
Efficient Context-Sensitive Pointer Analysis

Robert P. Wilson and Monica S. Lam

Computer Systems Laboratory
Stanford University, CA 94305

http: //suif. Stanford. edu

for C Programs

{bwilson, lam}@cs. Stanford. edu

Abstract

This paper proposes an efficient technique for con~ext-
sensitive pointer analysis that is applicable to real C pro-
grams. For efficiency, we summarize the effects of pro-
cedures using partial tran$er func(ions. A partial transfer
function (PTF) describes the behavior of a procedure assum-
ing that certain alias relationships hold when it is called. We

cart reuse aPTF in many calling contexts as long as the aliases

among the inputs to the procedure are the same. Our empiri-

cal results demonstrate that this technique is successful—a

single PTF per procedure is usually sufficient to obtain com-

pletely context-sensitive results. Because many C programs

use features such as type casts and pointer arithmetic to cir-

cumvent the high-level type system, our algorithm is based

on a low-level representation of memory locations that safely

handles all the features of C. We have implemented our algo-

rithm in the SUIF compiler system and

efficiently for a set of C benchmarks.

1 Introduction

we show that it runs

Pointer analysis promises significant benefits for optimizing

and parallelizing compilers, yet despite much recent progress

it has not advanced beyond the research stage. Several prob-

lems remain to be solved before it can become a practical

tool. First, the analysis must be efficient without sacrificing

the accuracy of the results. Second, pointer analysis algo-

rithms must handle real C programs. If an analysis only

provides correct results for well-behaved input programs, it

will not be widely used. We have developed a pointer analysis

algorithm that addresses these issues.

This research was suppcmed in part by ARPA contract DABT63-94-C-

0054, an NSF Young Investigator award, and an Intel Foundation graduate

fetIowship.

Permission to copy without fee all or parl of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery,To copy otherwise, or to republish, requires
a fee and/or specific permission.
SIGPLAN ‘95La Jolla, CA USA
@ 1995 ACM 0-89791 -697-2/95/0006 ...$3.50

The goal of our analysis is to identify the potential values

of the pointers at each statement in a program. We represent

that information usingpoints-to functions. Reconsider heap-

allocated data structures as well as global and stack variables,

but we do not attempt to analyze the relationships between

individual elements of recursive data structures.

Interproccdttral analysis is crucial for accurately identify-

ing pointer values. Only very conservative estimates are pos-

sible by analyzing each procedure in isolation. One straight-

forward approach is to combine all the procedures into a

single control flow graph, adding edges for calls and returns.

An iterative data-flow analysis using such a graph is relatively

simple but suffers from the problem of unrealizable paths,

That is, values can propagate from one call site, through the

callee procedure, and back to a different call site. Some

algorithms attempt to avoid unrealizable paths by tagging

the pointer information with abstractions of the calling con-

texts [2, 12]. However, these algorithms still inappropriately

combine some information from different contexts.

Emami et al. have proposed a context-sensitive algorithm

that completely reanalyzes a procedure for each of its calling

contexts [6]. This not only prevents values from propagating

along unrealizable paths, but also guarantees that the analysis

of a procedure in one calling context is completely indepen-

dent of alll the other contexts. A procedure may behave quite

differently in each context due to aliases among its inputs,

and a context-sensitive analysis keeps those behaviors sepa-

rate. Reanalyzing for every calling context is only practical

for small programs. For larger programs, the exponential

cost quickly becomes prohibitive.

Interval analysis, which has been successfully used to art-

alyze side effects for scalar and array variables in Fortran

programs [7, 10], is an approach that combines context sen-

sitivity and efficiency. This technique summarizes the effects

of a procedure by a transferfunction. For each call site where

the procedure is invoked, it computes the effects of the pro-

cedure by applying the transfer function to the specific input

parameters at the call site. This provides context sensitivity

without reanalyzing at every call site.

Interval analysis relies on being able to concisely sum-
marize the effects of the procedures. Unfortunate y, pointer

analysis is not amenable to succinct summarization. The ef-

fects of a procedure may depend heavily on the aliases that

hold when it is called. Thus, the evaluation of a transfer func-

tion that summarizes the pointer assignments in a procedure

may be no simpler than running an iterative algorithm over

the original procedure.

We propose a new technique that is completely context-

sensitive yet does not sacrifice efficiency. Our approach is

based on the insight that procedures are typically called with

the same aliases among their inputs. Thus it is not necessary

to completely summarize a procedure for all the potential

aliases but only for those that occur in the program. Our idea

is to generate incomplete transfer functions that only cover

the input conditions that exist in the program. These incom-

plete transfer functions are made up of simple partial transfer

functions (PTFs) that are only applicable to calling contexts

that exhibit certain alias relationships. We have developed

an efficient technique that isolates the set of relevant aliases

upon which a FTF definition is based.

Our analysis embraces all the inelegant features of the

C language that are hard to analyze but are commonly used.

It safely handles arbitrary type casts, unions, and pointer

arithmetic. It also assumes that pointers maybe stored in any

memory locations, regardless of the types declared for those

locations. Since some of the standard library functions may

change the values of pointers, we provide the analysis with a

summary of the potentitd pointer assignments in each library

function.

We have implemented our algorithm in the SUIF compiler

system and have measured the anatysis times for a set of

benchmark programs. Our empirical results show that our

technique is successful in that it often needs to generate only

one PTF for each procedure in the program.

This paper is organized as follows. We first introduce the

major concepts behind our approach and give an outline of our

algorithm in Section 2.1. We then describe our representation

of memory locations and pointer values in Section 3. Next

in Section 4, we explain the intraprocedural portion of our

algorithm. Section 5 then describes how we compute the

effects of procedure calls. Finally, we discuss related work

in Section 6 and present our experimental results in Section 7.

2 Major Concepts

This section describes the major concepts in the design of

our pointer analysis algorithm. We first introduce the general

approach of using partial transfer functions as an efficient
means 10 provide context sensitivity. We next describe the

specific design of partial transfer functions that we use in

our algorithm. Finally, we provide a complete outline of our

algorithm.

