
Craig Chambers 217 CSE 501

Implementing Functional Languages

e.g. Lisp, Scheme, ML, Haskell, Miranda

Uniform, polymorphic references to data

• dynamic typing, as in Lisp & Scheme (and Smalltalk & ...)

• variables of polymorphic type, as in ML & Haskell

⇒ uniform “boxed” representation of all data objects,
tagged pointers to encode some types (e.g. ints) cheaper

First-class, lexically-nested functions

• static scoping of nested functions
⇒ closures to represent function values

• functions can outlive defining scope
⇒ heap-allocated environments

• calls of computed expressions
⇒ (fancier) call graph analysis

Heavy use of recursion instead of iteration
⇒ tail call, tail recursion elimination

Immutable update-by-copy data structures
⇒ version arrays, compile-time reference counting

Miranda & Haskell: lazy evaluation
⇒ strictness analysis

Craig Chambers 218 CSE 501

Run-time typing

In many higher-level languages, need to

• ... treat all/many values uniformly

• dynamically typed code

• (parametric or subtype-)polymorphic code

• ... be able to determine the type of the value at run-time

• resolve dynamically dispatched messages, subtype tests

• perform run-time type checks

• support precise GC, reflection, ...

An approach: boxing + type field

• represent all values as one-word pointers to data structures

• add implicit type field to each object

• encoded as small enumerated tag, class pointer, virtual function
table, ...

+ all code can handle any data

+ can always determine type at run-time

− space cost for type field

− very slow if have to box scalars like ints, floats, chars, bools

Craig Chambers 219 CSE 501

Tagging

Observation: not all bits of pointer are used

• alignment often requires 2-3 low-order bits to be 0

• high-order bits often all the same,
since full address space isn’t needed

Idea: use those bits to encode type tag for most common types

• strip out type info before dereferencing pointer

+ saves a word of space in the target object

• good for small objects, like ints, floats, cons cells, pairs, ...

+ speeds type-testing code

− slows pointer dereference time to extract real pointer from
tagged pointer

Naive asm code, assuming low-order tag for pairs:

%ptr = %tagged_ptr - pair_tag;

%first = *(%ptr + 0);

%second = *(%ptr + 4);

Cooler code: combine untagging with field offset calculation

%first = *(%tagged_ptr + (0 - pair_tag));

%second = *(%tagged_ptr + (4 - pair_tag));

Untagging is free!

Craig Chambers 220 CSE 501

Tagged scalars

Further idea: for one-word immutable values (ints, chars, bools),
store the value in the pointer word itself!

E.g. 2-3 low-order bits for type tag, 29-30 high-order bits for
value

• left-shift real value by 2-3, then add in tag, to tag a value

• subtract tag, then right-shift by 2-3, to untag

+ no memory dereferencing to get value

+ no memory allocation cost when doing arithmetic

− some cost to manipulate tags

− lose 2-3 bits of precision

• find for chars, bools

• OK for ints (except when manipulating memory words)

• bad for floats (e.g. rounding is hard to get right)

Cool trick: choose all-zero as the tag for ints

Then:

• tagged ints can be added, subtracted, & compared directly,
w/o untagging first!

• tagged ints can be multiplied & divided by adding one shift

• overflow behavior preserved



Craig Chambers 221 CSE 501

Implementing first-class lexically nestable functions

Functions are first-class data values

• can be passed as arguments, returned from fns,
stored in data structures

• potentially anonymous

• lexically-scoped

Example:

(define mul-by (lambda lst n)
(map (lambda (x) (* x n)) lst))

2 components of a function value (a closure):

• code pointer

• lexically-enclosing environment pointer

Steps in deciding how to implement a closure:

• strategy analysis: where to allocate closure

• representation analysis: how to lay out data structure

Craig Chambers 222 CSE 501

Strategy analysis

Option 1: heap allocation

+ most general option

+ simple decision to make

− expensive to create, invoke, and reclaim closure

− may require heap-allocation of lexically-enclosing env

Supports “upward funargs”

