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Abstract

We describe a technique for automatically proving compiler optimizations sound, meaning that their
transformations are always semantics-preserving. We first present a domain-specific language, called
Cobalt, for implementing optimizations as guarded rewrite rules. Cobalt optimizations operate over
a C-like intermediate representation including unstructured control flow, pointers to local variables and
dynamically allocated memory, and recursive procedures. Then we describe a technique for automatically
proving the soundness of Cobalt optimizations. Our technique requires an automatic theorem prover to
discharge a small set of simple, optimization-specific proof obligations for each optimization. We have
written a variety of forward and backward intraprocedural dataflow optimizations in Cobalt, including
constant propagation and folding, branch folding, full and partial redundancy elimination, full and partial
dead assignment elimination, and simple forms of points-to analysis. We implemented our soundness-
checking strategy using the Simplify automatic theorem prover, and we have used this implementation
to automatically prove our optimizations correct. Our checker found many subtle bugs during the course
of developing our optimizations. We also implemented an execution engine for Cobalt optimizations as
part of the Whirlwind compiler infrastructure.

1 Introduction

Compilers are an important part of the infrastructure relied upon by programmers. If a compiler is faulty,
then so are potentially all programs compiled with it. Unfortunately, compiler errors can be difficult for
programmers to detect and debug. First, because the compiler’s output cannot be easily inspected, problems
can often be found only by running a compiled program. Second, the compiler may appear to be correct
over many runs, with a problem only manifesting itself when a particular compiled program is run with a
particular input. Finally, when a problem does appear, it can be difficult to determine whether it is an error
in the compiler or in the source program that was compiled.

For these reasons, it is very useful to develop tools and techniques that give compiler developers and
programmers confidence in their compilers. One way to gain confidence in the correctness of a compiler is
to run it on various programs and check that the optimized version of each program produces correct results
on various inputs. While this method can increase confidence, it cannot provide any guarantees: it does not
guarantee the absence of bugs in the compiler, nor does it even guarantee that any one particular optimized
program is correct on all inputs. It also can be tedious to assemble an extensive test suite of programs and
program inputs.
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Translation validation [25, 19] and credible compilation [27, 26] improve on this testing approach by
automatically checking whether or not the optimized version of an input program is semantically equivalent
to the original program. These techniques can therefore guarantee the correctness of certain optimized
programs, but the compiler itself is still not guaranteed to be bug-free: there may exist programs for which
the compiler produces incorrect output. There is little recourse for a programmer if a compiled program
cannot be validated. Furthermore, these approaches can have a substantial impact on the time to run an
optimization.

The best solution would be to prove the compiler sound, meaning that for any input program, the compiler
always produces an equivalent output program. Optimizations, and sometimes even complete compilers, have
been proven sound by hand [1, 2, 15, 13, 8, 23, 3, 11]. However, manually proving large parts of a compiler
sound requires a lot of effort and theoretical skill on the part of the compiler writer. In addition, these proofs
are usually done for optimizations as written on paper, and bugs may still arise when the algorithms are
implemented from the paper specification.

We present a new technique for proving the soundness of compiler optimizations that combines the benefits
from the last two approaches: our approach is fully automated, as in credible compilers and translation
validation, but it also proves optimizations correct once and for all, for any input program. We achieve this
goal by providing the compiler writer with a domain-specific language for implementing optimizations that is
both flexible enough to express a variety of optimizations and amenable to automated correctness reasoning.

The main contributions of this paper are as follows:

• We present a language, called Cobalt, for defining optimizations over programs expressed in a C-like
intermediate language including unstructured control flow, pointers to local variables and dynamically
allocated memory, and recursive procedures. To implement an optimization (i.e., an analysis plus a
code transformation), users provide a rewrite rule along with a guard describing the conditions that
must hold for the rule to be triggered at some node of an input program’s control-flow graph (CFG).
The optimization also includes a small predicate over program states, which captures the key “insight”
behind the optimization that justifies its correctness. Cobalt also allows users to express pure analyses,
such as pointer analysis. Pure analyses can be used both to verify properties of interest about a program
and to provide information to be consumed by later transformations. Optimizations and pure analyses
written in Cobalt are directly executable by a special dataflow analysis engine written for this purpose;
they do not need to be reimplemented in a different language to be run.

• We have used Cobalt to express a variety of intraprocedural forward and backward dataflow op-
timizations, including constant propagation and folding, copy propagation, common subexpression
elimination, branch folding, partial redundancy elimination, partial dead assignment elimination, and
loop-invariant code motion. We have also used Cobalt to express several simple intraprocedural pointer
analyses, whose results we exploited in the above optimizations.