2.1 Partial Transfer Functions

To provide some insight on how one might define transfer
functions forpointeranalysis, consider an informal summary

f (p, q, r) {
*P = *q;
*q = *r;

p

int x, y, z;
int *xO, *yO, *zO;

main () (
Xo = &x; yo = &y; 20 = &z;
if (testl)

S1 : f(&xo, &yo, &z O);
else if (test2)

S2: f(&zo, &xo, &y O);
else

S3 : f(&xo, &yo, &x O);

Figure 1: Example Program

for the very simple procedure f in Figure 1:

The target of p points to whatever the target of q

initially pointed to.

Case I If r and p do not point to any of the same

locations, the target of q points to whatever

the target of r initially pointed to.

Case II If r and p definitely point to exactly the

same location, then the target of q retains its

original value.

Case III If r and p may point to the same lo-

cations but their targets are not definitely the

same, then the target of q may either retain its

original value or point to whatever the target

of r pointed to initially.

This example illustrates two important points. First, the

aliases among the inputs to a procedure determine its behav-
ior. Given a particular set of aliases, summarizing a procedure

is relatively easy. Second, even for this simple two-statement

procedure the complete summary is fairly complex. Comput-

ing a full summary for a procedure with cycles and recursive

data structures is prohibitively expensive.

The main idea behind our algorithm is that we need not

summarize a procedure for all possible aliases among its

inputs. Instead, we only need to find summaries that apply

to the specific alias patterns that occur in the program. For

our simple example, Case I applies to the calls ats 1 ands 2
because they have the same alias pattern, even though they
have totally different parameters. Case II applies to the call

at S3. Thus it is not necessary to consider Case III for this

particular program.

Our basic approach and its comparison with traditional

interval analysis are illustrated in Figure 2. The traditional

approach is to define a complete transfer function that maps

the entire input domain for a procedure to the corresponding

outputs (Figure 2(a)). Instead, we develop a set of partial

7

Figure 2: (a) Transfer function fora procedure and (b) partiat

transfer functions

transfer functions (PTFs), each of which is applicable to only
a subset of the input domain. As shown in Figure 2(b), the
domains of these partial functions are disjoint and the union
of their domains does not necessarily cover all the possible
inputs. Many potential inputs never occur in practice, and

we only need PTFs for the inputs that actuatly occur. That

means the complexity of all the PTFs taken together is much

lower than that of the full transfer function,

2.2 Design of PTFs

There is a trade-off between the complexity of the individ-

ual PTFs and their applicability. By making a PTF more

complicated, we can increase the size of its input domain so

that fewer PTFs need to be computed. The complete transfer

function, which covers all the possible inputs, is at one end

of this trade-off. At the other extreme, each point in the input

space can have a separate PTF. One of these PTFs can only

be reused when all of its inputs have exactly the same values

as in the context where it was created. The initial values

specify the input domain for the PTF. Whenever the analysis

encounters another call to the procedure with the same input

values, it can reuse the final values recorded in the PTF. This

technique is commonly known as memorization.

Since it is not the specific input values but their alias pat-

terns that determine the behavior of a procedure, we use

symbolic names called extended parameters to abstract the

input values. An extended parameter represents the locations

reached through an input pointer at the beginning of a pro-

cedure. Every object is represented by at most one extended

parameter. This is similar to the “invisible variables” defined

by Emami et al. [6].

For procedure f in Figure 1, we use the extended parameter

l.p to represent the location initially pointed to by p; I.p

represents XO for the call ats 1 and z O for the call ats 2. For

the calls at s 1 and S2 in Figure 1, since none of the inputs

are aliased, we create a new extended parameter for every

location accessed. For the call at S3 on the other hand, both

p and r point to the same location, so we create only one

extended parameter to represent the common location.
When a pointer to a globat is passed into a procedure,

we treat it as any other extended parameter. We do not

necessarily want to know the specific vatue of the pointer.

For example, for the call at s 1 in Figure 1, the parameter

l-p represents the global variable XO. If we used XO directly

instead of the parameter, we would not be able to reuse the

same PTF for the call at S2. Since extended parameters
represent global variables referenced through pointers, we

also use extended parameters to represent global variables

that are referenced directly. If a global is referenced both

directly and through a pointer input to a procedure, using the

same extended parameter for both references takes care of

the alias between them.

It is important to only create the extended parameters that

are relevant to the procedure. Aliases involving parameters

that are never referenced should not prevent us from reusing

FTFs. Our solution is to create the extended parameters

lazily. We only create extended parameters as they are refer-

enced. In contrast, Emami et al. create invisible variables for

all input pointers that could potentially be accessed. Not only

does that require unnecessary overhead to create parameters

that are never referenced, but it also limits the opportunities

for reuse.

Extended parameters play three important roles:

1. Extended parameters make up part of the name

space of a procedure. Each procedure has its own

distinlct name space which consists of the extended pa-

rameters, local variables, and heap storage allocated by

the procedure and its children. We derive a parameter

mapping at each call site to map the caller’s name space

to the cake’s and vice versa.

The initial points-to function for a PTF specifies the

input domain. The aliases among the inputs to a PTF

are the main part of the input domain specification. With

our definition of extended parameters, the initial points-

to function succinctly captures that information. For the

alias in the call ats 3 in the example, the initial points-to

function records that p and r point to the same extended

parameter l.p as shown in Figure 4(a). Similarly, the

totally disjoint points-to relationships in Figure 3(a) re-

flect the lack of aliases for the other calls,

p –-0 p--m

(a) Initial Values (b) Finat Vatues

Figure 3: Parametrized PTF for Calls at S1 and S2

3. The final points-to function at the procedure exit

summarizes the pointer assignments. Given the ini-

tial points-to function, it is relatively easy to derive the
points-to function at the procedure exit. Figures 3(b)

and 4(b) show the final points-to functions produced for

the corresponding inputs. Since the analysis operates

‘7.

:h : l-p

q l_q 2_q q—-0-0% l-q 2_q

(a) Initiat Values (b) Find Vatues

Figure 4: Parametrized PTF for Call at S3

on the parametrized name space, the final points-to
function summarizes the procedure parametrically. The

parameter mapping for a particular call site allows us to

translate the summary back to the caJler’s name space.

Besides the aliases, the input domain of a PTF is also

defined by the values of function pointers passed in and used

in calls within the procedure. The function pointer vatues

affect the PTF summary because they determine what code

could be executed.

