
Craig Chambers 74 CSE 501

Soundness of Data Flow Analysis

We’d like to convince ourselves, even prove formally, that our
dataflow analysis is correct, i.e. sound, with respect to some
intended uses

We need two things:

• a reference concrete semantics that defines the "truth",
against which we compare our abstract semantics

• including a concrete domain of information at program points
against which we compare our abstract domain of analysis
results at program points

• an abstraction relation that specifies when an abstract
domain element conservatively approximates a concrete
domain element, for our intended uses

Craig Chambers 75 CSE 501

Concrete semantics

Many ways to define the semantics of a programming language

A good way for our purposes is small-step operational
semantics, i.e., a set of transition rules like the following:

<ppin, memin> →x := y+z <ppout, memout>

where ppin = pred-pt(x := y+z)

ppout = succ-pt(x := y+z)

memout = memin[x→memin(y)+memin(z)]

"if execution reaches program point ppin with memory state
memin, and the instruction after that program point is
x := y+z, then program execution will "step" to program point
ppout with memory state memout."

These small-step rules are just (concrete) flow functions!

• but the info being "propagated" is the whole state of the
computation (and the outside world, perhaps)

• but control flow is more explicit, to account for which way
execution proceeds after branches

Craig Chambers 76 CSE 501

Traces

Concrete execution of a whole program is a trace

• sequence of <pp,mem> pairs, starting from the initial
program entry point and memory state, following the
concrete flow functions, until reaching final <pp,mem>
which has no transition

• could be infinitely long

If convenient, we can collapse traces onto the control flow graph,
storing not a sequence of pairs but rather a map from each
program point to the set of all memories that occur in the
trace at that program point, called the collecting (concrete)
semantics

{ (pp→mems) |
mems = { mem’ | <pp,mem’> ∈ Trace } }

Craig Chambers 77 CSE 501

Abstraction relation

Now we have concrete information (memories) and abstract
information (domain elements computed by our analysis).
When does the abstract information safely, possibly
conservatively, characterize the concrete information?

Depends on the use/intention of the abstract info

Define this using an abstraction relation α:

For concrete info c and abstract info a, (c,a) ∈ α iff a is a safe
approximation of c

E.g., for constant propagation:

(mem, dCP) ∈ αCP ⇔ [dCP ⊆ Var×Const]

∀(var→const) ∈ dCP. mem(var) = const

(Could define α as a relation between whole traces and abstract
info, to allow the abstract info to approximate history- or
future-sensitive info, e.g. for reaching defs or live variables)

Craig Chambers 78 CSE 501

Local and global soundess

Lemma (Local soundness of analysis A = <α, F>).

if <ppin, memin> →stmt <ppout, memout>

and (memin, din) ∈ α
and Fstmt(din) = dout

then (memout, dout) ∈ α

• prove this by examining each F flow function case

Theorem (Global soundess of analysis A = <α, F>).
If we start the abstract analysis with safe abstract info at the
first program point, the abstract analysis will compute safe
abstract info at each program point in the trace.

• by induction over the trace, using local soundness lemma

• proof is independent of the actual analysis!

<ppin, memin>

din dout

→stmt
<ppout, memout>

Fstmt

α α

Craig Chambers 79 CSE 501

Advanced program representations

Goal:

• more effective analysis

• faster analysis

• easier transformations

Approach:
more directly capture important program properties

• e.g. data flow, independence

Craig Chambers 80 CSE 501

Examples

CFG:

+ simple to build

+ complete

+ no derived info to keep up to date during transformations

− computing info is slow and/or ineffective

• lots of propagation of big sets/maps

Craig Chambers 81 CSE 501

Def/use chains

Def/use chains directly linking defs to uses & vice versa

+ directly captures data flow for analysis

• e.g. constant propagation, live variables easy

− can have multiple defs of same variable in program,
multiple defs can reach a use

• complicates analysis, representation

− ignores control flow

• misses some optimization opportunities,
since it assumes all paths taken

• not executable by itself,
since it doesn’t include control dependence links

• not appropriate for some optimizations,
such as CSE and code motion

− must update after transformations

• not too hard (just remove edges)

− space-consuming, in worst case: O(N2) edges per variable

Craig Chambers 82 CSE 501

Example

x := x + y

... x ...

... y ...

x := ...

y := ...

... x ...

... y ...

