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Implementing Object-Oriented Languages

Key features:

• inheritance (possibly multiple)

• subtyping & subtype polymorphism

• message passing, dynamic binding, run-time type testing

Subtype polymorphism is the key problem

• support uniform representation of data
(analogous to boxing for polymorphic data)

• store the class of each object at a fixed offset

• organize layout of data to make instance variable access
and method lookup & invocation fast

• code compiled expecting an instance of a superclass
still works if run on an instance of a subclass

• multiple inheritance complicates this

• perform static analysis to bound polymorphism

• perform transformations to reduce polymorphism
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Implementing instance variable access

Key problem: subtype polymorphism

Solution: prefixing

• layout of subclass has layout of superclass as a prefix

• code that accesses a superclass will access the superclass
part of any subclass properly, transparently

+ access is just a load or store at a constant offset

// OK: subclass polymorphism
Point p = new ColorPoint(3,4,Blue);

// OK: x and y have same offsets in all Point subclasses
int manhattan_distance = p.x + p.y;

x

y

x

y

color

class Point {
int x;
int y;

}

class ColorPoint
extends Point {

Color color;
}
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Implementing dynamic dispatching (virtual functions)

How to find the right method to invoke for a dynamically
dispatched message rcvr.Message(arg1, ...)?

Option 1: search inheritance hierarchy,
starting from run-time class of rcvr

− very slow, penalizes deep inheritance hierarchies

Option 2: use a hash table

• can act like a cache on the front of Option 1

− still significantly slower than a direct procedure call

• but used in early Smalltalk systems!

Option 3: store method addresses in the receiver objects,
as if they were instance variables

• each message/generic function declares an instance
variable

• each inheriting object stores an address in that instance
variable

• invocation = load + indirect jump!

+ good, constant-time invocation,
independent of inheritance structure, overriding, ...

− much bigger objects
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Virtual function tables

Observation: in Option 3, all instances of a given class will have
identical method addresses

Option 4: factor out class-invariant parts into shared object

• instance variables whose values are common across all
instances of a class (e.g. method addresses) are moved
out to a separate object

• historically called a virtual function table (vtbl)

• each instance contains a single pointer to the vtbl

• combine with (or replace) class pointer

• layout of subclass’s vtbl has layout of superclass’s vtbl as a
prefix

+ dynamic dispatching is fast & constant-time

− but an extra load

+ no space cost in object

• aside from vtbl/class pointer
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Example of virtual function tables

x

y

class Point {
int x;
int y;

void draw();
int distance2origin();

}

table

class ColorPoint extends Point {
Color color;

void draw();
void reverse_video();

}

x

y

color

table

d2o

Point::draw

ColorPt::draw

ColorPt::r_v

draw

draw

d2o

Point::d2o

r_v

...

...
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Multiple inheritance

Problem: prefixing doesn’t work with multiple inheritance

ColorPoint cp = new ColorPoint(3, 4, Blue);

Point p = cp; // OK

ColoredThing t = cp; // OK

ColorPoint cp2 =
new ColorPoint(p.x, p.y, t.color); // breaks

x

y

color

class Point {
int x;
int y;

}

class ColoredThing {
Color color;

}

class ColorPoint
extends Point,

ColoredThing {
}

x

y

color

color

x

y

?
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Some solutions

Option 1: stick with single inheritance [e.g. Smalltalk]

− some examples really benefit from MI

Option 2: distinguish classes from interfaces [e.g. Java, C#]

• only single inheritance below classes
⇒ if rcvr statically of class type, then can exploit
prefixing for its instance variable accesses and message
sends

• disallow instance variables in interfaces
⇒ no problems accessing them!

• only messages to receivers of interface type are unresolved
⇒ much smaller problem; can use e.g. hashing

Option 3: compute offset of a field in rcvr by sending rcvr a
message [Cecil/Vortex]

• reduced problem to dynamic dispatching

• apply CHA etc. to optimize (all) dispatches
⇒ for fields whose offsets never change,
static binding + inlining reduces dispatches to constant
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Another solution

Option 4: embedding + pointer shifting [C++]

• concatenate superclass layouts, extend with subclass data

• when upcasting to a superclass, shift pointer to point to
where superclass is embedded

• downcasting does the reverse

• virtual function calls may need to shift rcvr pointers

• "trampolines" may get inserted

+ gets back to constant-time access in most cases

− very complicated, lots of little details

− some things (e.g. casting) may now have run-time cost

− does poorly if using "virtual base classes", i.e., diamond-
shaped inheritance hierarchies

− some sensible programs now disallowed

• e.g. casting through void*, downcasting from virtual base class

− interior pointers may complicate GC, equality testing,
debugging, etc.
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Example

ColorPoint cp = new ColorPoint(3, 4, Blue);