The PTF design presented here is but one choice in the

trade-off between the complexity of the PTFs and the sizes of

their input domains. We have also explored another scheme

that uses a separate extended parameter for each access path.
That design increases reuse with considerable cost in com-

plexity, since multiple extended parameters may then refer to

the same location. Furthermore, it requires additional analy-

sis to abstract the potentially infinite access paths to a finite

set. Our experience with that scheme suggests that such

complexity is unnecessary for this analysis.

2.3 Aigorithm Outline

Just as we create extended parameters lazily, we only create

PTFs as they are needed. In this way, we do not compute

unnecessary summaries. We begin by using an iterative data-

flow approach to find the potential pointer values in the main

procedure, When this iterative anatysis encounters a call to a

procedure with new input aliases, it recursively analyzes that

procedure for the current context to produce a new F’TF. We

use a stack to keep track of the current calling contexts,

We update the initial points-to functions and parameter

mappings lazily during the iterative analysis. When we begin

analyzing a procedure, the initial points-to function is empty

and the parameter mapping only records the actual values for

the formal parameters. When we need to know the initiat

value of an input pointer and it is not already recorded, we

add an entry to the initial points-to function. To check for

aliases, we need to look up the initial values in the calling

context. If the pointer has not yet been referenced in the

calling context either, we will add an entry to the caller’s

initial points-to function. The process continues recursively

up the call graph until the pointer values are known. If the
initial values are not aliased with any existing parameters, we

create anew extended parameter to represent those values and

record that in the parameter mapping. Section 3.2 describes

the situations where the initial values are aliawd with one or

more existing parameters.

When the iterative analysis encounters a procedure call, it

needs to find the effects of the call on the points-to function.

If the call is through a pointer passed as an input to one or

more of the PTFs on the call stack, we add the potential values

of that pointer to the specifications of the input domains for

those PTFs. For each potential callee procedure, we first

check if any of its lTFs apply. This involves building up a

panrneter mapping and comparing the input aliases to those
recorded for the PTF. If the input aliases and function pointer
vahtes match, we use the parameter mapping to translate the

final pointer values recorded in the PTF back to the current

context. Otherwise, if the inputs do not match any of the

existing PTFs, we reanalyze the procedure to produce a new

PTF.

3 Pointer Representations

Since C programs commonly access memory using typecasts

and other features to override the high-level types, our algo-

rithm is based on a low-level representation of memory. This

allows us to handle the problematic features of C in a straight-
forward manner. Instead of using types to identify locations

that may contain pointers, we assume that any memory lo-

cation could potentially hold a pointer. We also refer to

locations within a bIock of memory by their positions, not

by their field names. We define a new abstraction, the lo-

cation set, to specify both a block of memory and a set of

positions within that block. For the most part, this low-level

representation provides results comparable to those based on

high-level types. However, our conservative approach may

occasionally lead to less accurate results. This is a price we

are willing to pay in order to guarantee safe results for all

input programs].

We divide memory into blocks of contiguous storage,

whose positions relative to one another are undefined. A

block of memory maybe one of three kinds: a local variable,

a locally aJlocated heap block, or an extended parameter.

Global variables are treated as extended parameters, A spe-

cial local variable represents the return value of a procedure.

Note that the heap blocks are only those allocated within a

procedure or its cakes; heap blocks passed in from a calling

context are considered to be extended parameters,

We distinguish heap blocks based on their allocation con-

texts, grouping together all the blocks allocated in each con-
text. The minimat context information is simply the state-

ment that creates the block. Including the call graph edges

along which the new blocks are returned, eliminating dupli-

cate edges in recursive cycles, can provide better precision

for some programs [2]. While this scheme is a good starting

point, we have found that for some programs it produces far

1We do stilt place a few restrictions on the inputs. For example, we

currentty assume that pointers are not written out to files and then read in

and later dereferenced.

offset

Figure 5: Members of a Location Set

more heap blocks than we would like. We are currently in-
vestigating techniques to merge heap blocks that are elements

of the same recursive data structure in accordance with our

goat to only distinguish complete data structures from one
another. For now, we limit the allocation contexts to only in-

clude the static allocation sites. That is sufficient to provide

good precision for the programs we have analyzed so far.

3.1 Location Sets

Our goal with regard to aggregates is to distinguish between

different fields within a structure but not the different ele-

ments of an array. That is, given an array of structures with

fields x and y, the locations are partitioned into two sets, one

containing all field x data and one containing atl field y data.

Our pointer anatysis can be combined with data dependence

tests to distinguish between different array elements.

We represent positions within a block of storage using

location sets. A location set is a triple (b, \,s) where the

base b is the name for a block of memory, $ is an offset

within that block, ands is the stride. That is, it represents the

set of locations {~ + is I i c Z} within block b, as shown

graphically in Figure 5. The offsets and strides are measured

in bytes.

Expression

scalar

strttct.F

array

array [i]

array [i].F

struct.F[i]

*(&P +x) zLocation Set

(scalar, O, O)

(Struct, f, o)
(array, O, O)

(array, O,s)

(array, f,s)

(Struct, f % s, s)

(p, o, 1)

Table 1: Location Set Examples

f= offset of F ands = array element size

Table 1 shows the location sets that represent various ex-

pressions. Afield in a structure is identified by its offset from

the beginning of the structure. Except for array references,

the stride is unused and is set to zero. A reference to an array

element has astride equal to the element size. If the elements

of art array are structures, then the field information is cap-
tured by the offset. Since C does not provide array bounds

checking, a reference to an array nested withiwa structure

can access any field of the structure by using out-of-bounds

actual values parameters

Figure 6: Subsuming Existing Parameters

array indices. Although such out-of-bounds references are

rare and non-standard, we believe it is still important to han-

dle them conservatively. Thus we treat an array nested in

a structure as if it completely overlaps the entire structure.
This innplies that the offset will always be less than the stride.

We enforce that by always computing the offset modulo the

stride whenever the stride is non-zero.

When the position of a location within a block is entirely

unknown, we set the location set stride to one. This means

that the location set includes all the locations within the blcck.

This may occur due to pointer arithmetic. Although we

reeognize simple pointer increments, which are commonly

used to address array elements, to determine the location set

strides, we do not attempt to evatuate more complex pointer

arithmetic. Instead, for each memory address input to an

arithmetic expression, we add to the result a location set with

the same base object but with the stride set to one. This

conservatively approximates the results of any arithmetic ex-

pression. Because the positions of the blocks relative to

one another are undefined, we need not worry about pointer

arithmetic moving a pointer to a different block.

