Lattice-Theoretic Data Flow Analysis

Goals:
« provide a single, formal model that describes all DFAs
+ formalize notions of “safe”, “conservative”, “optimistic”
+ place precise bounds on time complexity of DF analysis

+ enable connecting analysis to underlying semantics for
correctness proofs

Plan:
+ define domain of program properties computed by DFA
+ domain: set of elements + order over elements = lattice

« define flow functions & merge function over this domain,
using standard lattice operators

» benefit from lattice theory in attacking above issues

History: Kildall [POPL 73], Kam & Ullman [JACM 76]

Craig Chambers 53 CSE 501

Lattices

Define lattice D = (S, <):
« Sis a (possibly infinite) set of elements
+ <is a binary relation over elements of S

Required properties of <:
+ <is a partial order
« reflexive, transitive, & anti-symmetric

+ every pair of elements of S has
a unique greatest lower bound (a.k.a. meet) and
a unique least upper bound (a.k.a. join)

Height of D =
longest path through partial order from greatest to least

+ convenient to count edges
« infinitely large lattice can still have finite height

Top (T) = unique greatest element of S, if it exists
Bottom (L) = unique least element of S, if it exists

Craig Chambers 54 CSE 501

Lattice models in data flow analysis

Data flow info at a prog. pt. modeled by an element of a lattice
+ our convention: if a < b, then ais less precise than b
* i.e., ais a conservative approximation to b
» top = most precise, best case info
» bottom = least precise, worst case info

* merge function = g.l.b. (meet) on lattice elements
(the most precise element that's a conservative
approximation to both input elements)

« initial info for optimistic analysis (at least back edges): top

(Reverse less precise/more precise conventions used in
PL semantics & abstract interpretation!)

Craig Chambers 55 CSE 501

Examples

Reaching definitions:
+ an element:
+ set of all elements:
. S
» top:
* bottom:
* meet:

Reaching constants:
+ an element:
« set of all elements:
LI
* top:
* bottom:
* meet:

Craig Chambers 56 CSE 501

Some typical lattice domains

Powerset lattice: set of all subsets of a set S
» ordered by c oro
+ top & bottom = & & S, or vice versa
* height = |§| (infinite if Sis infinite)
» a “collecting analysis”

A lifted set: a set of incomparable values, plus top & bottom

* e.g., reaching constants domain, for a particular variable:

* height = 2 (even though width may be infinite!)

Two-point lattice: top and bottom
*+ represents a boolean property

Single-point lattice: top = bottom
« trivial do-nothing analysis

Craig Chambers 57 CSE 501

Tuples of lattices

Often helpful to break down a complex lattice into
a tuple of lattices

* e.g. one per variable/stmt/... being analyzed

Formally: D =<S,<> = (D;=<S; <)V
. S=S,X82X...XSN

» element of tuple domain is a tuple of elements
drawn from each component domain

- eg., fh component of tuple is info about variable/stmt/...
¢ <..,dyp > < <, dgy > = dyy 5 dg Vi
* i.e. pointwise ordering
* meet: pointwise meet
« top: tuple of tops
* bottom: tuple of bottoms
 height(D) = height(D ;) x ... x height(Dp)

Powerset(S) lattice is isomorphic to a tuple of two-point lattices,
one two-point lattice per element of S

* i.e., a bit-vector!

Craig Chambers 58 CSE 501

Example: reaching constants

How to model reaching constants for all variables?

Informally:
each element is a set of the form {..., x - k, ...},
with at most one binding for x

One lattice model: a powerset of all x — k bindings
* S=pow({ x> k| Vx, Vk})
e <=C
* height?

Another lattice model:
N-tuple of 3-level constant prop. lattices,
for each of N variables

* height?

Craig Chambers 59 CSE 501

Analysis of loops in lattice model

Consider:
dentry

dhea\d dbackedge

(Assume B(dheaq) cOMputes dpackedge)

Want solution to constraints:
dhead = dentry M Ybackedge [N means meet]

dbackedge = B(dhead)
Let F(d) = dentry N B(d)

Then want fixed-point of F:
dhead = F(dhead)

Craig Chambers 60 CSE 501

Iterative analysis in lattice model

lterative analysis computes fixed-point
by iterative approximation, beginning with dypackedge=T:

fo=dentry N T = dentry
f;= dentry N B(fy) = Ffp) = F(dentry)

f2 = dentry N B(f1) = F(f7) = F(F(fo)) = F(F(dentry)) = Fz(dentry)

fk= dentry N B(fk-1) = F(fk-1) = F(F(---(F(dentry))---)) = Fk(dentry)
until

fhr1= dentry N B(f) = Ff) = f

Does a finite k exist?
If so, how big can it be?

Craig Chambers 61 CSE 501

Termination of iterative analysis

In general, k need not be finite!

