o

Interprocedural Constant Propagation

[Callahan, Cooper, Kennedy, & Torczon, PLDI 86]

Goal: for each procedure, for each formal, identify whether all
calls of procedure pass a particular constant to the formal

* e.g. stride argument passed to LINPACK library routines

Sets up lattice-theoretic framework for solving problem
* store const-prop domain element for each formal
 initialize all formals to T
» worklist-based algorithm to find interprocedural fixed-point:
worklist := {Main};
while worklist # 0O do
proc := remove_any (worklist) ;
process (proc) ;
end
process (proc) {
foreach call site ¢ in proc do
compute c’s actuals from proc’s formals;
c’s callee’s formals meet= c¢’s actuals;
if changed or first time,
add callee to worklist;

Craig Chambers 162 CSE 501

Interprocedural pointer analysis for C

[Wilson & Lam 95]

A may-point-to analysis
Copes with "full" C

Key problems:

* how to represent pointer info in presence of casts,
ptr arithmetic, etc.?

* how to perform analysis interprocedurally,
maximizing benefit at reasonable cost?

Craig Chambers 164 CSE 501

Jump functions

How to quickly compute info at c¢’s actuals from proc’s formals?

Define jump functions to relate actual parameter at a call site to
formal parameters of enclosing procedure

Different degrees of sophistication:
¢ all-or-nothing:
only if actual is an intraprocedural constant

* pass-through:
also, if formal a constant, then actual a constant

* symbolic interpretation:
do full intraprocedural constant propagation

Can define similar jump functions for procedure results, too

* atotal summary function for callers
* push callers on worklist if procedure’s result info changes

No experimental results reported!

Craig Chambers 163 CSE 501

.

Pointer representation

Ignore static type information,
since casts can violate it

Ignore subobject boundaries,
since pointer arithmetic can cross them

Treat memory as composed of blocks of bits
* each local, global variable is a block
* malloc returns a block

Block boundaries are safe

* casts, pointer arithmetic won’t cross blocks,
at least not portably

Craig Chambers 165 CSE 501

.

Location sets

A location set represents a set of memory locations within a
block

Location set = (block, offset, stride)
* represent all memory locations {offset + i * stride | i O Ints}
* if stride = 0, then precise info
e if stride = 1, then only know block
» simple pointer arithmetic updates offset

Examples:

Expression Location Set

scalar (scalar, 0, 0)

struct.F (struct, offsetof(F), 0)

array[i] (array, 0, sizeof(array[i]))
array[i] .F (array, offsetof(F), sizeof(array[i]))
*(&a + x) (a,0,1)

At each program point,
a pointer may point to a set of location sets

Craig Chambers 166 CSE 501

Context-sensitive interprocedural analyses

Option 2: reanalyze callee for each distinct caller

+ avoids smearing among direct callers
(but smears across indirect callers)

- may do unnecessary work

Option 3: reanalyze callee for k levels of calling context
+ less smearing
- more unnecessary work

Option 4: reanalyze callee for each distinct calling path
[Emani et al. 94, ...]

+ avoids all smearing
- cost is exponential in call graph depth
- recursion?

Craig Chambers 168 CSE 501

Interprocedural pointer analysis

Caller - callee:
analyze callee given pointer relationships of formals

Callee - caller:
update pointer relationships after call returns

Option 1: supergraph-based, context-insensitive approach
+ simple
- may be too expensive

- smears effects of callers together,
hurting results after call returns

Craig Chambers 167 CSE 501

.

Context-sensitive analysis using
partial transfer functions

Option 5: instead of fixed k of reanalysis,
reanalyze for each distinct calling points-to context

Model analysis of callee as a summary function
from input points-to to output points-to
(a transfer/flow function for the call node)

Represent function as a set of ordered pairs
(input points-to — output points-to)

Only represent those pairs that occur during analysis
(a partial transfer function)

Compute pairs lazily

+ avoids smearing

+ reuse results of other callers where possible
to save time

- worst-case: O(N * [domain of alias patterns|)

Craig Chambers 169 CSE 501

o

Caller/callee mapping

To compute input context from a call site,
translate into terms of callee

Modeled as extended parameters:

» each formal and referenced global gets a node,
as does each value referenced through a pointer

Goal: make input context as general as possible
(to be reusable across many call sites)

* represent abstract points-to pattern from callee’s
perspective, not direct copy of actual aliases in caller

¢ treat extended parameter nodes as distinct iff
caller nodes are distinct

» only track points-to pattern that’s accessed by callee
(ignore irrelevant points-to)

Tricky details:
» constructing callee model of aliases from caller aliases
» checking new caller against existing callee input patterns

¢ mapping back from callee output pattern to real caller
aliases

* pointers to structs & struct members (“nested” pointers)

Craig Chambers 170 CSE 501

o

Cheaper interprocedural pointer analyses

(All are context-insensitive)

Andersen’s algorithm [94]: flow-insensitive points-to
¢ a single points-to graph for each procedure, as a whole
Vs. the flow-sensitive points-to algorithm from class:

* the flow-sensitive algorithm has a possibly distinct points-to
graph at each program point

* the flow-insensitive points-to graph will be a superset of the
union of each of these graphs

* use SSA form to retain effect of flow-sensitivity for local
variables

Type-based alias analysis [Diwan et al. 98]: just use static types

* pointers of different static types without common subtypes
cannot alias

+ "trivial", yet surprisingly effective
- restricted to statically-typed, type-safe languages with

restricted multiple subtyping or whole-program
knowledge

- may info only

Craig Chambers 172 CSE 501

Experimental results

For C programs < 5K lines,
analysis time was < 16 seconds and
avg # of analyses per fn was < 1.4

Analysis results were used to better parallelize two C programs

Questions:

» with bigger programs, how will # analyses per fn grow?
i.e. how will analysis time scale?

¢ what is impact of alias info on other optimizations?

[Ruf 96]: for smallish C programs (< 15K lines),
context-insensitive alias analyses are just as effective as
context-sensitive ones

Craig Chambers 171 CSE 501

.

Almost-Linear-Time Pointer Analysis
[Steensgaard 96]

Goal: scale interprocedural analysis to million-line programs
» flow-sensitive, context-sensitive analysis too expensive
¢ aim for linear time analysis

Approach: treat alias analysis as a type inference problem
(inspired by a similar analysis by Henglein [91])
* give each variable an associated “type variable”
* each struct or array gets a single type variable
* each alloc site gets a type variable

* make one linear pass through the entire program;
whenever one pointer var assigned to/computed from
another, unify the type variables of their targets

* near-constant-time unification using union/find data structures

* when done, all unified variables are may-aliases,
un-unified variables are definitely non-aliasing

Details:

» don’t do unification if assigning null or non-pointers
(conditional join stuff in paper)
* pending list to enable one single pass through program

Craig Chambers 173 CSE 501

.

o

Example

void foo(int* a, int* b) {
/* are *a and *b aliases? */
}
int g;
void bar () {
int* x = &g;
int* y = new int; // alloc;

foo(x, v)i

}

void baz(int* e, int* f) {

int* i = ... ? e : f;

int* j = new int; // alloc,
foo(i, J);

}
void qux(int* p, int* q) {
/* are *p and *q aliases? */
baz(p, q):
}

Craig Chambers 174 CSE 501

.

Results

Analyze 75K-line program in 15 seconds,
25K-line program in 5.5 seconds
(more recent versions: Word97 (2.1Mloc) in 1 minute)

+ fast!
+ linear time complexity

[Morgenthaler 95]:
do this analysis during parsing, for 50% extra cost

Quality of alias info?

* Steensgaard: pretty good, except for smearing struct
elements together

* another Steensgaard paper extends algorithm to avoid smearing
struct elements together, but sacrifices near-linear-time
bound

[Das 00]:
extension with higher precision results that analyzes Word97
in 2 minutes

[Fahndrich et al. 00]: a context-sensitive extension
* "polymorphic type inference"

Type inference is an intriguing framework for fast, coarse
program analysis

[DeFouw, Chambers, & Grove 98]: for OO systems

Craig Chambers 175 CSE 501

%