In summary, our location set representation has several ad-

vantages. Problems related to type casts and unions become

irrelevant because we do not use the high-level types. It is

also very easy to work with, especially when dealing with

pointer arithmetic.

3.2 Extended Parameters

As discussed in Section 2.2, every object is represented by at

most one extended parameter. When adding an entry to the

initial points-to function, we first find the values of the pointer

in the callling context. If the parameter mapping shows that

an existing parameter already includes the same values, we

reuse the old parameter instead of creating a new one.

For simplicity and efficiency, each initial points-to entry

points to a single extended parameter. In cases where the

initiat values are aliased with more than one parameter, we

create anew extended parameter that subsumes all the aliased

parameters, and we replace all references to the subsumed

parameters. Likewise, when the initial values are aliased

with an existing parameter but also include new values, we

subsume the aliased parameter with a new one. Figure 6

illustrates this. Parameter 1.a is created first to represent the

targets of a. When b is dereferenced later, we discover that its

targets include the value represented by 1-abut also another

vatuc. Thus, we create a new parameter 1-b that replaces

a b a b

I
(X,o,o) (x,8,0)

I 1
(l_b,-8,0) (l_b,O,O)

,,..

x X.f Dl_b
.... .

aetuat vatues parameters

Figure 7: Using Negative Offsets for Structures

the old parameter la. This scheme reduces the number

of extended parameters with some loss of precision. That
is an acceptable trade-off for our purposes, but subsuming

parameters is not essential to our algorithm and could easily

be omitted.
Aliases involving fields of structures can be a bit more

complicated. When updating the initial points-to ftmction, if

we find a pointer to a field of an existing parameter, we can

easily record that fact. However, if we encounter a pointer to a

field before a pointer to the enclosing structure, we will create

an extended parameter to represent the field, and then the

other pointer will have to point before the existing parameter.

Fortunately, our location sets solve this problem nicely. We

simply allow the location set offsets to be negative, as shown

in Figure 7. Emami solves this problem by always creating

parameters for structures before any other parameters [5], but

that cannot work here because we create the parameters as

they are referenced.

3.3 Points-to Functions

Both the domains and ranges of the points-to functions are

expressed in terms of location sets. At each statement in

a program, a points-to function maps the location sets con-

taining pointers to the locations that maybe reached through

those pointers. Thus, a points-to function is a mapping from

location sets to sets of location sets.

It is important for the analysis to know which locations

may contain pointers. Since we do not use the high-level

types and since the points-to functions only contain entries
for pointers that have already been referenced, we record sep-

arately for each block of memory the location sets that may

hold pointers. Without that information, the analysis would

have to conservatively evaluate every assignment as a poten-

tial pointer assignment. Although that would not affect the

precision of the results (eventually the analysis finds which

values may be pointers and removes any spurious results),

we have found that it makes the analysis very inefficient.

For a variety of optimization, it is important to know when

a location definitely holds a certain pointer value. Within the

pointer analysis itself, that information can enable w-ong up-

dates, where assignments overwrite the previous contents of

their destinations. Others have kept track of “possible” and

“definite” points-to values separately [6], but that is unneces-

sary for our purposes. We only need that information at the

point where a pointer is dereferenced. Since we assume that

the input is legal, a location being dereferenced must contain

a valid pointer. The points-to functions record all the valid
pointers possibly contained in each location, and if there is

only one possibility y, it is safe to assume that is the value being

dereferenced. Thus, we get the benefits of definite pointer

values without the overhead of tracking them separately.

4 Analyzing a Procedure

We use an iterative data-flow analysis to find the points-to

functions within a procedure. In this section, we only discuss

the process of analyzing procedures with no call statements.

EvalProc (proc *pr, PTF *ptf)

I* iteratively analyze a procedure ‘/
do {

changed = FALSE;

foreach cfgNode nd in pr. flowGraph {

if (no predecessors of nd evaluated)

continue;

if (nd is meet) Eval Meet (rid, ptf) ;

if (nd is assign) EvalAssign(nd, ptf) ;

if (nd is call) Eval Call (rid, ptf);

}
} while (changed) ;

)

Figure 8: Intraprocedural Algorithm

Figure 8 shows our data-flow algorithm. We simply iterate

through all the nodes in a procedure’s flow graph until none

of the points-to values change. We visit the nodes in reverse

postorder, because it is important to know the input values

before evaluating a node. This strategy is much simpler than

a worklist algorithm, and it handles unstructured control flow

with no extra effort.

4.1 Strong Updates

Strong updates, where assignments overwrite the previous
contents of their destinations, are an important factor in the

precision of pointer anrdysis. Unless we know that an as-

signment will definitely occur and that it assigns to a unique

location, we must conservatively assume that that location

potentially retains its old values.

Because strong updates make the node transfer functions

non-monotonic, we introduce some constraints on the order
in which the flow graph nodes are evaluated in order to guar-

antee that the algorithm terminates. Specifically, we never

evaluate a node until one of its immediate predecessors has

been evaluated, and we never evaluate an assignment until its

destination locations are known [1].

We take advantage of the extended parameters to increase

the opportunities for strong updates. A strong update is only

possible if the destination of an assignment is a single location

set representing a unique location. A location set is unique

6

if it has no stride and the base represents a unique block of
memory. The key is to recognize that an extended parameter

representing the initial value of a unique pointer can be a

unique block even if that pointer has many possible values in

the calling context. Since the pointer can only contain one of

those possibilities at any one time, the extended parameter is

a unique block within the scope of the procedure. Only when

more than one location points to an extended parameter and

the actual values for that parameter are not a single unique

location must we mark the parameter as not unique. This

greatly improves our ability to perform strong updates. Since

a heap block represents all the storage allocated in a particular

context, we assume that locally allocated heap blocks are

never unique. On the other hand, local variables correspond

directly to real memory locations so they are always unique

blocks.

