. (Note that these other values are completely defined by S→ and ≤→. so
technically it’s redundant to specify them, but it’s useful and conventional to do so, and is
a partial check on whether S→ and ≤→.actually form a lattice.)

c. Formally define helper functions lookup: S→ × S1 → S2 (which takes a function and an
element of the function’s domain and returns the corresponding element of the function’s
range), and update: S→ × S1 × S2 → S→ (which takes a function, a domain element, and
a range element, and returns a new function that maps the domain element to the range
element and maps all other elements the same way as the input function).

d. Use this → lattice constructor to specify an appropriate lattice for reaching constants.
Explain any relationship between this lattice and the “best” lattice defined in lecture.

e. Formally define the flow function CPX := Y + Z: S→ → S→. Make use of your lookup and
update helpers.

2. a. Perform the may-point-to analysis described in class (using simple allocation-site
summary nodes) on the following code fragment:

{

decl a, b, c, d, e;

a := &b;

if (...) {

*a := &d;

} else {

b := &c;

}

e := a;

do {

decl t;

t := new (void*);

*t := *e;

e := t;

} while (...);

Craig Chambers CSE 501 Homework Assignments

4

decl f, g;

*a = &f;

*e = &g;

}

(In this intermediate language, variables are untyped and any variable may hold a pointer
to any other variable, decl statements introduce new uninitialized local variables that are
in scope from the point of declaration until the end of their brace-delimited scope, and
new (void*) allocates new heap memory big enough to hold a pointer. No variables are
in scope at the start of this fragment.)

Draw the control flow graph for this fragment, where each node is an individual statement,
merge node, or conditional branch node (with unknown branch condition). Annotate each
edge in the CFG with a may-point-to graph whose nodes are all local variables in scope. In
the case of iterative analysis, clearly indicate which edges are added in each iteration.

b. When revisiting a given program point during iterative analysis, why are may-point-to
edges only added, never removed?

c. Why is it important to treat assignments to allocation-site summary nodes differently than
other nodes?

