
Craig Chambers 54 CSE 501

Lattice-Theoretic Data Flow Analysis Framework

Goals:

• provide a single, formal model that describes all DFAs

• formalize notions of “safe”, “conservative”, “optimistic”

• place precise bounds on time complexity of DF analysis

• enable connecting analysis to underlying semantics for
correctness proofs

Plan:

• define domain of program properties computed by DFA

• domain: set of elements + order over elements = lattice

• define flow functions & merge function over this domain,
using standard lattice operators

• benefit from lattice theory in attacking above issues

History: Kildall [POPL 73], Kam & Ullman [JACM 76]

Craig Chambers 55 CSE 501

Lattices

Define lattice D = (S, ≤):

• S is a (possibly infinite) set of elements

• ≤ is a binary relation over elements of S

Required properties of ≤:

• ≤ is a partial order
• reflexive, transitive, & anti-symmetric

• every pair of elements of S has
a unique greatest lower bound (a.k.a. meet) and
a unique least upper bound (a.k.a. join)

Height of D =
longest path through partial order from greatest to least

• convenient to count edges, not nodes

• infinite lattice can have finite height (but infinite width)

Top (T) = unique element of S that’s greatest, if exists

Bottom (⊥) = unique element of S that’s least, if exists

Craig Chambers 56 CSE 501

Lattice models in data flow analysis

Model data flow information by an element of a lattice domain

• our convention: if a < b, then a is less precise than b

• i.e., a is a conservative approximation to b

• top = most precise, best case info

• bottom = least precise, worst case info

• merge function = g.l.b. (meet) on lattice elements
(the most precise element that’s a conservative
approximation to both input elements)

• initial info for optimistic analysis (at least back edges): top

(Reverse less precise/more precise conventions used in
PL semantics, abstract interpretation!)

Craig Chambers 57 CSE 501

Examples

Reaching definitions:

• an element:

• set of all elements:

• ≤:

• top:

• bottom:

• meet:

Reaching constants:

• an element:

• set of all elements:

• ≤:

• top:

• bottom:

• meet:

Craig Chambers 58 CSE 501

Some typical lattice domains

Powerset lattice: set of all subsets of a set S

• ordered by ⊆ or ⊇
• top & bottom = ∅ & S, or vice versa

• height = |S| (infinite if S is infinite)

• “a collecting analysis”

A lifted set: a set of incomparable values, plus top & bottom

• e.g., reaching constants domain, for a particular variable:

• height = 2 [edges] (even though width is infinite!)

Two-point lattice: top and bottom

• computes a boolean property

Single-point lattice: just bottom

• trivial do-nothing analysis

T

⊥

x=0 x=1 x=2 ...x=-1x=-2...

Craig Chambers 59 CSE 501

Tuples of lattices

Often helpful to break down a complex lattice into a tuple of
lattices, one per variable/stmt/... being analyzed

Formally: DT = <ST, ≤T> = (D = <S, ≤>)N

• ST = S1 × S2 × ... × SN

• element of tuple domain is a tuple of elements from each
variable’s domain

• ith component of tuple is info about ith variable/stmt/...

• <..., d1i, ...> ≤T <..., d2i, ...> ≡ d1i ≤ d2i, ∀i

• i.e. pointwise ordering

• meet: pointwise meet

• top: tuple of tops

• bottom: tuple of bottoms

• height(DT) = N * height(D)

Powerset(S) lattice is isomorphic to a tuple of two-point lattices,
one two-point lattice element per element of S

• i.e., a bit-vector!

Craig Chambers 60 CSE 501

Example: reaching constants

How to model reaching constants for all variables?

Informally:
each element is a set of the form {..., x → k, ...},
with at most one binding for x

One lattice model: a powerset of all x → k bindings

• S = pow({ x → k | ∀x, ∀k })

• ≤ = ⊆
• height?

