
Craig Chambers CSE 501 Homework Assignments

1

Homework Assignment #1

Due Wednesday 1/25, at the start of lecture

(For all homeworks, do not look at any previous sample solutions for any previous 501 homework
assignments.)

1. For the following control flow graph, for the purposes of a forward data flow analysis (such as
reaching definitions), identify any loops, and for each loop, identify the loop head node and
the loop entry, exit, and back edges. Is this graph reducible?

2. Repeat problem 1 for purposes of a backwards data flow analysis (such as live variables).

3. Consider the case where a forward analysis’s flow functions for each kind of statement are
represented in terms of constant KILL and GEN bit-vectors. Thus, each flow function has the
form out = in - KILL + GEN, with KILL and GEN being constants independent of in or out.
The combined effect of a whole basic block of instructions can be calculated by applying each
instruction’s flow function in turn, starting with the in bit-vector at the start of the basic block,
and computing the out vector at the end of the basic block. I.e., for instruction i of the basic
block, outi = ini - KILLi + GENi, and for all instructions other than the first, ini = outi-1.
However, in this special case where KILL and GEN do not depend on in, it is possible to
compute a single summary flow function with constant KILL and GEN bit-vectors, of the
form outn = in1 - SUMMARY-KILL + SUMMARY-GEN (where in1 and outn are the points
before and after the basic block, respectively).

Give a pair of simple inductive equations for computing the SUMMARY-KILLi and
SUMMARY-GENi bit-vectors, representing the summary KILL and GEN bit-vectors for the
first i instructions of a basic block, in terms of the SUMMARY-KILLi-1 and SUMMARY-
GENi-1 bit-vectors (if i>1) and the KILLi and GENi bit-vectors for the flow function of the ith
instruction, 1 ≤ i ≤ n. SUMMARY-KILL and SUMMARY-GEN for the whole basic block are
then SUMMARY-KILLn and SUMMARY-GENn, respectively.

2

3

1

76

9

4

8

10

5



Craig Chambers CSE 501 Homework Assignments

2

What is the chief advantage of this SUMMARY flow function over the original flow
functions?

4. Consider an IR with the following grammar for its statements:

Stmt ::= LHS ":=" RHS assignment statements
| ... other uninteresting statements

LHS ::= Var assign to a variable
| "*" Var assign through a pointer variable

RHS ::= Const a constant
| Var a variable
| Var Op Var a binary operation over two variables
| "*" Var load through a pointer variable

Define the flow functions for constant propagation, including simulated constant folding, for
assignment statements in this IR. Avoid any redundancy by specifying your flow function in
terms of two helper functions, one for the left-hand-side of assignments, and one for the right-
hand-side of assignments. (Note that this IR strives to keep the definition of analyses simple,
breaking down some complicated kinds of expressions seen in class, e.g. *r:=*p+*q, into
sequences of simpler operations involving temporary variables, e.g. t1:=*p; t2:=*q;
*r:=t1+t2. Some IRs even break down this last statement into an add operation followed
by a separate simpler store operation.)

5. Define a data flow analysis that can be used to compute two sets of variables for each
procedure as a whole: those which are definitely not defined before use, and those which may
not be defined before use; these sets can be used to provide extra error checking of programs.
Strive for the highest quality information while maintaining safety. Use a lattice-theoretic
formalism to define your analysis. Specify the flow functions for all the kinds of assignment
statements of the IR from the previous question. Explain how to use the information computed
by your analysis at each program point to construct the two sets specified above for output to
the user.

6. Define a dataflow analysis to compute, at each program point, the set of (local) variables that
may have had their address taken previously. Use a lattice-theoretic formalism. Assume the IR
given above, augmented with the following additional kind of right-hand-side:

RHS ::= ... | "&" Var address of a variable

Explain how bit-vectors could be used to implement this analysis efficiently. Define how the
results of this analysis can be used to define may-point-to(p), the set of variables that
variable p may point to.


