Direction of dataflow analysis

In what order are constraints solved, in general?

Constraints are declarative, not directional/procedural, so may
require mixing forward & backward solving, or other more
global solution methods

But often constraints can be solved by (directional) propagation
& iteration

* may be forward or backward propagation of info

* topological traversals of acyclic subgraphs minimize
analysis time

Directional constraints often called flow functions
» often written as functions on input info to compute output

RDg.» .- .. .(in)=in-{x-s’|0Os} 0 {x-s}
RDs: «p .= .. (in) =in O {x - s | Ox O may-point-to(p)}
Craig Chambers 46 CSE 501
Bit vectors

For maximum efficiency,
can sometimes represent info/KILL/GEN sets as bit vectors

* if can express abstractly as set of things
(e.g. statements, vars),
drawn from a statically known set of things,
each thing getting a statically determined bit position

* bitvector encodes characteristic function of set

E.g., for reaching defs:

info = bitvector over statements,
each stmt getting a distinct bit position

» statement implies which variable is defined

Bit vectors compactly represent sets
Bit-vector operations efficiently perform set difference & union

Flow function may be able to be represented simply by a pair of
bit vectors, if they don’t depend on input bit vector
* can merge the KILL and GEN bit vectors of a whole basic
block of instructions into a single overall KILL and GEN
set, for faster iterating

Craig Chambers 48 CSE 501

.

GEN and KILL sets

For even more structure,
can often think of flow functions in terms of each’s
GEN set and KILL set

¢ GEN = new information added
¢ KILL = old information removed

Then
Finstr(in) = in - KILLjngtr O GENjngtr

E.g., for reaching defs:
RDg.» .- ... (in)=in—-{x-s’|Os} 0 {x-s}

RDs: +p .= .. (in) =in 0 {x-s| Ox O mpt(p)}

Craig Chambers 47 CSE 501

.

Another example: constant propagation

What info computed for each program point?
I is a conservative approximation to true info /y, iff:

Direction of analysis?

Initial info?

CPx = N:

CPX =y + z
CPup .2 xq + *rt

Merge function?

Can use bit vectors?

Craig Chambers 49 CSE 501

o

Example

1
ul

x + 1 =3
v + 1 y =X * 2
z :=y + 5

Craig Chambers 50

CSE 501

o

Another example: live variables

Want the set of variables that are live at each pt. in program

* live: might be used later in the program

Supports dead assignment elimination, register allocation

What info computed for each program point?
May or must info?

lis a conservative approximation to true info /;,, iff:

Direction of analysis?
Initial info, at what program point(s)?

LV -

q + *re

Merge function?

Can use bit vectors?

Craig Chambers 52

CSE 501

/ N
May vs. must info
Some kinds of info imply guarantees: must info
Some kinds of info imply possibilities: may info
* the complement of may info is must not info
May Must
desired info || small set big set
safe overly big set overly small set
add everything that add only if guaranteed
GEN)
might be true true
KILL remove only if remove everything
guaranteed wrong possibly wrong
MERGE O n
Craig Chambers 51 CSE 501
-
/
Example

.

Craig Chambers

53

CSE 501