EvalMeet (c fgNode *rid, PTF *ptf)

{
/* ite~ate through the phi-functions */

foreach locSet dst in nd. phi Funcs (

locSet List SKCS;
/* COmbine values from each predecessor ‘/

foreach cfgNode pred in nd. preds {

J* look up points-to values */

srcs += lookup (ptf, dst, pred, NULL);

;* add points-to entry */

assign (ptf, dst, srcs, rid);

)

}

Figure9: Evaluating Meet Nodes

4.3 Evaluating Dereferences
4.2 Sparse Representation

Because our analysis is intcrprocedural and needs to keep the

entire input program in memory at once, we have gone to

considerable effort tousestorage space efficiently. Since we

analyze heap data as well as global and stack variables, many

possible memory locations could be included in the points-to

functions. Fortunately, the information stored in the points-to

functions is very sparse. Pointers typically have only a few

possible values, so we record the possibilities using linked

lists rather than bit vectors. Since the points-to functions

usually do not change very much between two adjacent pro-

gram points, we also incorporate the sparse representation

described by Chase et al. [1]. This scheme only records the

points-to values that change at each node.

Because of the sparse points-to function representation,

looking up the values of a pointer requires searching back for

the most recent assignment to that location. Beginning at the

current node, we search back through the dominating fllow

graph nodesz. If we reach theprocedureentry when searching

for an assignment to a formal or extended parameter, we

compute the value of the initial points-to function for that

parameter, if it has not already been recorded, as described

in Section 3.2. This may add new extended parameters in the

PTFs on the call stack.

Since we only search for assignments in the dominating

nodes, each meet node must contain SSA @functions [3] to

identify the values to be assigned in it. We insert these @

functions dynamically as new locations are assigned [1], The

pseudo-code for handling a meet node is shown in Figure 9.

For each #-function, we lookup the points-to values at each

predecessor node and combine the results to get the new

points-to values.

Because location sets may overlap, more than one location

set may refer to the same memory location. Values assigned

to one location set must be observed by references to over-

lapping locations. Thus, when a pointer is dereferenced, we

iterate through all of the overlapping locations and look up

in the current points-to function the values that have been

assigned to each one. However, if the location being deref-

erenced is a unique location, values assigned to overlapping

locations may have been overwritten by a strong update. In

that case, we first find the position of the most recent strong

update so that the lookup function will not look for assign-
ments to overlapping locations prior to that point. Figure 10

summarizes this part of our algorithm.

Eval Deref (locSet *v, cfgNode *rid, PTF *ptf)

(
locSet List result;

cfgNode *str Upd = NULL;

if (v is unique) (

/’ find the most recent strong update */

str[Jpd = findStrongUpdate (ptf, v, nd) ;

}
/* find the locations containing pointers */

locSet. List 10CS = v. base. ptrLocations;

foreach locSet 10C in 10CS {

if (lot overlaps v) {

/* find values assigned to 10C before

node nd but not before strUpd */

result += lookup (ptf, 10C, nd, str Upd) ;

return result;

}

Figure 10: Evaluating Dereferences
z~qcad of b“fldistg “skeleton trees” [1], we just keep lists Of assignments

sorted according to a bottom-up traversal of the dominator tree.

4.4 Evaluating Assignments

An assignment node in a flow graph specifies both the source

and destination expressions, as well as the size of the value to

be assigned. When building the flow graph from the interme-

diate representation of a program, we automatically convert

the assignments to a “points-to” form. That is, since a vari-

able reference on the right-hand side of an assignment refers

to the contents of that variable, we add art extra dereference to

each expression on the right-hand side. Source and destina-

tion expressions may also involve pointer arithmetic. Simple

increments are included in the strides of the location sets. We

simply keep a list of all the constant location sets and deref-

erence subexpressions found in other arithmetic expressions.

The process of evaluating an assignment begins by finding

the locations identified by the source and destination expres-

sions. To evaluate an expression, we iterate through its con-

stant location sets and dereference subexpressions. Constant

locations require no computation. Dereference expressions

may include any number of nested dcreferences, which we

evaluate one level at a time. For each destination location,

we then update the points-to function to include the values

from all the potential source locations. Figure 11 shows this

process for the case where the size of the assignment is one

word or Iess.

EvalA.ssign (cfgNode *rid, PTF ‘ptf)

locSetList dsts = EvalExpr (rid. dsts,

locSet List srcs = EvalExpr (rid. srcs,

foreach loc$et dst in dsts {

locSet List newSrcs = srcs;
/* include the old values if this

is not a strong update */

if (dst is not unique)

newSrcs += lookup(ptf, dst, nd,

assign(ptf, dst, newSrcs, rid);

nd, ptf);

nd, ptf);

NULL) ;

Flgurell: Evaluating Assignments

In an aggregate assignment, where muItiple words are as-

signed at once, all the pointer fields from the sources are

copied to the destinations. If a source location contains a

pointer value at an offset within the range being copied, we

add that pointer value at the corresponding offset to the des-
tination location.

5 Interprocedural Algorithm

We now describe how our algorithm handles procedure calls.

To evaluate the effects of a call on the points-to function, we

need to find a FTF that applies in the calling context. We can

either reuse an existing PTF or create a new one. Figure 12

outlines this part of our algorithm.

Eval Call (c fgNode *rid, PTF *ptf)

/* find G record function pointers values */

procList targets = findCall Target s(nd, ptf);

foreach proc pr in targets (

paramMap map; recordActuals(nd, pr, map);

PTF *tgtPTE’;

if (pr is not on the call Stack) {

tgtPTF = Get PTF (map, pr, nd, ptf);

if (needVisit) {

push (pr, tgtPTF, map) onto callStack;

EvalProc(pr, tgtPTF);

pop callStack;

I
] else {

/* handle rec”r~ive call */

tgtPTF = get PTF from call$tack;

/* add new aliases and func ptf values */

updatePTFDomain (tgtPTF, map, nd, ptf);

if (exit node of tgtPTF not reached)

return; /* defer evaluation of nd */

}
ApplySummary (tgtPTF, map, nd, ptf);

Figure 12: Evaluating ProcedureCalls

5.1 Calls Through Pointers

The first step inevahtatingp rocedurecatls is to determine

the target procedures. Formost calls thetarget isaconstant

and this is a trivial step, but the target may also be specified

by a function pointer. Fortunately, caIls through pointers

are relatively easy to handle in pointer analysis, since the

points-to functions record the possible pointer vahtes.

