
Craig Chambers 142 CSE 501

Optimizing Procedure Calls

Procedure calls can be costly

• direct costs of call, return, argument & result passing,
stack frame maintainance

• indirect cost of damage to intraprocedural analysis
of caller and callee

Optimization techniques:

• hardware support

• inlining

• tail call optimization

• interprocedural analysis

• procedure specialization

Craig Chambers 143 CSE 501

Inlining

(A.k.a. procedure integration, unfolding, beta-reduction, ...)

Replace call with body of callee

• insert assignments for actual/formal mapping,
return/result mapping

• do copy propagation to eliminate copies

• manage variable scoping correctly

• e.g. α-rename local variables, or tag names with scopes, ...

Pros & Cons:

+ eliminate overhead of call/return sequence

+ eliminate overhead of passing arguments and returning
results

+ can optimize callee in context of caller, and vice versa

− can increase compiled code space requirements

− can slow down compilation

In what part of compiler to implement inlining?
front-end? back-end? linker?

Craig Chambers 144 CSE 501

What/where to inline?

Inline where highest benefit for the cost

E.g.:

• most frequently executed call sites

• call sites with small callees

• call sites with callees that benefit most from optimization

Can be chosen by:

• explicit programmer annotations

• annotate procedure or call site?

• automatically

• get execution frequencies from
static estimates or dynamic profiles

Craig Chambers 145 CSE 501

Program representation for inlining

Weighted call graph: directed multigraph

• nodes are procedures

• edges are calls, weighted by invocation counts/frequency

Hard cases for building call graph:

• calls to/from external routines

• calls through pointers, function values, messages

A

B C

ED

F

G

2525

60 50
100

5

1000

800

10



Craig Chambers 146 CSE 501

Inlining using a weighted call graph

What order to do inlining?

• top-down: local decision during compilation of caller ⇒ easy

• bottom-up: avoids repeated work

• highest-weight first: exploits profile data

• but highest-benefit first would be better...

Avoid infinite inlining of recursive calls

Craig Chambers 147 CSE 501

Assessing costs and benefits of inlining

Strategy 1: superficial analysis

• examine source code of callee to estimate space costs

− doesn’t account for recursive inlining,
post-inlining optimizations

Strategy 2: deep analysis, “optimal inlining”

• perform inlining

• perform post-inlining optimizations,
estimate benefits from optimizations performed

• measure code space after optimizations

• undo inlining if costs exceed benefits

+ better accounts for post-inlining effects

− much more expensive in compile-time

Strategy 3: amortized version of strategy 2
[Dean & Chambers 94]

• perform strategy 2: an “inlining trial”

• record cost/benefit trade-offs in persistent database

• reuse previous cost/benefit results for “similar” call sites

+ faster compiles than superficial approach, in Self compiler

Craig Chambers 148 CSE 501

Tail call optimization

Tail call: last thing before return is a call

• callee returns, then caller immediate returns

int f(...) {
...
if (...) return g(...);
...
return h(i(...), j(...));

}

Can splice out one stack frame creation and tear-down,
by jumping to callee rather than calling

+ callee reuses caller’s stack frame & return address

− effect on debugging?

Craig Chambers 149 CSE 501

Tail recursion elimination

If last operation is self-recursive call, turns recursion into loop
⇒ tail recursion elimination

• common optimization in compilers for functional languages

• required in Scheme language specification

bool isMember(List lst, Elem x) {
if (lst == null) return false;
if (lst.elem == x) return true;
return isMember(lst.next, x);

}

Works for mutually recursive tail calls, too; e.g. FSM’s:

void state0(...) {
if (...) state1(...)
else state2(...);

}

void state1(...) {
if (...) state0(...)
else state2(...);

}

void state2(...) {
if (...) state1(...)
else state2(...);

}



Craig Chambers 150 CSE 501

Interprocedural Analysis

Extend intraprocedural analyses to work across calls

+ avoid making conservative assumptions about:

• effect of callee on caller

• context of caller (e.g. inputs) on callee

+ no (direct) code increase

− doesn’t eliminate direct costs of call

− may not be as effective as inlining at cutting indirect costs

Craig Chambers 151 CSE 501

Interprocedural analysis algorithm #1: supergraph

Given call graph and CFG’s of procedures,
create single CFG (“control flow supergraph”) by

• connecting call sites to entry nodes of callees

• connecting return nodes of callees back to calls

+ simple

+ intraprocedural analysis algorithms work on larger graph

+ decent effectiveness
(but not as good as inlining)

− speed?