Example:

(define (add x) (lambda (y) (+ x y)))

(define inc (add 1))

(define dec (add -1))

(print (inc (dec 3)))

Craig Chambers 223 CSE 501

Stack allocation

Option 2: stack allocation

If closure’s dynamic extent is contained within the extent of its
lexically-enclosing activation record, then can allocate
closure as part of a.r.’s stack frame
(a LIFO closure)

+ faster allocation, free reclamation

+ enclosing environment can be stack-allocated

− invocation still slow

Craig Chambers 224 CSE 501

Inlining calls to closures

Option 3: represent closure in-line

If invoking a known closure, inline-expand body

If all uses of a closure inlined away, don’t create closure

• closure’s environment turns into local variables

+ free allocation, fast invocation, free reclamation

Enables closure-based user-defined control structures



Craig Chambers 225 CSE 501

Escape analysis

Determine if closure (or any data structure)
has LIFO extent, i.e. does not escape stack frame

• use stack allocation for non-escaping data structures

Track flow of value, see where it goes

Has LIFO extent (i.e., doesn’t escape):

• when created

• when assigned to local variable

• when invoked

A hard case:

• passed as argument to function

• if intraprocedural analysis: conservatively assume escapes

• if interprocedural analysis: may or may not escape

Harder cases:

• returned

• stored in global/non-local variable or
(escaping) data structure

Assume escapes

Craig Chambers 226 CSE 501

Interprocedural escape analysis

Compute for each formal parameter whether that parameter
escapes

Construct program’s call graph

Initialize all formals to “does not escape”

Initialize worklist to empty set

Process each function:
if formal parameter labeled “does not escape”

escapes locally within this function,
change formal to “escapes” and put all callers on worklist

While worklist non-empty:

remove function from worklist, reprocess

• at call site, actual argument escapes if corresponding
formal escapes

Craig Chambers 227 CSE 501

Representation analysis

How to represent closure’s lexical environment?

Option 1: deep binding

• store pointer to enclosing environment

• share enclosing environment across all nested
environments & closures

Craig Chambers 228 CSE 501

Example of deep binding

(define a (lambda (i j)
(define b (lambda m n o)
(define c (lambda q)
(+ q m i)) ;; here

(set! m 7)
(c 6))

(b 3 4 5))
(a 1 2)

code
env

code
env

code
env

m 37
n 4
o 5

i 1
j 2
b

c

q 6

encl

encl

encl

aglobal
env



Craig Chambers 229 CSE 501

Representation analysis, cont

Option 2: shallow binding

• copy needed values into environment when created

+ faster access to lexically enclosing vars

− bigger environments

− slower to create environments

Option 3: very shallow binding

• copy needed values into closure itself

Cannot copy values of mutable variables
⇒ do assignment conversion first

• replace mutable variable with pointer to heap-allocated
reference cell

+ can copy the pointer freely

− space overhead

− extra indirection

⇒ best for mostly functional code, e.g. Scheme

Craig Chambers 230 CSE 501

Example of shallow binding

(define a (lambda (i j)
(define b (lambda m n o)
(define c (lambda q)
(+ q m i)) ;; here

(set! m 7)
(c 6))

(b 3 4 5))
(a 1 2)

code
env

code
env

code
env

&m
n 4
o 5

i 1
j 2
b

c

q 6

aglobal
env

i 1
m 37

&m
i 1

Craig Chambers 231 CSE 501

Restricted semantics

If only allow to pass nested fns down, but not return them,
then closures & environments are LIFO

• environment can be stack-allocated, not heap-allocated

• e.g. Pascal, Modula-3
(and Vortex’s broken default for Cecil)

If allow nested procedures but not first-class procedures,
then don’t need closure data structures

• do not need pair, just extra implicit environment argument

• e.g. Ada

If allow first-class procedures but no nesting, then no lexically
enclosing environment needed

• implement function value with just a code address

• e.g. C, C++