... y ...

... y ...

x := ...

y := y + 1

... x ...

Craig Chambers 83 CSE 501

Static Single Assignment (SSA) form

[Alpern, Rosen, Wegman, & Zadeck, two POPL 88 papers]

Invariant: at most one definition reaches each use

Constructing equivalent SSA form of program:

1. Create new target names for all definitions

2. Insert pseudo-assignments at merge points
reached by multiple definitions of same source variable:
xm := φ(x1,...,xn)

3. Adjust uses to refer to appropriate new names

Craig Chambers 84 CSE 501

Example

x := x + y

... x ...

... y ...

x := ...

y := ...

... x ...

... y ...

... y ...

... y ...

x := ...

y := y + 1

... x ...

Craig Chambers 85 CSE 501

Implementing φ-functions

Semantics of xm := φ(x1,...,xn):
set xm to xi, if control last came from predecessor i

How to implement (generate code for) this?

• along each predecessor edge i, insert xm := xi
• delete φ statement

If the register allocator assigns all of xm, x1, ... ,xn to the same
register, then these move instructions will be deleted

• xm, x1, ... ,xn usually have non-overlapping lifetimes,
so this kind of assignment is legal

Craig Chambers 86 CSE 501

Comparison

+ lower worst-case space cost than def/use chains: O(EV)

+ algorithms simplified by exploiting
single assignment property:

• variable has a unique meaning independent of program point

• can treat variable, its defining statement, & its value
synonymously

• can have single global table mapping var to info,
not one per program pt. that must be propagated, copied, etc.

+ transformations not limited by reuse of variable names

• can reorder assignments to same source variable, without
changing meaning in SSA version

− still not executable by itself

− still must update/reconstruct after transformations

− inverse property (static single use) not provided

• dependence flow graphs [Pingali et al.] and
value dependence graphs [Weise et al.] fix this,
with single-entry, single-exit (SESE) region analysis

Very popular in research compilers, analysis descriptions

Craig Chambers 87 CSE 501

Common subexpression elimination

At each program point, compute set of available expressions:
map from expression to variable holding that expression

• e.g. {a+b → x, -c → y, *p → z}

More generally, can have map from
expensive expression to equivalent but cheaper expression

• subsumes CSE, constant prop, copy prop., ...

CSE transformation using AE analysis results:
if a+b→x available before y := a+b, transform to y := x

Craig Chambers 88 CSE 501

Specification

All possible available expressions:
AvailableExprs = {expr→var | ∀expr ∈ Exprs, ∀var ∈ Vars}

= Exprs × Vars

• Exprs = set of all right-hand-side expressions in procedure

• Vars = set of all variables in procedure

[is this a function from Exprs to Vars, or just a relation?]

Domain AV = < Pow(AvailableExprs), ≤AV >

ae1 ≤AV ae2 ⇔

• T:

• ⊥:

• meet:

• lattice height:

Craig Chambers 89 CSE 501

Flow functions

What direction to do analysis?

Initial conditions?

AEx := y op z:

AEx := y:

Can use bit vectors?

Can summarize sequences of flow functions?

Craig Chambers 90 CSE 501

Example

j := i

i := c

z := j * 4

y := i * 4

i := i + 1

m := b + a

w := 4 * m

i := a + b

x := i * 4

Craig Chambers 91 CSE 501

Exploiting SSA form

Problem: previous available expressions overly sensitive to
name choices, operand orderings, renamings, assignments,
...

A solution:

Step 1: convert to SSA form

• distinct values have distinct names
⇒ can simplify flow functions to ignore assignments

AESSA
x := y op z:

Step 2: do copy propagation

• same values (usually) have same names
⇒ avoid missed opportunities

Step 3: adopt canonical ordering for commutative operators
⇒ avoid missed opportunities

Craig Chambers 92 CSE 501

Example

j := i

i := c

z := j * 4

y := i * 4

i := i + 1

m := b + a

w := 4 * m

i := a + b

x := i * 4

Craig Chambers 93 CSE 501

After SSA conversion, copy propagation, &
operand order canonicalization:

j1 := i1
i2 := c1
z1 := i1 * 4

i4 := φ(i1,i3)
y1 := i4 * 4

i3 := i4 + 1

m1 := a1 + b1
w1 := m1 * 4

i1 := a1 + b1
x1 := i1 * 4