− separate compilation?

− imprecision due to "unrealizable paths"

Craig Chambers 152 CSE 501

Interprocedural analysis algorithm #2: summaries

Compute summary info for each procedure

• callee summary:
summarizes effect/result of callee procedure for callers

• caller summaries:
summarizes context of all callers for callee procedure

Store summaries in database

Use summaries when compiling & optimizing procedures later

For simple summaries:

+ compact

+ compute & use summaries quickly

+ separate compilation practical (once summaries computed)

− less precise analysis

A continuum in the design of summaries:

• as small as a single bit

• as large as the full source code of the callee

Craig Chambers 153 CSE 501

Examples of callee summaries

MOD

• the set of variables possibly modified by a call to a proc

USE

• the set of variables possibly read by a call to a proc

MOD-BEFORE-USE

• the set of variables definitely modified before use

CONST-RESULT

• the constant result of a procedure, if it’s a constant

PURE

• a pure, terminating function, without side-effects



Craig Chambers 154 CSE 501

Computing callee summaries within a procedure

Flow-insensitive summaries can be computed
without regard to control flow

+ often can be calculated in linear time

− limited kinds of information

• cannot compute anything that depends on the relative order of
execution of statements

Flow-sensitive summaries must take control flow into account

− may require iterative dfa

+ more precise info possible

Converting to SSA form and then doing a flow-insensitive
analysis is often as precise as doing a flow-sensitive analysis

Craig Chambers 155 CSE 501

Computing callee summaries across procedures

If procedure includes calls, then
its callee summary depends on its callees’ summaries,
transitively

Therefore, compute callee summaries bottom-up in call graph

What about recursion?

What about calls to external, unknown library functions?

What about calls from external, unknown library functions?

What about program changes?

Craig Chambers 156 CSE 501

Examples of caller summaries

CONST-ARGS

• the constant values of the formal parameters of a
procedure, for those that are constant

ARGS-MAY-POINT-TO

• may-point-to info for formal parameters

LIVE-RESULT

• whether result may be live in caller

Craig Chambers 157 CSE 501

Computing caller summaries across procedures

Caller summary depends on all callers

• requires knowledge of all call sites, e.g. whole-program info

Therefore, compute caller summaries top-down in call graph

If procedure contains a call,
merge info at call site with caller summary of callee

What about recursion?

What about calls to external, unknown library functions?

What about calls from external, unknown library functions?

What about program changes?



Craig Chambers 158 CSE 501

Summary functions

Idea: generalize callee summary into a callee summary function

• take info at call site (calling context) as argument

• compute info after call site as result

Also called context-sensitive or polyvariant
interprocedural analysis

Previous callee summaries are context-insensitive:

constant summary functions which ignore their input

Example calling contexts:

• which formal parameters have what constant values

• what alias patterns are present on entry

• whether the result is live (a backwards "calling" context)

Key design point for context-sensitive interprocedural analysis:
how precise is the calling context?

+ more precise contexts give more precise result info

− more precise contexts take longer to produce & use
summaries

Craig Chambers 159 CSE 501

Kinds of summary functions

Total function: handles all possible call site info

+ compute once for callee, e.g. bottom-up

+ reuse for all callers

− can be expensive/difficult to compute/represent
precise total function

Partial function: handles only subset of possible call site infos,
e.g. those actually occurring in a program

+ compute on demand when encountering new call sites,
top-down

+ can be easier to represent partial functions precisely

− can analyze callee several times

− not modular

Craig Chambers 160 CSE 501

Procedure specialization

A.k.a. procedure cloning, customization

Halfway between inlining and interprocedural analysis,
similar to context-sensitive interprocedural analysis

A

D

B C

A

D’
B C

A

D’

B C

A B C

Source

Inlining:

Interprocedural
analysis:

D’’ D’’’

call graph:

A

D’

B CProcedure
specialization:

D’’

interprocedural
analysis:

Context-sensitive

D’

Craig Chambers 161 CSE 501

Abstract process

Given set of call sites of procedure P

e.g. {c1, c2, c3, c4, c5}

Partition into equivalence classes of “similar” call sites
(for instance, those with same calling context)

e.g. {{c1, c2}, {c3, c4}, {c5}}

Copy P for each class, change calls accordingly

Do (context-insensitive) interprocedural analysis
on changed call graph

Versus inlining:

+ less code explosion

+ works in presence of recursion

Versus interprocedural analysis:

+ better optimization of caller and callee

Versus context-sensitive interprocedural analysis:

+ better optimization of callee