• We present a strategy for automatically proving the soundness of optimizations and analyses expressed
in Cobalt. The strategy requires an automatic theorem prover to discharge a small set of proof
obligations for each optimization. We have manually proven that if these obligations hold for any
particular optimization, then that optimization is sound. The manual proof takes care of the necessary
induction over program execution traces, which is difficult to automate. As a result, the automatic
theorem prover is given only noninductive theorems to prove about individual program states.

• We have implemented our correctness checking strategy using Simplify [30, 22], the automatic theorem
prover used in the Extended Static Checker for Java [6]. We have written a general set of axioms that
are used by Simplify to automatically discharge the optimization-specific proof obligations generated
by our strategy. The axioms simply encode the semantics of programs in our intermediate language.
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New optimization programs can be written and proven sound without requiring any modifications to
Simplify’s axiom set.

• We have used our correctness checker to automatically prove correct all of the optimizations and pure
analyses listed above. The correctness checker uncovered a number of subtle problems with earlier
versions of our optimizations that might have eluded manual testing for a long time.

• We have implemented an execution engine for Cobalt optimizations as part of the Whirlwind compiler
infrastructure, and we have used it to successfully execute all of our optimizations.

By providing greater confidence in the correctness of compiler optimizations, we hope to provide a
foundation for extensible compilers. An extensible compiler would allow users to include new optimizations
tailored to their applications or domains of interest. The extensible compiler can protect itself from buggy
user optimizations by verifying their correctness using our strategy; any bugs in the resulting extended
compiler can be blamed on other aspects of the compiler’s implementation, not on the user’s optimizations.
Extensible compilers could also be a good vehicle for research into new compiler optimizations.

The next section introduces Cobalt by example and sketches our strategy for automatically proving
soundness of Cobalt optimizations. Sections 3 and 4 formally define Cobalt and our automatic proof strategy,
respectively. Section 5 discusses our implementation of Cobalt’s execution engine and correctness checker.
Section 6 evaluates our work, and section 7 discusses future work. Section 8 describes related work, and
section 9 offers our conclusions.

2 Overview

In this section, we informally describe Cobalt and our technique for proving Cobalt optimizations sound
through a number of examples. Appendix B contains the complete definitions of all the optimizations and
analyses we have written in Cobalt.

2.1 Forward Transformation Patterns

2.1.1 Semantics

The heart of a Cobalt optimization is its transformation pattern. For a forward optimization, a transformation
pattern has the following form:

ψ1 followed by ψ2 until s ⇒ s′ with witness P

A transformation pattern describes the conditions under which a statement s may be transformed to
s′. The formulas ψ1 and ψ2, which are properties of a statement such as “x is defined and y is not used,”
together act as the guard indicating when it is legal to perform this transformation: s can be transformed to
s′ if on all paths in the CFG from the start of the procedure being optimized to s, there exists a statement
satisfying ψ1, followed by zero or more statements satisfying ψ2, followed by s. Figure 1 shows this scenario
pictorially.

Forward transformation patterns codify a scenario common to many forward dataflow analyses: an
enabling statement establishes the conditions necessary for a transformation to be performed downstream,
and any intervening statements are innocuous, i.e., do not invalidate the conditions. The formula ψ1 captures
the properties that make a statement enabling, and ψ2 captures the properties that make a statement
innocuous. The witness P captures the conditions established by the enabling statement that allow the
transformation to be safely performed. Witnesses have no effect on the semantics of an optimization; they
will be discussed more below in the context of our strategy for automatically proving optimizations sound.
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Figure 1: CFG paths leading to a statement s which can be transformed to s′ by the transformation pattern
ψ1 followed by ψ2 until s ⇒ s′ with witness P . The shaded region can only be entered through
a statement satisfying ψ1, and all statements within the region satisfy ψ2. The statement s can only be
reached by first passing through this shaded region.

Example 1 A simple form of constant propagation replaces statements of the form X := Y with X := C
if there is an earlier (enabling) statement of the form Y := C and each intervening (innocuous) statement
does not modify Y . The enabling statement ensures that variable Y holds the value C, and this condition
is not invalidated by the innocuous statements, thereby allowing the transformation to be safely performed
downstream. This sequence of events is expressed by the following transformation pattern (the witness is
discussed in more detail in section 2.1.2):

stmt(Y := C)
followed by

¬mayDef (Y )
until

X := Y ⇒ X := C
with witness

η(Y ) = C

The “pattern variables” X and Y may be instantiated with any variables of the procedure being optimized,
while the pattern variable C may be instantiated with constants in the procedure.

