
Craig Chambers 232 CSE 501

Implementing Object-Oriented Languages

Key features:

• inheritance (possibly multiple)

• subtyping & subtype polymorphism

• message passing, dynamic binding, run-time type testing

Subtype polymorphism is the key problem

• support uniform representation of data
(analogous to boxing for polymorphic data)

• store the class of each object at a fixed offset

• organize layout of data to make instance variable access
and method lookup & invocation fast

• code compiled expecting an instance of a superclass
still works if run on an instance of a subclass

• multiple inheritance complicates this

• perform static analysis to bound polymorphism

• perform transformations to reduce polymorphism

Craig Chambers 233 CSE 501

Implementing instance variable access

Key problem: subtype polymorphism

Solution: prefixing

• layout of subclass has layout of superclass as a prefix

• code that accesses a superclass will access the superclass
part of any subclass properly, transparently

+ access is just a load or store at a constant offset

// OK: subclass polymorphism
Point p = new ColorPoint(3,4,Blue);

// OK: x and y have same offsets in all Point subclasses
int manhattan_distance = p.x + p.y;

x

y

x

y

color

class Point {
int x;
int y;

}

class ColorPoint
extends Point {

Color color;
}

Craig Chambers 234 CSE 501

Implementing dynamic dispatching (virtual functions)

How to find the right method to invoke for a dynamically
dispatched message rcvr.Message(arg1, ...)?

Option 1: search inheritance hierarchy,
starting from run-time class of rcvr

− very slow, penalizes deep inheritance hierarchies

Option 2: use a hash table

• can act like a cache on the front of Option 1

− still significantly slower than a direct procedure call

• but used in early Smalltalk systems!

Option 3: store method addresses in the receiver objects,
as if they were instance variables

• each message/generic function declares an instance
variable

• each inheriting object stores an address in that instance
variable

• invocation = load + indirect jump!

+ good, constant-time invocation,
independent of inheritance structure, overriding, ...

− much bigger objects

Craig Chambers 235 CSE 501

Virtual function tables

Observation: in Option 3, all instances of a given class will have
identical method addresses

Option 4: factor out class-invariant parts into shared object

• instance variables whose values are common across all
instances of a class (e.g. method addresses) are moved
out to a separate object

• historically called a virtual function table (vtbl)

• each instance contains a single pointer to the vtbl

• combine with (or replace) class pointer

• layout of subclass’s vtbl has layout of superclass’s vtbl as a
prefix

+ dynamic dispatching is fast & constant-time

− but an extra load

+ no space cost in object

• aside from vtbl/class pointer



Craig Chambers 236 CSE 501

Example of virtual function tables

x

y

class Point {
int x;
int y;

void draw();
int distance2origin();

}

table

class ColorPoint extends Point {
Color color;

void draw();
void reverse_video();

}

x

y

color

table

d2o

Point::draw

ColorPt::draw

ColorPt::r_v

draw

draw

d2o

Point::d2o

r_v

...

...

Craig Chambers 237 CSE 501

Multiple inheritance

Problem: prefixing doesn’t work with multiple inheritance

ColorPoint cp = new ColorPoint(3, 4, Blue);

Point p = cp; // OK

ColoredThing t = cp; // OK

ColorPoint cp2 =
new ColorPoint(p.x, p.y, t.color); // breaks

x

y

color

class Point {
int x;
int y;

}

class ColoredThing {
Color color;

}

class ColorPoint
extends Point,

ColoredThing {
}

x

y

color

color

x

y

?

Craig Chambers 238 CSE 501

Some solutions

Option 1: stick with single inheritance [e.g. Smalltalk]

− some examples really benefit from MI

Option 2: distinguish classes from interfaces [e.g. Java, C#]

• only single inheritance below classes
⇒ if rcvr statically of class type, then can exploit
prefixing for its instance variable accesses and message
sends

• disallow instance variables in interfaces
⇒ no problems accessing them!

• only messages to receivers of interface type are unresolved
⇒ much smaller problem; can use e.g. hashing

Option 3: compute offset of a field in rcvr by sending rcvr a
message [Cecil/Vortex]

• reduced problem to dynamic dispatching

• apply CHA etc. to optimize (all) dispatches
⇒ for fields whose offsets never change,
static binding + inlining reduces dispatches to constant

Craig Chambers 239 CSE 501

Another solution

Option 4: embedding + pointer shifting [C++]

• concatenate superclass layouts, extend with subclass data

• when upcasting to a superclass, shift pointer to point to
where superclass is embedded

• downcasting does the reverse

• virtual function calls may need to shift rcvr pointers

• "trampolines" may get inserted

+ gets back to constant-time access in most cases

− very complicated, lots of little details

− some things (e.g. casting) may now have run-time cost

− does poorly if using "virtual base classes", i.e., diamond-
shaped inheritance hierarchies

− some sensible programs now disallowed

• e.g. casting through void*, downcasting from virtual base class

− interior pointers may complicate GC, equality testing,
debugging, etc.



