
Craig Chambers 46 CSE 501

Direction of dataflow analysis

In what order are constraints solved, in general?

Constraints are declarative, not directional/procedural, so may
require mixing forward & backward solving, or other more
global solution methods

But often constraints can be solved by (directional) propagation
& iteration

• may be forward or backward propagation of info

• topological traversals of acyclic subgraphs minimize
analysis time

Directional constraints often called flow functions

• often written as functions on input info to compute output

RDs: x := ...(in) = in − {x→s’ | ∀s’} ∪ {x→s}

RDs: *p := ...(in) = in ∪ {x→s | ∀x ∈ may-point-to(p)}

Craig Chambers 47 CSE 501

GEN and KILL sets

For even more structure,
can often think of flow functions in terms of each’s
GEN set and KILL set

• GEN = new information added

• KILL = old information removed

Then
Finstr(in) = in - KILLinstr ∪ GENinstr

E.g., for reaching defs:

RDs: x := ... (in) = in − {x→s’ | ∀s’} ∪ {x→s}

RDs: *p := ...(in) = in ∪ {x→s | ∀x ∈ mpt(p)}

Craig Chambers 48 CSE 501

Bit vectors

For maximum efficiency,
can sometimes represent info/KILL/GEN sets as bit vectors

• if can express abstractly as set of things
(e.g. statements, vars),
drawn from a statically known set of things,
each thing getting a statically determined bit position

• bitvector encodes characteristic function of set

E.g., for reaching defs:

info = bitvector over statements,
each stmt getting a distinct bit position

• statement implies which variable is defined

Bit vectors compactly represent sets

Bit-vector operations efficiently perform set difference & union

Flow function may be able to be represented simply by a pair of
bit vectors, if they don’t depend on input bit vector

• can merge the KILL and GEN bit vectors of a whole basic
block of instructions into a single overall KILL and GEN
set, for faster iterating

Craig Chambers 49 CSE 501

Another example: constant propagation

What info computed for each program point?

I is a conservative approximation to true info Itrue iff:

Direction of analysis?

Initial info?

CPx := N:

CPx := y + z:

CP*p := *q + *r:

Merge function?

Can use bit vectors?



Craig Chambers 50 CSE 501

Example

x := x + 1

w := v + 1

w := 3

y := x * 2

z := y + 5

w := w * v

x := 5

v := 2

Craig Chambers 51 CSE 501

May vs. must info

Some kinds of info imply guarantees: must info

Some kinds of info imply possibilities: may info

• the complement of may info is must not info

May Must

desired info small set big set

safe overly big set overly small set

GEN add everything that
might be true

add only if guaranteed
true

KILL remove only if
guaranteed wrong

remove everything
possibly wrong

MERGE ∪ ∩

Craig Chambers 52 CSE 501

Another example: live variables

Want the set of variables that are live at each pt. in program

• live: might be used later in the program

Supports dead assignment elimination, register allocation

What info computed for each program point?

May or must info?

I is a conservative approximation to true info Itrue iff:

Direction of analysis?

Initial info, at what program point(s)?

LVx := y + z:

LV*p := *q + *r:

Merge function?

Can use bit vectors?

Craig Chambers 53 CSE 501

Example

x := x + 1 y := x + 10

... y ...

x := 5

y := x * 2