Sufficient conditions for finiteness:
+ flow functions (e.g. F) are monotonic
« lattice is of finite height

A function Fis monotonic iff:
d2 < d1 = F(dz) < F(d-l)
+ for DFA, giving a flow function

at least as conservative inputs (d, < d4) leads to
at least as conservative outputs (F(d») < F(d4))

For monotonic F over domain D, the maximum number of times
that F can be applied to itself, starting w/ any element of D,
w/o reaching fixed-point, is height(D)

« start at top of D

« for each application of F, either it’s a fixed-point, or the
result must go down at least one level in lattice

« if D of finite height, eventually must hit a fixed-point
» bottom is always a fixed-point, by monotonicity

Craig Chambers 62 CSE 501

Complexity of iterative analysis

How long does iterative analysis take?

1: depth of loop nesting

n: # of stmts in loop

t: time to execute one flow function
k: height of lattice

Craig Chambers 63 CSE 501

Precision of iterative analysis

Iterative analysis finds a fixed-point fof F, f= F{(f)

Is it the best fixed-point?
l.e., is it the case that, Vf;s.t. f=F(f), i<f ?

Answer: yes!

Proof:

Craig Chambers 64 CSE 501

Another example: integer range analysis

For each program point,
for each integer-typed variable,
calculate (an approximation to) the set of integer values
that can be taken on by the variable

+ use info for constant folding comparisons,
for eliminating array bounds checks,
for (in)dependence testing of array accesses,
for eliminating overflow checks

What domain to use?
» what is its height?

What flow functions to use?
+ are they monotonic?

Craig Chambers 65 CSE 501

Example

for i := 0 to N-1
.oalil]
end

i > 0 && i < N7
= alil]

Craig Chambers 66 CSE 501

Widening operators

If domain is tall, then can introduce artificial generalizations
(called widenings) when merging at loop heads

» ensure that only a finite number of widenings are possible
* not easy to design the “right” widening strategy

Craig Chambers 67 CSE 501

A generic worklist algorithm for lattice-theoretic DFA

Maintain a mapping from each program point to info at that point
« optimistically initialize all pp'sto T

Set initial pp’s (e.g. entry/exit point) to their correct values

Maintain a worklist of nodes whose flow functions need to be
evaluated

« initialize with all nodes in graph

« include explicit meet (merge) &
widening-meet (loop-head-merge) nodes

While worklist nonempty do
Remove a node from worklist

Evaluate the node’s flow function,
given current info on predecessor(successor) pp’s,
allowing it to change info on successor(predecessor) pp’s

If any pp info changed, put successor(predecessor) nodes
on worklist (if not already there)

For faster analysis, want to follow topological order
» number nodes in forward(backward) topological order
+ remove nodes from worklist in increasing topological order

Craig Chambers 68 CSE 501

Whirlwind dataflow analysis engine

Client defines subclass(es) of LatticeElmt (a subclass of
AnalysisInfo) to represent elements of domain

» <= (lattice < operator)
* meet (lattice g.l.b. operator)

Client picks a subclass of AnalysisGraph to specify the graph
over which to analyze

* {Forward,Backward}{CFG,DFG}AnalysisGraph

Client defines a subclass of Analysis that describes the
analysis
* top_analysis_info (the top LatticeElmt instance)
¢ analyze(Analysis, AnalysisGraph,
TargetIRNode, indexed[LatticeElmt]
) :AnalysisAction (the flow function)

« typically many analyze multimethods dispatching on different
TargetIRNode subclasses

Client invokes analyze_and_transform(
Analysis,AnalysisGraph,indexd[AnalysisInfo])
to run the analysis and do all the transformations

» wrapper functions used in practice, e.g.
do_optimization

Craig Chambers 69 CSE 501

Analysis actions

The result of the analyze flow function on an IRNode is either
* ContinueAnalysisAction: propagate a resulting
AnalysisInfo along successor edge(s)
* ReplaceAnalysisAction:replace the TRNode with
some other sub-AnalysisGraph, and restart analysis

ReplaceAnalysisAction specifies the transformation to
perform as a result of analysis

Also implicitly specifies how to simulate the transformation
during iterative analysis
« the engine transparently analyzes the replacement graph in
lieu of the replaced IRNode, to simulate what would
happen if the transformation were done

Craig Chambers 70 CSE 501

Composed analyses

Whirlwind allows several dataflow analyses to be performed
“in parallel”

* interleaved at each IRNode operation

If one analysis chooses a transformation, others are reevaluated
on the replacement subgraph

« allows improvements of one analysis to improve quality of
other analyses, without any explicit accounting in them

Client defines each component analysis as subclass of
ComposableAnalysis

Client defines a composition of analyses as subclass of
{Forward,Backward}ComposedAnalysis