Another lattice model:
N-tuple of 3-level constant prop. lattices,
for each of N variables

• ()N

• height?

If not, which is better?

T

⊥

x=0 x=1 x=2 ...x=-1x=-2...

Craig Chambers 61 CSE 501

Analysis of loops in lattice model

Consider:

(Assume B(dhead) computes dbackedge)

Want solution to constraints:

dhead = dentry ∩ dbackedge [∩ means meet]

dbackedge = B(dhead)

Let F(d) = dentry ∩ B(d)

Then want fixed-point of F:

dhead = F(dhead)

B

dentry

dbackedgedhead

Craig Chambers 62 CSE 501

Iterative analysis in lattice model

Iterative analysis computes fixed-point
by iterative approximation, beginning with T:

F0 = dentry ∩ T = dentry

F1 = dentry ∩ B(F0) = F(F0) = F(dentry)

F2 = dentry ∩ B(F1) = F(F1) = F(F(F0)) = F(F(dentry))

. . .

Fk = dentry ∩ B(Fk-1) = F(Fk-1) = F(F(...(F(dentry))...))

until

Fk+1 = dentry ∩ B(Fk) = F(Fk) = Fk

Is k finite?

If so, how big can it be?

Craig Chambers 63 CSE 501

Termination of iterative analysis

In general, k need not be finite

Sufficient conditions for finiteness:

• flow functions (e.g. F) are monotonic

• lattice is of finite height

A function F is monotonic iff:

d2 ≤ d1 ⇒ F(d2) ≤ F(d1)

• for application of DFA, this means that giving a flow function
at least as conservative inputs (d2 ≤ d1) leads to
at least as conservative outputs (F(d2) ≤ F(d1))

For monotonic F over domain D, the maximum number of times
that F can be applied to itself, starting w/ any element of D,
w/o reaching fixed-point, is height(D)

• start at top of D

• for each application of F, either it’s a fixed-point, or the
result must go down at least one level in lattice

• eventually must hit a fixed-point
(which will be the best fixed-point) or bottom
(which is guaranteed to be a fixed-point),
if D of finite height

Craig Chambers 64 CSE 501

Complexity of iterative analysis

How long does iterative analysis take?

l: depth of loop nesting

n: # of stmts in loop

t: time to execute one flow function

k: height of lattice

Craig Chambers 65 CSE 501

Another example: integer range analysis

For each program point,
for each integer-typed variable,
calculate (an approximation to) the set of integer values
that can be taken on by the variable

• use info for constant folding comparisons,
for eliminating array bounds checks,
for (in)dependence testing of array accesses,
for eliminating overflow checks

What domain to use?

• what is its height?

What flow functions to use?

• are they monotonic?

Craig Chambers 66 CSE 501

Example

for i := 0 to N-1
... a[i] ...

end

...

i >= 0 && i < N?
t := a[i]
...

i := i + 1

i := 0

i <= N-1?

Craig Chambers 67 CSE 501

Widening operators

If domain is tall, then can introduce artificial generalizations
(called widenings) when merging at loop heads

• ensure that only a finite number of widenings are possible

• not easy to design the “right” widening strategy

Craig Chambers 68 CSE 501

A generic worklist algorithm for lattice-theoretic DFA

Maintain a mapping from each program point to info at that point

• optimistically initialize all pp’s to T

Set initial pp’s (e.g. entry/exit point) to their correct values

Maintain a worklist of nodes whose flow functions need to be
evaluated

• initialize with all nodes in graph

• include explicit meet (merge) &
widening-meet (loop-head-merge) nodes

While worklist nonempty do

Remove a node from worklist

Evaluate the node’s flow function,
given current info on predecessor(successor) pp’s,
allowing it to change info on successor(predecessor) pp’s

If any pp info changed, put successor(predecessor) nodes
on worklist (if not already there)

For faster analysis, want to follow topological order

• number nodes in forward(backward) topological order

• remove nodes from worklist in increasing topological order