Functionpointer values maybe expressed intermsofex-

tended parameters. This is theonesituation wherewe need

to know the specific vahtes represented by extended parame-

ters. When artextended parameter isincluded as a potential

targetofacall,we checkthepamrneter mappingsupthecall

graph until we find thevalues that it represents. Since the

functionpointervalues arepartoftheinput domainspecifi-

cations forthe FTFs, we flag these extended parrtmeters as

function pointers and record their values in the FTFs.

5.2 Testing ifa PTFApplies

The input domain of a FTF is specified by its initiat points-
to function and by the values of the parameters used as call

targets. To test if a PTF applies, we check if these things are

the same in the current context as they were when the PIT

was created. We check theinitial points-to function entries

oneatatime, inthe order in which they were created. We

then compare the values of the parameters that were used as

call targets. If at any point they do not match, we give up

and go onto thenext PTF. The basic steps of this process

are shown in Figure 13.

Get PTF(paramMap *map, proc *pr,

cfgNode *rid, PTF *ptf)

PTF *home = NULL;

/’ check the existing PTFs ‘/

foreach PTF tgtPTF for pr {

if (matchPTF(tgtPTF, map, nd, ptf)) {

if (inputs have new pointer locations)

needVisit = TRUE;

return tgtPT,F;

}
remove all extended parameters from map;
/* check for the original context */

if (tgtPTF.home == (nd,ptf)) home = tgtPTF;

}
needVisit = TRUE;

if (home) {

updatePTFDomain (home, map, nd, ptf);

return home; /* reuse original PTF */

}
return allocatePTF(pr);

Figure 13: Finding an Applicable PTF

In the process of comparing the initial points-to function,

weatsobuild upa parameter mapping. Ifthe PTFmatclhes,

we can then use this mapping to apply the PTF in the current

context. For each entry intheinitial points-to function, we

find the actual values of thecorresponding pointer in the

current context and add the results to the parameter mapping.

Just as when the PTF was created, this operation may create
new initial points-to entries fortheothcr PTFs on the call

stack.

Sometimes the aliases and function pointer values fora

PTF match, but we need to extend the PTF because new lo-

cations contain pointers. As described in Section 3.3, we

record the location sets in each block of memory that may

containpointers. Byallowingusto ignoreoperations thatdo

not involve pointers, this makes theanalysis more efficicmt.

However, if an input location contains a pointer in the cur-

rent calling context, whereas it did not when the PTF was

created, theresults inthe PTF may not recomplete. When

thathappens, wereanalyze theprocedurc toextend thePTF.

Note that theresulting PTFwill still reapplicable toall the

callingcontexts in theoriginalinput domain, sinceassuming

that more locations may contain pointers is only a matter of

efficiency.

If none ofthe existing PTFs are applicable, we needto

reanalyze the procedure. In general, wccrcate an empty

PTF and then revisit the procedure to compute its summary.

However, this simple approach may waste alotofstora,ge.

Dunngtheiterative analysisofaproced ure,wemayevaluate

a call node several times with different input values on each
iteration. If we create a new PIT for each set of inputs,

we will likely end upwitha lotof PTFs that only applyto

intermediate results of theiteration. Oursolution istorecord

the calling context where eachPTF is created. If noneof

theexistingPTFs match, butoneof them wascreated inthe

currentcontextduring anearlieriteration, weupdatethatPTF

insteadofcreating anew one.

5.3 Aj@yinga PTF

After we find an applicable PTF and a parameter mapping

for that PTF in the current context, we translate the summary

of the procedure back to the calling context. If the procedure

call is through a pointer that has more than one potential

vahte, we combine all the possible summaries and we do not

perform any strong updates when applying them. The points-

to function at the procedure exit summarizes the effects of

the entire procedure, so we simply translate each points-to

entry and add the result to the points-to function at the call

site. Local variables do not exist in the calling context so we

remove them when translating the points-to entries.

5.4 Recursive Calls

We use art iterative approach to handling recursive calls. Be-

cause of calls through pointers, we must identify the recursive

cycles as the anatysis proceeds. Since we already keep a stack

to record the calling contexts, we can detect recursive calls

by searching back to see if the call target is already on the

stack. Instead of creating a new PTF for a recursive call, we

just use the summary from the PTF that is already on the call

stack. On the first iteration the summary maybe empty, and

we may need to defer evatttation of the recursive call. As long

as there is some path that terminates the recursion, however,

an approximate summary will eventually be provided. The

iteration then continues until it reaches a fixpoint.

The PTF at the entry to a recursive cycle is an approxima-

tion for multiple calling contexts. We combine the aliases

and function pointer vahtes from each recursive call site with

those recorded in the PTF. That may change the input do-

main for the PTF so that it no longer matches the original

non-recursive calling context. To avoid that problem, we

record two separate input domains for these recursive PTFs.

One specifies the original input domain for the call from out-

side the recursive cycle, and the other combines the inputs

from all the recursive calls.

6 Related Work

One of the most distinctive features of our algorithm is our

conservative approach to handling all the features of the Clan-

guage. Most of the previous work has made simplifying

assumpticms that rule out things such as pointer arithmetic,

type casting, union types, out-of-bounds array references,
and variable argument lists.

Our analysis is based on a points-to representation similar

to the one described by Emami et al. [6], Other work has

9

used alias pairs. Choi et at. show how alias pairs can be com-

pactly represented using a transitive reduction strategy [2].
In that compact form, the alias pairs are not much different

than a points-to representation. There are some differences

in precision between using full alias pairs and points-to func-

tions, but neither is clearly superior [14]. We have found that

the points-to function is a compact representation that works

well for analyzing C programs.

Our scheme for naming heap objects is taken directly from

Choi et al. Most other work has used k-lim”ting, where some

arbitrary limit is imposed on the length of pointer chains

in recursive data structures [11]. Although k-limiting can

sometimes provide more information, our algorithm is not

intended to distinguish the elements of recursive data struc-

tures. That problem has been addressed by a number of

others [1, 4,8,9, 13].

Using symbolic names to represent the values of pointers

passed into a procedure was first suggested by Landi and

Ryder [12]. They use “non-visible variables” to represent

storage outside the scope of a procedure. Emami ct al. use

“invisible variables” for the same purpose. Our extended

parameters are essentirdly the same as invisible variables,

except that we choose to subsume parameters so that each

initial points-to entry contains a single extended parameter.