ComposedAnalysis is just a regular analysis whose analyze
flow function invokes each of the component analyses’ flow
functions in turn

[Lerner, Grove, Chambers, POPL ’02]

Craig Chambers 71 CSE 501

Features of Whirlwind’s dataflow analysis engine

Big idea: separate analyses and transformations,
make framework compose them appropriately

« don’t have to simulate the effect of transformations during
analysis

» can run analyses in parallel if each provides opportunities
for the other

» sometimes can achieve strictly better results this way than if run
separately in a loop

+ quite drastic transformations supported (e.g. inlining,
branch folding) during analysis

* no non-local transformations (e.g. code motion) supported

Makes no sacrifices of precision for speed
+ has few speed-related optimizations

Craig Chambers 72 CSE 501

Soundness of Data Flow Analysis

We’d like to convince ourselves, even prove formally, that our
dataflow analysis is correct, i.e., sound, with respect to some
intended uses

We need two things:
+ areference concrete semantics that defines the “truth,”
against which we compare our abstract semantics
« including a concrete domain of information at program points
against which we compare our abstract domain of analysis
results at program points
* an abstraction relation that specifies when an abstract
domain element conservatively approximates a concrete
domain element, for our intended uses

(Developed in the framework of abstract interpretation by
Cousot & Cousot [POPL '77,°79])

Craig Chambers 73 CSE 501

Concrete semantics

Many ways to define the semantics of a programming language

A good way for our purposes is
small-step operational semantics, i.e., a set of transition rules

An example transition rule:
<PPin; MEMjn> —g: X := Y+Z <PPoup MEMoy>
where {pp;,} = pred-pts(S)
{PPout = succ-pts(S)
memey = memig[X—(memjy(Y)+mem;y(2))]

“if execution reaches program point pp;, with memory state
mem;y,, and the instruction S after that program point is of the
form X := Y+Z, then program execution may ‘step’ to program
point ppy, With memory state mem,;.”

These small-step rules are just (concrete) flow functions!

+ but the info being “propagated” is the whole state of the
computation (and the outside world, perhaps)

« but control flow is more explicit, to account for which way
execution proceeds after branches

Craig Chambers 74 CSE 501

Traces

Concrete execution of a whole program is a trace
» sequence of <pp,mem> pairs, starting from the initial
program entry point and memory state, following the
concrete flow functions, until reaching final <pp,mem> for
which no transition is defined

+ could be infinitely long

[Aside:

If convenient, we can collapse traces onto the control flow graph,
storing not a sequence of pairs but rather a map from each
program point to the set of all memories that occur in the
trace at that program point, called the collecting (concrete)
semantics
{ (pp—>mems) |

mems = { mem’ | <pp,mem’> € Trace }}

Craig Chambers 75 CSE 501

Abstraction relation

Now we have concrete information (memories) and abstract
information (domain elements computed by our analysis).
When does the abstract information safely, possibly
conservatively, characterize the concrete information?

Depends on the use/intention of the abstract info

Define this using an abstraction relation o

For concrete info c and abstract info a, (c,a) € aiff ais a safe
approximation of ¢

E.g., for constant propagation [where dgp c VarxConst]:

(mem, dgp) € agp &
V(var—const) € dcp. mem(var) = const

(Could define aras a relation between whole traces and abstract
info, to allow the abstract info to approximate history- or
future-sensitive info, e.g. for reaching defs or live variables)

Craig Chambers 76 CSE 501

Local and global soundess

Lemma (Local soundness of analysis A = <a,, F>).
it <ppjn, Memin> —gmt <PPout MEMoy>
and (mem;,, di) € o
and Fgmf(din) = doyt
then (memg;, dyyp) € O

din > dout
F

A stmt A

I

I

I

I

o o

. . —_—
<PPjn, MéMjn> Setmt <PPout MeMoy>

+ prove this by examining each F flow function case

Theorem (Global soundess of analysis A = <o, F>).
If we start the abstract analysis with safe abstract info at the
first program point, the abstract analysis will compute safe
abstract info at each program point in the trace.

» by induction over the trace, using local soundness lemma
» proof is independent of the actual analysis!

Craig Chambers 77 CSE 501

Rhodium

Specify dataflow analyses in a specialized declarative language
+ easier to specify optimization than raw Diesel/C++/... code
+ allow mechanical proof of correctness of optimizations!

+ allow mechanical composition & compilation down to
efficient code

A prototype implemented in Whirlwind
+ analyses & transforms handle a C-like subset of full WIL
+ correctness checked automatically!

« working on inferring flow functions automatically from
domain definitions!

« execution engine very slow, currently...

[Lerner, Millstein, Chambers, PLDI '03;
Lerner, Millstein, Rice, Chambers, POPL ’05;
Rice, Lerner, Chambers, COCV ’05]

Craig Chambers 78 CSE 501