2.1.2 Soundness

A transformation pattern is sound, i.e., correct, if all the transformations it allows are semantics-preserving.
Forward transformation patterns have a natural approach for understanding their soundness. Consider a
statement s transformed to s′. Any execution trace of the procedure that contains s′ will at some point
execute an enabling statement, followed by zero or more innocuous statements, before reaching s′. As
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mentioned earlier, executing the enabling statement establishes some conditions at the subsequent state of
execution. These conditions are then preserved by the innocuous statements. Finally, the conditions imply
that s and s′ have the same effect at the point where s′ is executed. As a result, the original program and
the transformed program have the same semantics.

Our automatic strategy for proving optimizations sound is based on the above intuition. As part of
the code for a forward transformation pattern, optimization writers provide a forward witness P , which
is a (possibly first-order) predicate over an execution state, denoted η. The witness plays the role of the
conditions mentioned in the previous paragraph and is the intuitive reason why the transformation pattern
is correct. Our strategy attempts to prove that the witness is established by the enabling statement and
preserved by the innocuous statements, and that it implies that s and s′ have the same effect.1 We call the
region of an execution trace between the enabling statement and the transformed statement the witnessing
region. In figure 1, the part of a trace that is inside the shaded area is its witnessing region.

In example 1, the forward witness η(Y ) = C denotes the fact that the value of Y in execution state η
is C. Our implementation proves automatically that the witness η(Y ) = C is established by the statement
Y := C, preserved by statements that do not modify the contents of Y , and implies that X := Y and X := C
have the same effect. Therefore, the constant propagation transformation pattern is automatically proven
to be sound.

2.1.3 Labels

Each node in a procedure’s CFG is labeled with properties that are true at that node, such as stmt(x := 5)
or mayDef (y). The formulas ψ1 and ψ2 in an optimization are boolean expressions over these labels.

Users can define a new kind of label by giving a predicate over a statement, referred to in the predicate’s
body using the distinguished variable currStmt. As a trivial example, the stmt(S) label, which denotes that
the statement at the current node is S, can be defined as:

stmt(S)
�

currStmt = S

As another example, syntacticDef (Y ), which stands for syntactic definition of Y , can be defined as:

syntacticDef (Y )
�

case currStmt of

decl X �⇒ X = Y
X := . . . �⇒ X = Y
else �⇒ false

endcase

The label syntacticDef (Y ) holds at a node if and only if the current statement is a declaration of or an
assignment to Y . The “case” predicate is a convenience that provides a form of pattern matching, but it is
easily desugared into an ordinary logical expression. Similarly, pattern variables and ellipses get desugared
into ordinary quantified variables.

Given the definition of syntacticDef , a conservative version of the mayDef label from example 1 can be
defined as:

mayDef (Y )
�

case currStmt of

∗X := Z �⇒ true
X := P (Z) �⇒ true
else �⇒ syntacticDef (Y )

endcase

1The correctness of our approach does not depend on the correctness of the witness, since our approach independently verifies
that the witness has the required properties.
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In other words, a statement may define variable Y if the statement is either a pointer store (since our
intermediate language allows taking the address of a local variable), a procedure call (since the procedure
may be passed pointers from which the address of Y is reachable), or otherwise a syntactic definition of Y .

In addition to defining labels using predicates, users can also define labels using the results of an analysis.
Section 2.4 shows how such labels are defined and how they can be used to make mayDef less conservative
in the face of pointers.

2.2 Backward Transformation Patterns

A backward transformation pattern is similar to a forward one, except that the direction of the flow of
analysis is reversed:

ψ1 preceded by ψ2 since s ⇒ s′ with witness P

The backward transformation pattern above says that s may be transformed to s′ if on all paths in the
CFG from s to the end of the procedure, there exists a statement satisfying ψ1, preceded by zero or more
statements satisfying ψ2, preceded by s. The witnessing region of a program execution trace consists of the
states between the transformed statement and the statement satisfying ψ1; P is called a backward witness.

As with forward transformation patterns, the backward witness plays the role of an invariant in the
witnessing region. However, in a backward transformation the witnessing region occurs after, rather than
before, the point where the transformed statement has been executed. Therefore, in general a backward
witness must be a predicate that relates two execution states ηold and ηnew , representing corresponding
execution states in the witnessing region of traces in the original and transformed programs. Our automatic
proof strategy attempts to prove that the backward witness is established by the transformation and preserved
by the innocuous states. Finally, we prove that after the enabling statement is executed, the witness implies
that the original and transformed execution states become identical, implying that the transformation is
semantics-preserving.