Our work is most similar to the analysis developed by

Emami et al. Their algorithm is based on an “invocation

graph” which has a separate node for each procedure in each

calling context. The size of an invocation graph is exponential

in the depth of the call graph, implying that their algorithm is

also exponential. Although our algorithm is still exponential

in the worst case where every calling context has different

aliases, it performs well for real input programs where the

aliases are usually the same. We expect the precision of our

results to be comparable to theirs, but there may be some dif-

ferences. Our conservative hartdlingof C occasionally causes

us to propagate pointer wdues to more locations. This is the
price we pay to get safe results for atl inputs. Subsuming

aliased parameters also gives up some precision to improve

efficiency. On the other hand, our results may be better be-

cause we use the extended parameters to increase the number

of strong updates.

Emami et al. mentioned the idea of using a memorization

scheme similar to our algorithm. Our algorithm extends their

design in several important ways. First, we parametrize

references to global variables to increase the opportunities for

reusing PTFs in different contexts. Second, we keep track of
which pointers are actually referenced by a procedure. Thus,

we avoid the overhead of creating and updating irrelevant

parameters, and we prevent differing aliases among those

irrelevant parameters from limiting the reuse.

7 Experimental Results

We have implemented our algorithm as part of the SUIF

(Stanford University Intermediate Format) compiler sys-

tem [16]. SUIF is a flexible infrastructure for compiler

research. It includes a full ANSI C front end, so we are

able to evrttuate our analysis with large, realistic application
programs. The SUIF system also includes many components

that can benefit from points-to information. We have only

just begun to take advantage of this, To illustrate the poten-

tial, we report some preliminary results of using the points-to

information to parallelize numeric C programs.

We present preliminary results for a number of bench-

marks, including several from the SPEC benchmark suites.

Two of the floating-point programs from SPECfp92,

a lvinn and ear, are written in C and we include them

both here. Of the SPECint92 integer programs, we present

results for compress and eqnt ot t. Most of the other

SPECint92 benchmarks contain set jmp / long jmp calls or

asynchronous signal handlers. We eventually plan to support

set jmp/ long jmp calls in a conservative fashion, but we

do not know of any practical way to analyze programs that

use asynchronous signal handlers, except for simple cases

where the signal handlers exit from the programs. We have

also analyzed some Unix utilities, grep and cliff, and a

number of the benchmarks used by Landi and Ryder [12].

Benchmark

allroots

alvinn

grep

cliff

lex315

compress

loader

football

compiler

assembler

eqntott

ear

simulator

Lines

188

272

430

668

776

1503

1539

2354

2360

3361

3454

4284

4663

Proce-

dures

6

8

9

23

16

14

29

57

37

51

60

68

98

Analysis

(seconds)

0.18

0.22

0.65

2.13

0.93

1.45

1.70

6.70

7.57

5.82

9.88

2.99

15.54

Avg.

PTFs

1.00

1.00

1,00

1.30

1.00

1.00

1.03

1.02

1.14

1.08

1.33

1.13

1.39

Table 2: Benchmark and Analysis Measurements

Since the focus of our work has been making ~ointer anal-

ysis efficient, we are primarily concerned wit~ ~he times re-

quired to analyze the various benchmarks. Table 2 shows the
benchmark programs sorted by size. The first two columns

list the number of source lines and the number of procedures

encountered during the analysis. The third column shows

the analysis times in seconds for our algorithm running on a

DECstation 5000/260. These times do not include the over-

head for reading the procedures from the input files, building

flow graphs, and computing dominance frontiers. Neither do

they include the time required to write the results to the SUIF

output tiles.

Our pointer analysis is clearly fast enough to be practi-

10

cd for these programs. In all cases, only a few seconds

are required for the analysis. The amount of time can vary

significantly, though, depending not only on the overall size

of the input program but also on other characteristics of the

program. For example, even though it is quite a bit larger

than eqnt ot t, ear is much easier to analyze. In general,

floating-point applications seem to be easy targets for pointer

analysis. More complex programs will require somewhat

more analysis time.

Besides the overall analysis times, we also measured some

statistics to evaluate our use of PTFs. The results are very

encouraging. The last column of Table 2 shows the average

number of PTFs per procedure. These averages are all close

to one. Moreover, most of the situations where a procedure

has more than one PTF are only due to differences in the off-

sets and strides in the initial points-to functions. Combining

PTFs in those situations could improve the efficiency with

only a small loss in context-sensitivity.

The compiler program is an interesting caseto examine
in more detail. This program is a small compiler that uses

a recursive descent parser. It has many procedure calls and

a lot of them are recursive. Together these factors cause

the invocation graph described by Emami et al. to blow up

to more than 700,000 nodes [15]. This is for a program

with only 37 procedures! For some larger applications, ~he

exponential size of the invocation graph will be completely

unreasonable to handle. Fortunately, our results show that it

is unnecessary to reanalyze each invocation graph node.

Points-to information is useful for many different compiler

passes, but it is crucial for parallelization, Our first use of

pointer analysis is to show that static analysis can be used to

parallelize loops in numerical C programs. The current SUIF

parallelizer uses ourpoints-to information to determine if for-

mal parameters can be aliased, It then detects parallel loops

and generates SPMD (Single Program Multiple Data) code

for multiprocessors. It has many of the standard analyses for

recognizing loop-level parallelism: constant propagation, in-

duction variable recognition, and data dependence analysis.

It also includes a few passes that are specific to parallelizing

C programs: rewriting while loops as for loops where

possible and rewriting pointer increments as array index cal-

culations. After parallelization, the compiler generates a C

output file which contains calls to our run-time library.

Percent Avg. Time Speedups
Program Parallel Per Loop 2 Proc. I 4 Proc.

alvinn 97.7 7.4 ms 1.95 3.50

IIem I 85.8 I 0.2 ms I 1.42 I 1.63 II

Table 3: Measurements of Parallelized Programs

We ran our parallelizer over alvinn and ear. We in-

strumented our run-time system to measure the sequential

execution time spent in the paral Ielizcd portions of the code.

This measurement is shown as a percentage in the first col-

umn of Table 3. We also measured the sequential time spent

in each invocation of each parallelized loop to determine the

granularity of the parallelism. The averages of these times

are shown in the second column of Table 3.