Point p = cp; // OK

ColoredThing t = cp; // OK: adds 8 to cp

// now this works:
ColorPoint cp2 =
new ColorPoint(p.x, p.y, t.color);

// this works, too:
ColorPoint cp3 =
(ColorPoint) t; // subtracts 8 from t

x

y

color

class Point {
int x;
int y;

}

class ColoredThing {
Color color;

}

class ColorPoint
extends Point,

ColoredThing {
}

x

y

color

cp

p

t
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Example of virtual function tables

x

y

class Point {
int x;
int y;

void draw();
int d2o();

}

table

class ColoredThing {
Color color;

void reverse_video();
}

x

y

table

d2o

draw

draw

d2o color

table r_v

color

table

r_v

p

t

r_v

class ColorPoint extends Point, ColoredThing {
void draw();

}

ColorPt::draw

this = this + 12;

jump CT::r_v;
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Limitations of table-based techniques

Table-based techniques only work well when:

• have static type information to use to map message/
instance variable names to offsets in tables/objects

• not true in dynamically typed languages

• cannot extend classes with new operations except via
subclassing

• not true in languages with open classes (e.g. MultiJava [Clifton
et al. 00]) or multiple dispatching (e.g. CLOS, Dylan, Cecil)

• cannot modify classes dynamically

• not true in fully reflective languages (e.g. Smalltalk, Self, CLOS)

• memory loads and indirect jumps are inexpensive

• may not be true with heavily pipelined hardware
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Dynamic table-based implementations

Standard implementation: global hash table in runtime system

• indexed by class × msg

• filled dynamically as program runs

• can be flushed after reflective operations

+ reasonable space cost

+ incremental

− fair average-case dispatch time, poor worst-case time

Refinement: hash table per message name

• each call site knows statically which table to consult

+ faster dispatching
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Inline caching

Give each dynamically-dispatched call site its own
small method lookup cache

+ call site knows its message name

+ cache is isolated from other call sites

Trick: use machine call instruction itself as a one-element cache

• initially: call runtime system’s Lookup routine

• Lookup routine patches call instruction to branch to
invoked method

• record receiver class

• next time through, jump directly to expected target method

• method checks whether current receiver class is same as last
receiver class

• if so, then cache hit (90-95% frequency, for Smalltalk)

• if not, then call Lookup and rebind cache

+ fast dispatch sequence if cache hit (≈4 instructions plus call)

+ hardware call prefetching works well

− exploits self-modifying code

− low performance if not a cache hit

[Deutsch & Schiffman 84]
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Example of inline caching

Initially:

After caching target method:

...

call Lookup
msg: “draw”
class:

...

...

call Lookup
msg: “draw”
class: CPt

...

if cache.class ≠
self.class then

call Lookup

...regular code...

ColorPoint::draw()
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Polymorphic inline caching (PIC)

Idea: support a multi-element cache by generating a
call-site-specific dispatcher stub

+ fast dispatching even if several classes are common

− still slow performance if many classes equally common

− some space cost

Foreshadowing:
dispatching stubs record dynamic profile data
of which receiver classes occur at which call sites

[Hölzle et al. 91]
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Example of polymorphic inline caching

After a few receiver classes:

...

call Lookup
msg: “draw”

...

switch (self.class) {
case ColorPt:
case ColorPt3D:
case Point:
default: call Lookup

}

ColorPt::draw()

Point::draw()
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Implementing the dispatcher stub switch

In original PIC design, switch implemented with
a linear chain of class identity tests

Alternatively, can implement with a binary search,
exploiting ordering of integer class IDs or addresses

+ avoid worst-case behavior of long linear searches

+ a single test can direct many classes to same target method

− requires global knowledge to construct dispatchers

In traditional compilers, switch implemented with a jump table,
akin to C++ dispatch tables

Can blend table-based lookups, linear search, and
binary search [Chambers & Chen 99]

• exploit available static analysis of possible receiver classes,
profile information of likely receiver classes

• construct dispatcher best balancing
expected dispatching speed against dispatch space cost
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Handling multiple dispatching

Languages with multimethods (e.g. CLOS, Dylan, Cecil) allow
methods to dispatch on the run-time classes of any of the
arguments

• call sites do not know statically which arguments may be
dispatched upon

Implementation schemes:

• hash table indexed by N keys [Kiczales & Rodriguez 89]

• N-deep tree of hash tables, each indexed by 1 key
[Dussud 89]

• can stop dispatching at any subtree if all remaining arguments
undispatched

• N-deep DAG of 1-key dispatches
[Chen & Turau 94, Chambers & Chen 99]

• compressed N+1-dimensional dispatch table
[Amiel et al. 94, Pang et al. 99]

Probably more efficient to support multimethods directly
than if simulated with double-dispatching [Ingalls 86]
or visitor pattern [Gamma et al. 95]