Example 2 Dead assignment elimination may be implemented in Cobalt by the following backward trans-
formation pattern:

(stmt(X := . . .) ∨ stmt(return . . .)) ∧ ¬mayUse(X)
preceded by

¬mayUse(X)
since

X := E ⇒ skip

with witness

ηold/X = ηnew/X

We express statement removal by replacement with a skip statement.2 The removal of X := E is enabled
by either a later assignment to X or a return statement, which signals the end of the procedure. Preceding
statements are innocuous if they don’t use the contents of X.

The backward witness ηold/X = ηnew/X says that ηold and ηnew are equal “up to” X: corresponding
states in the witnessing region of the original and transformed programs are identical except for the contents
of variable X. This invariant is established by the removal of X := E and preserved throughout the region
because X is not used. The witness implies that a redefinition of X or a return statement causes the
execution states of the two traces to become identical.

2An execution engine for optimizations would not actually insert such skips.
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2.3 Profitability Heuristics

If an optimization’s transformation pattern is proven sound, then it is legal to transform all matching occur-
rences of that pattern. For some optimizations, including our two examples above, all legal transformations
are also profitable. However, in more complex optimizations, such as code motion and optimizations that
trade off time and space, many transformations may preserve program behavior while only a small subset
of them improve the code. To address this distinction between legality and profitability, an optimization is
written in two pieces. The transformation pattern defines only which transformations are legal. An opti-
mization separately describes which of the legal transformations are also profitable and should be performed;
we call this second piece of an optimization its profitability heuristic.

An optimization’s profitability heuristic is expressed via a choose function, which can be arbitrarily
complex and written in a language of the user’s choice. Given the set ∆ of the legal transformations
determined by the transformation pattern, and given the procedure being optimized, choose returns the
subset of the transformations in ∆ that should actually be performed. A complete optimization in Cobalt
therefore has the following form, where Opat is a transformation pattern:

Opat filtered through choose

This way of factoring optimizations into a transformation pattern and a profitability heuristic is critical to
our ability to prove optimizations sound automatically, since only an optimization’s transformation pattern
affects soundness. Transformation patterns tend to be simple even for complicated optimizations, with the
bulk of an optimization’s complexity pertaining to profitability. Profitability heuristics can be written in
any language, thereby removing any limitations on their expressiveness. Without profitability heuristics, the
extra complexity added to guards to express profitability information would prevent automated correctness
reasoning.

For the constant propagation and dead assignment elimination optimizations shown earlier, the choose
function returns all instances: chooseall (∆, p) = ∆. This profitability heuristic is the default if none is
specified explicitly. Below we give an example of an optimization with a nontrivial choose function.

Example 3 Consider the implementation of partial redundancy elimination (PRE) [14, 10] in Cobalt. One
way to perform PRE is to first insert copies of statements in well-chosen places in order to convert partial
redundancies into full redundancies, and then to eliminate the full redundancies by running a standard
common subexpression elimination (CSE) optimization expressible in Cobalt. For example, in the following
code fragment, the computation x := a + b at the end is partially redundant, since it is redundant only
when the true leg of the branch is executed:

b := ...;

if (...) {

a := ...;

x := a + b;

} else {

... // don’t define a, b, or x, and don’t use x.

}

x := a + b;

This partial redundancy can be eliminated by making a copy of the assignment x := a + b in the false leg
of the branch. Now the assignment after the branch is fully redundant and can be removed by running CSE
followed by self-assignment removal (removing assignments of the form x := x).

The criterion that determines when it is legal to duplicate a statement is relatively simple. Most of the
complexity in PRE involves determining which of the many legal duplications are profitable, so that partial
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redundancies will be converted to full redundancies at minimum cost. The first, “code duplication” pass of
PRE can be expressed in Cobalt as the following backward optimization:

stmt(X := E) ∧ ¬mayUse(X)
preceded by

unchanged(E) ∧ ¬mayDef (X) ∧ ¬mayUse(X)
since

skip ⇒ X := E
with witness

ηold/X = ηnew/X
filtered through

. . .

Analogous to statement removal, we express statement insertion as replacement of a skip statement.3

The label unchanged(E) is defined (by the optimization writer, as described in section 2.1.3) to be true at a
statement s if s does not redefine the contents of any variable mentioned in E. The transformation pattern
for code duplication allows the insertion if, on all paths in the CFG from the skip, X := E is preceded by
statements that do not modify E and X and do not use X, which are preceded by the skip. In the code
fragment above, the transformation pattern allows x:= a + b to be duplicated in the else branch, as well
as other (unprofitable) duplications. This optimization’s choose function is responsible for selecting those
legal code insertions that also are the latest ones that turn all partial redundancies into full redundancies
and do not introduce any partially dead computations. This condition is rather complicated, but it can be
implemented in a language of the user’s choice and can be ignored when verifying the soundness of PRE.