For both programs, the compiler managed to parallelize

all the major loops. We ran the generated code on two and

four processors of an SGI 4D/380. The speedups are shown

in Table 3. The parallelizcd a lvinn achieves very good

speedups. The ear program performs reasonably well for

two processors but it does not speed up much more with four

processors. This is not surprising since there is so little com-

putation in each parallelized loop and since the parallelized

program suffers from a lot of false sharing. Here we have

only shown the use of pointer analysis in a loop parallelizer

for multiprocessors. The same pointer information could

be used to generate parallel code for superscalar and VLIW

processors, on which both a lvinn and ea r would perform

very well,

8 Conclusion

We have presented a fully context-sensitive pointer analysis

algorithm~ and have shown that it is very efficient for a set of

C programs. This algorithm is based on the simple intuition

that the aliases among the inputs to a procedure are the same
in most calling contexts. Even though it is difficult to sum-

marize the behavior of a procedure for all inputs, we can find

partial transfer functions for the input aliases encountered in

the program. This allows us to analyze a procedure once and

reuse the results in many other contexts.

Even though our algorithm is still exponential in the worst

case, we have so far found that it performs well. As long

as most procedures are always called with the same alias

patterns, our algorithm will continue to avoid exponential

behavior. TO be safe, after reaching some limit on the number

of PTFs per procedure, we could easily generalize the PTFs

instead of creating new ones.

Our analysis can handle all the features of the C language.

We make conservative assumptions where necessary to en-

sure that our results are safe. Even though we may occasion-

ally lose some precision due to these conservative assump-

tions, we believe it is important to handle the kinds of code

found in real programs, even if they do not strictly conform

to the ANS[standard.

Our success so far has been encouraging, and our next

step is to experiment with large, real-world applications. Our

preliminary evaluation suggests that our approach may scale

well for larger inputs, since most procedures only require

one PTF. We also need to use our pointer analysis in more

compiler optimization to determine if the results obtained
are sufficiently precise. Although there is more work to be

done, we believe this is a major step towards making pointer

analysis practical.

11

Acknowledgements

We wish to thank Bill Landi for generously giving us his

benchmark programs and Erik Ruf for providing some mea-

surements of those programs. Both they and the reviewers

also gave us many helpful comments and suggestions. Many

thanks to Jennifer Anderson, Shih-Wei Liao, Chris Wilson,

and the rest of the SUIF group for their work on the SUIF

parallelizer.

References

[1]

[2]

[31

[4]

[51

[6]

[7]

[8]

[91

D. R. Chase, M. Wegman, and F. K. Zadcck. Analysis

of Pointers and Structures. In Proceedings of the ACM
SIGPLAN’90 Conference on Programming Language
Design andImplementation, pages296-310, June 1990,

J.-D. Choi, M. Burke, and P. Carini. Efficient Flow-

Sensitive InterProcedural Computation of Pointer-

Induced Aliases and Side Effects. In Proceedings of

the 20th Annual ACM Symposium on Principles of Pro-

gramming Languages, pages 232-245, Jan. 1993.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and

F. K. Zadeck. An Efficient Method of Computing Static

Single Assignment Form. In I’roceedings of [he 16(h
Annual ACM Symposium on Principles of Programming
Languages, pages 25-35, Jan. 1989.

A. Deutsch. InterProcedural May-Alias Analysis for

Pointers: Beyond k-limiting. In Proceedings of the

ACM SIGPLAN94 Conference on Programming Lan-

guage Design and Implementation, pages 230-241,

June 1994.

M. Emami. A Practical Intcrproccdural Alias Analysis

for an Optimizing/Parallelizing C Compiler. Master’s

thesis, School of Computer Science, McGill University,

Aug. 1993.

M. Emami, R. Ghiya, and L. J. Hendren. Context-

Sensitive InterProcedural Points-to Analysis in the Pres-

ence of Function Pointers. In Proceedings of lhe ACM

SIGPLAN’94 Conference on Programming Language

Design and Implementation, pages 242–256, June 1994.

M. W. Hall, S. P. Amarasinghe, B. R. Murphy, and M, S.

Lam. Interproccdural Analysis for Parallel ization: Pre-

liminary Results. Technical Report CSL-TR-95-665,

Computer Systems Lab, Stanford University, Stanford,

CA 94305-4055, Apr. 1995.

W. L. Harrison III. The InterProcedural Analysis and
Automatic Parallclization of Scheme Programs. Lisp
and Symbolic Computation, 2(3): 176–396, Oct. 1989.

L. J. Hendren. Parallclizing Programs with Recursive

Data Structures. IEEE Transactions on Parallel and

Distributed Systems, 1(1):35-47, Jan. 1990.

[10]

[11]

[12]

13]

14]

F. Irigoin, P. Jouvelot, and R. Triolet. Semantical In-

terprocedural Parallelization: An Overview of the PIPS

Project. In Proceedings of the 1991 AC14 International

Conference on Supercomputing, pages 254–251, June

1991.

N. Jones and S. Muchnick, Flow Analysis and Opti-

mization of Lisp-like Structures. In S. Muchnick and

N. Jones, editors, Program Flow Analysis: Theory and

Applications, pages 102–131. Prentice Hall, 1979.

W. Landi and B. G. Ryder. A Safe Approximate
Algorithm for InterProcedural Pointer Aliasing. In

Proceedings of the ACM SIGPLAN’92 Conference on

Programming Language Design and Implementation,

pages 235-248, June 1992.

J. R. Larus and P. N. Hilfinger. Detecting Conflicts Be-

tween Structure Accesses. In Proceedings of the ACM

SIGPLAN’88 Conference on Programming Language

Design and Implementation, pages 21-34, June 1988.

T. J. Marlowe, W. A. Landi, B. G. Ryder, J, D. Choi,

M. G. Burke, and P. Carini. Pointer-Induced Aliasing:

A Clarification. ACM SIGPLAN Notices, 28(9):67-70,

Sept. 1993.

[15] E. Ruf. Personal communication, Oct. 1994.

[16] R. P. Wdson et al. SUIF An Infrastructure for Research

on Parallelizing and Optimizing Compilers. ACM SIG-

PLAN Notices, 29(12):31–37, Dec. 1994.

12