Craig Chambers 240 CSE 501

Example

ColorPoint cp = new ColorPoint(3, 4, Blue);

Point p = cp; // OK

ColoredThing t = cp; // OK: adds 8 to cp

// now this works:
ColorPoint cp2 =
new ColorPoint(p.x, p.y, t.color);

// this works, too:
ColorPoint cp3 =
(ColorPoint) t; // subtracts 8 from t

x

y

color

class Point {
int x;
int y;

}

class ColoredThing {
Color color;

}

class ColorPoint
extends Point,

ColoredThing {
}

x

y

color

cp

p

t

Craig Chambers 241 CSE 501

Example of virtual function tables

x

y

class Point {
int x;
int y;

void draw();
int d2o();

}

table

class ColoredThing {
Color color;

void reverse_video();
}

x

y

table

d2o

draw

draw

d2o color

table r_v

color

table

r_v

p

t

r_v

class ColorPoint extends Point, ColoredThing {
void draw();

}

ColorPt::draw

this = this + 12;

jump CT::r_v;

Craig Chambers 242 CSE 501

Limitations of table-based techniques

Table-based techniques only work well when:

• have static type information to use to map message/
instance variable names to offsets in tables/objects

• not true in dynamically typed languages

• cannot extend classes with new operations except via
subclassing

• not true in languages with open classes (e.g. MultiJava [Clifton
et al. 00]) or multiple dispatching (e.g. CLOS, Dylan, Cecil)

• cannot modify classes dynamically

• not true in fully reflective languages (e.g. Smalltalk, Self, CLOS)

• memory loads and indirect jumps are inexpensive

• may not be true with heavily pipelined hardware

Craig Chambers 243 CSE 501

Dynamic table-based implementations

Standard implementation: global hash table in runtime system

• indexed by class × msg

• filled dynamically as program runs

• can be flushed after reflective operations

+ reasonable space cost

+ incremental

− fair average-case dispatch time, poor worst-case time

Refinement: hash table per message name

• each call site knows statically which table to consult

+ faster dispatching



Craig Chambers 244 CSE 501

Inline caching

Give each dynamically-dispatched call site its own
small method lookup cache

+ call site knows its message name

+ cache is isolated from other call sites

Trick: use machine call instruction itself as a one-element cache

• initially: call runtime system’s Lookup routine

• Lookup routine patches call instruction to branch to
invoked method

• record receiver class

• next time through, jump directly to expected target method

• method checks whether current receiver class is same as last
receiver class

• if so, then cache hit (90-95% frequency, for Smalltalk)

• if not, then call Lookup and rebind cache

+ fast dispatch sequence if cache hit (≈4 instructions plus call)

+ hardware call prefetching works well

− exploits self-modifying code

− low performance if not a cache hit

[Deutsch & Schiffman 84]

Craig Chambers 245 CSE 501

Example of inline caching

Initially:

After caching target method:

...

call Lookup
msg: “draw”
class:

...

...

call Lookup
msg: “draw”
class: CPt

...

if cache.class ≠
self.class then

call Lookup

...regular code...

ColorPoint::draw()

Craig Chambers 246 CSE 501

Polymorphic inline caching (PIC)

Idea: support a multi-element cache by generating a
call-site-specific dispatcher stub

+ fast dispatching even if several classes are common

− still slow performance if many classes equally common

− some space cost

Foreshadowing:
dispatching stubs record dynamic profile data
of which receiver classes occur at which call sites

[Hölzle et al. 91]

Craig Chambers 247 CSE 501

Example of polymorphic inline caching

After a few receiver classes:

...

call Lookup
msg: “draw”

...

switch (self.class) {
case ColorPt:
case ColorPt3D:
case Point:
default: call Lookup

}

ColorPt::draw()

Point::draw()



Craig Chambers 248 CSE 501

Implementing the dispatcher stub switch

In original PIC design, switch implemented with
a linear chain of class identity tests

Alternatively, can implement with a binary search,
exploiting ordering of integer class IDs or addresses

+ avoid worst-case behavior of long linear searches

+ a single test can direct many classes to same target method

− requires global knowledge to construct dispatchers

In traditional compilers, switch implemented with a jump table,
akin to C++ dispatch tables

Can blend table-based lookups, linear search, and
binary search [Chambers & Chen 99]

• exploit available static analysis of possible receiver classes,
profile information of likely receiver classes

• construct dispatcher best balancing
expected dispatching speed against dispatch space cost

Craig Chambers 249 CSE 501

Handling multiple dispatching

Languages with multimethods (e.g. CLOS, Dylan, Cecil) allow
methods to dispatch on the run-time classes of any of the
arguments

• call sites do not know statically which arguments may be
dispatched upon

Implementation schemes:

• hash table indexed by N keys [Kiczales & Rodriguez 89]

• N-deep tree of hash tables, each indexed by 1 key
[Dussud 89]

• can stop dispatching at any subtree if all remaining arguments
undispatched

• N-deep DAG of 1-key dispatches
[Chen & Turau 94, Chambers & Chen 99]

• compressed N+1-dimensional dispatch table
[Amiel et al. 94, Pang et al. 99]

Probably more efficient to support multimethods directly
than if simulated with double-dispatching [Ingalls 86]
or visitor pattern [Gamma et al. 95]