2.4 Pure Analyses

In addition to optimizations, Cobalt allows users to write pure analyses that do not perform transformations.
These analyses can be used to compute or verify properties of interest about a procedure and to provide
information to be consumed by later transformations. A pure analysis defines a new label, and the result of
the analysis is a labeling of the given CFG. The new label can then be used by other analyses, optimizations,
or label definitions.

A forward pure analysis is similar to a forward optimization, except that it does not contain a rewrite
rule or a profitability heuristic. Instead, it has a defines clause that gives a name to the new label. A
forward pure analysis has the form

ψ1 followed by ψ2 defines label with witness P

The new label can be added to a statement s if on all paths to s, there exists an (enabling) statement
satisfying ψ1, followed by zero or more (innocuous) statements satisfying ψ2, followed by s. The given forward
witness should be established by the enabling statement and preserved by the innocuous statements. If so,
the witness provides the new label’s meaning: if a statement s has label label, then the corresponding witness
P is true of the program state just before execution of s.

The following example shows how a pure analysis can be used to compute a simple form of pointer
information:

Example 4 We say that a variable is tainted at a program point if its address may have been taken prior
to that program point. The following pure analysis defines the notTainted label:

3An execution engine for optimizations would conceptually insert skips dynamically as needed to perform insertions.
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stmt(decl X)
followed by

¬stmt(. . . := &X)
defines

notTainted(X)
with witness

notPointedTo(X, η)

The analysis says that a variable is not tainted at a statement if on all paths leading to that statement, the
variable was declared, and then its address was never taken. The witness notPointedTo(X, η) is a first-order
predicate defined by the user that holds when no memory location in η contains a pointer to X.

The notTainted label can be used to define a more precise version of the mayDef label from earlier
examples, which incorporates the fact that pointer stores and procedure calls cannot affect variables that are
not tainted:

mayDef (Y )
�

case currStmt of

∗X := Z �⇒ ¬notTainted(Y )
X := P (Z) �⇒ X = Y ∨ ¬notTainted(Y )
else �⇒ syntacticDef (Y )

endcase

With this new definition, optimizations using mayDef become less conservative in the face of pointer stores
and calls.

Cobalt currently has no notion of backward pure analyses. Although we anticipate no technical barrier
to introducing such a notion, additional mechanisms would be required in order to define the semantics of a
label introduced by a backward analysis. So far we have not encountered a need for backward analyses.

Cobalt also currently only allows the results of a forward analysis to be used in a forward optimization, or
in another forward analysis. Allowing a forward analysis to be used in a backward optimization may result
in interference, whereby a transformation triggered by the backward optimization invalidates the results of
the forward analysis. This issue is discussed in more detail in section 4.1.

3 COBALT

This section provides a formal definition of Cobalt and of the intermediate language that Cobalt optimizations
manipulate. The full formal details can be found in appendix A.
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3.1 Intermediate Language

A program π in our (untyped) intermediate language is described by the following grammar:

Progs π ::= pr . . . pr
Procs pr ::= p(x) {s; . . . ; s;}
Stmts s ::= decl x | skip | lhs := e | x := new |

x := p(b) | if b goto ι else ι |
return x

Exprs e ::= b | ∗x | &x | op b . . . b
Locatables lhs ::= x | ∗x
Base Exprs b ::= x | c
Ops op ::= various operators with arity ≥ 1
Vars x ::= x | y | z | . . .
Proc Names p ::= p | q | r | . . .
Consts c ::= constants
Indices ι ::= 0 | 1 | 2 | . . .

A program π is a sequence of procedures, and each procedure is a sequence of statements. We assume
a distinguished procedure named main. Statements include local variable declarations, assignments to lo-
cal variables and through pointers, heap memory allocation, procedure calls and returns, and conditional
branches (unconditional branches can be simulated with conditional branches). We assume that no proce-
dure declares the same local variable more than once. We assume that each procedure ends with a return

statement. Statements are indexed consecutively from 0, and stmtAt(π, ι) returns the statement with index
ι in π. Expressions include constants, local variable references, pointer dereferences, taking the addresses of
local variables, and n-ary operators over non-pointer values.

A state of execution of a program is a tuple η = (ι, ρ, σ, ξ,M). The index ι indicates which statement
is about to be executed. The environment ρ is a map from variables in scope to their locations in memory,
and the store σ describes the contents of memory by mapping locations to values (constants and locations).
The dynamic call chain is represented by a stack ξ, and M is the memory allocator, which returns fresh
locations as needed.

The states of a program π transition according to the state transition function →π. We denote by η →π η
′

the fact that η′ is the program state that is “stepped to” when execution proceeds from state η. The definition
of →π is standard and is given in appendix A. We also define an intraprocedural state transition function
↪→π. This function acts like →π except when the statement to be executed is a procedure call. In that case,
↪→π steps “over” the call, returning the program state that will eventually be reached when control returns
to the calling procedure.

We model run-time errors through the absence of state transitions: if in some state η program execution
would fail with a run-time error, there won’t be any η′ such that η →π η

′ is true. Likewise, if a procedure
call does not return successfully, e.g., because of infinite recursion, there won’t be any η′ such that η ↪→π η

′

is true.

3.2 Cobalt

In this section, we first specify the syntax of a rewrite rule’s original and transformed statements s and s′.
Then we define the syntax used for expressing ψ1 and ψ2. Finally, we provide the semantics of optimizations.
The witness P does not affect the (dynamic) semantics of optimizations.
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3.2.1 Syntax of s and s′

Statements s and s′ are defined in the syntax of the extended intermediate language, which augments the
intermediate language with a form of free variables called pattern variables. Each production in the grammar
of the original intermediate language is extended with a case for a pattern variable. A few examples are
shown below:

Exprs e ::= · · · | E
Vars x ::= · · · | X | Y | Z | . . .
Consts c ::= · · · | C

Statements in the extended intermediate language are instantiated by substituting for each pattern vari-
able a program fragment of the appropriate kind from the intermediate-language program being optimized.
For example, the statement X := E in the extended intermediate language contains two pattern variables
X and E, and this statement can be instantiated to form an intermediate-language statement assigning any
expression occurring in the intermediate program to any variable occurring in the intermediate program.

3.2.2 Syntax and Semantics of ψ1 and ψ2

The syntax for ψ, and also for label definitions, is described by the following grammar:

ψ ::= true | false | ¬ψ | ψ ∨ ψ | ψ ∧ ψ |
l(t, . . . , t) | t = t |
case t of t �⇒ ψ · · · t �⇒ ψ else �⇒ ψ endcase

In the above grammar, l ranges over label names and t ranges over terms, which are elements drawn from
the extended intermediate language as well as the distinguished term currStmt. The grammar consists of
propositional logic augmented with label predicates, term equality, and the case predicate.

The semantics of a formula ψ is defined with respect to a labeled CFG. Each node n in the CFG for
procedure p is labeled with a finite set Lp(ι), where ι is n’s index. Lp(ι) includes labels l(t1, . . . , tn) where
the terms do not contain pattern variables. For example, a node could be labeled with stmt(x := 3) and
mayDef (x).

The meaning of a formula ψ at a node depends on a substitution θ mapping the pattern variables
in ψ to fragments of p. We extend substitutions to formulas and program fragments containing pattern
variables in the usual way. We write ι |=p

θ ψ to indicate that the node with index ι satisfies ψ in the
labeled CFG of p under substitution θ. The definition of ι |=p

θ ψ is straightforward, with the base case being
ι |=p

θ l(t1, . . . , tn) ⇐⇒ θ(l(t1, . . . , tn)) ∈ Lp(ι). The complete definition of |=p
θ is in appendix A.

3.2.3 Semantics of Optimizations

We define the semantics of optimizations and analyses in several pieces. First, the meaning of a forward
guard ψ1 followed by ψ2 is a function that takes a procedure and returns a set of matching indices with
their corresponding substitutions:

Definition 1 The meaning of a forward guard Oguard of the form ψ1 followed by ψ2 is as follows:

�
Oguard � (p) = {(ι, θ) |
for all paths ι1, . . . , ιj , ι in p’s CFG
such that ι1 is the index of p’s entry node

∃k.(1 ≤ k ≤ j ∧ ιk |=p
θ ψ1 ∧ ∀i.(k < i ≤ j ⇒ ιi |=

p
θ ψ2))}
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The above definition formalizes the description of forward guards from Section 2. The meaning of a
backward guard ψ1 preceded by ψ2 is identical, except that the guard is evaluated on CFG paths ι, ιj , . . . , ι1
that start, rather than end, at ι, where ι1 is the index of the procedure’s exit node. Guards can be seen as
a restricted form of temporal logic formula, expressible in variants of both Linear Temporal Logic (LTL) [7]
and Computation Tree Logic (CTL) [5].

Next we define the semantics of transformation patterns. A forward (backward) transformation pattern
Opat = Oguard until (since) s ⇒ s′ with witness P simply filters the set of nodes matching its guard to
include only those nodes of the form s:

�
Opat � (p) = {(ι, θ) | (ι, θ) ∈

�
Oguard � (p) and ι |=p

θ stmt(s)}

The meaning of an optimization is a function that takes a procedure p and returns the procedure produced
by applying to p all transformations selected by the choose function.

Definition 2 Given an optimization O of the form Opat filtered through choose, where Opat has rewrite
rule s ⇒ s′, the meaning of O is as follows:

�
O � (p) = let ∆ :=

�
Opat � (p) in

app(s′, p, choose(∆, p) ∩ ∆)

where app(s′, p,∆′) returns the procedure identical to p but with the node with index ι transformed to θ(s′),
for each (ι, θ) in ∆′.4

Finally, the meaning of a pure analysis Oguard defines label with witness P applied to a procedure p
is a new version of p’s CFG where for each pair (ι, θ) in

�
Oguard � (p), the node with index ι is additionally

labeled with θ(label ).

4 Proving Soundness Automatically

In this section we describe our technique for automatically proving soundness of Cobalt optimizations. The
full details, including the proofs of the theorems, are in appendix A.

We say that an intermediate-language program π′ is a semantically equivalent transformation of π if,
whenever main(v1) returns v2 in π, for some values v1 and v2, then it also does in π′. Let π[p 7→ p′]
denote the program identical to π but with procedure p replaced by p′. An optimization O is sound if for
all intermediate-language programs π and procedures p in π, π[p 7→

�
O � (p)] is a semantically equivalent

transformation of π.
To prove a Cobalt optimization sound, we prove the soundness of its associated transformation pattern.

We say that a transformation pattern Opat with rewrite rule s ⇒ s′ is sound if, for all intermediate-language
programs π and procedures p in π, for all subsets ∆ ⊆

�
Opat � (p), π[p 7→ app(s′, p,∆)] is a semantically

equivalent transformation of π. If a transformation pattern is sound, then any optimization O with that
transformation pattern is sound, since the optimization will select some subset of the transformation pattern’s
suggested transformations, and each subset is known to result in a semantically equivalent transformation
of π. Therefore, we need not reason at all about an optimization’s profitability heuristic in order to prove
that the optimization is sound.

First we discuss a property of Cobalt that simplifies the obligations necessary for proving a transformation
pattern sound. Then we describe these obligations for forward and backward optimizations, respectively.

4If there are multiple pairs in ∆′ with the same index ι, then one of them is chosen nondeterministically.
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4.1 Noninterference

As described above, for a transformation pattern to be sound, it must be possible to apply any subset of the
suggested transformations without changing a procedure’s semantics. Therefore, to prove a transformation
pattern sound, we must argue that its suggested transformations cannot interfere with one another. Inter-
ference occurs when multiple transformations that are semantics-preserving in isolation cause a procedure’s
semantics to change when performed together.

In general it is possible for an optimization to interfere with itself. For example, consider an optimization
that performs both dead assignment elimination and redundant assignment elimination. On the following
program fragment

· · ·
S1: x := 5;

S2: x := 5;

· · ·

our hypothetical optimization will suggest both S1 and S2 for removal: S1 is dead and S2 is redundant.
Performing either removal is correct, but performing both removals changes the program’s semantics.

Fortunately, it is possible to show that a Cobalt transformation pattern cannot interfere with itself: if each
transformation from a set of suggested transformations is correct in isolation, then performing any subset
of the transformations is correct. The optimization above cannot be directly written in Cobalt. Instead, it
must be written as two separate optimizations, one forward and one backward.5

Because of Cobalt’s noninterference property, the optimization-specific obligations to be discharged as
part of our proof strategy need only pertain to a single transformation. The theorems described below
validate the sufficiency of these obligations for proving Cobalt optimizations sound.

4.2 Forward Transformation Patterns

Consider a forward transformation pattern of the following form:

ψ1 followed by ψ2 until s ⇒ s′ with witness P

As discussed in section 2, our proof strategy entails showing that the forward witness P holds throughout
the witnessing region and that the witness implies s and s′ have the same semantics. This can naturally be
shown by induction over the states in the witnessing region of an execution trace leading to a transformed
statement. In general, it is difficult for an automatic theorem prover to determine when proof by induction
is necessary and to perform such a proof with a strong enough inductive hypothesis. Therefore we instead
require an automatic theorem prover to discharge only noninductive obligations, which pertain to individual
execution states rather than entire execution traces. We have proven that if these obligations hold for any
particular optimization, then that optimization is sound.

We use index as an accessor on states: index ((ι, ρ, σ, ξ,M)) = ι. The optimization-specific obligations,
to be discharged by an automatic theorem prover, are as follows, where θ(P) is the predicate formed by
applying θ to each pattern variable in the definition of P :

F1. If η ↪→π η
′ and index (η) |=p

θ ψ1, then θ(P)(η′).

F2. If θ(P)(η) and η ↪→π η
′ and index (η) |=p

θ ψ2, then θ(P)(η′).

5The example illustrates a potential unsoundness from combining forward and backward transformation patterns. This is
the reason that we currently disallow employing a forward pure analysis in a backward transformation. We can, however, prove
that a forward transformation pattern cannot interfere with any forward pure analysis.
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F3. If θ(P)(η) and η ↪→π η′ and ι = index (η) and stmtAt(π, ι) = θ(s) and stmtAt(π′, ι) = θ(s′), then
η ↪→π′ η′.

Condition F1 ensures that the witness holds at any state following the execution of an enabling statement
(one satisfying ψ1). Condition F2 ensures that the witness is preserved by any innocuous statement (one
satisfying ψ2). Finally, condition F3 ensures that s and s′ have the same semantics when executed from a
state satisfying the witness.

As an example, consider condition F1 for the constant propagation optimization from example 1. The
condition looks as follows: If η ↪→π η

′ and index (η) |=p
θ stmt(Y := C), then θ(η′(Y ) = C). The condition is

easily proven automatically from the semantics of assignments and the stmt label.
The following theorem validates the optimization-specific proof obligations.

Theorem 1 If O is a forward optimization satisfying conditions F1, F2, and F3, then O is sound.

The proof of this theorem uses conditions F1 and F2 as part of the base case and the inductive case,
respectively, in an inductive argument that the witness holds throughout a witnessing region. Condition F3
is then used to show that s and s′ have the same semantics in this context.

A pure analysis ψ1 followed by ψ2 defines label with witness P is proven sound similarly. We require
conditions F1 and F2 to be satisfied; F3 has no analogue. These conditions allow us to show that label indeed
has the semantics of the witness P .

4.3 Backward Transformation Patterns

Consider a backward transformation pattern of the following form:

ψ1 preceded by ψ2 since s ⇒ s′ with witness P

The optimization-specific obligations are similar to those for a forward transformation pattern, except that
the ordering of events in the witnessing region is reversed:

B1. If η ↪→π ηold and η ↪→π′ ηnew and ι = index (η) and stmtAt(π, ι) = θ(s) and stmtAt(π′, ι) = θ(s′), then
θ(P)(ηold , ηnew ).

B2. If θ(P)(ηold , ηnew ) and ηold ↪→π η′old and ιold = index (ηold ) and ιnew = index (ηnew ) and ιold |=π
θ ψ2

and stmtAt(π, ιold ) = stmtAt(π′, ιnew ), then there exists some η′new such that ηnew ↪→π′ η′new and
θ(P)(η′old , η

′

new ).

B3. If θ(P)(ηold , ηnew ) and ηold ↪→π η and ιold = index (ηold ) and ιnew = index (ηnew ) and ιold |=π
θ ψ1 and

stmtAt(π, ιold ) = stmtAt(π′, ιnew ), then ηnew ↪→π′ η.

Condition B1 ensures that the backward witness holds between the original and transformed programs,
after s and s′ are respectively executed.6 Condition B2 ensures that the backward witness is preserved
through the innocuous statements. Condition B3 ensures that the two traces become identical again after
executing the enabling statement (and exiting the witnessing region).

Analogous to the forward case, the following theorem validates the optimization-specific proof obligations
for backward optimizations.

Theorem 2 If O is a backward optimization satisfying conditions B1, B2, and B3, then O is sound.

6This condition assumes that s
′ does not get “stuck” by causing a run-time error. That assumption must actually be proven,

but for simplicity we elide this issue here. It is addressed by requiring a few additional obligations to be discharged that imply
that s

′ cannot get stuck if the original program does not get stuck. Details are in appendix A.
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5 Implementing COBALT

We have implemented a tool that automatically checks the correctness of Cobalt optimizations as well as an
execution engine for running them. Section 5.1 describes our correctness checker, and section 5.2 describes
our execution engine.

5.1 Correctness Checker

We have implemented our strategy for automatically proving Cobalt optimizations sound with the Sim-
plify automatic theorem prover. For each optimization, we ask Simplify to prove the three associated
optimization-specific obligations given a set of background axioms. There are two kinds of background
axioms: optimization-independent ones and optimization-dependent ones. The optimization-independent
axioms simply encode the semantics of our intermediate language and they need not be modified in order to
prove new optimizations sound. The optimization-dependent axioms encode the semantics of user-defined
labels and are generated automatically from the Cobalt label definitions. Our correctness checker translates
label definitions into Simplify axioms by expanding case expressions into ordinary boolean expressions and
performing a few simple transformations to produce axioms in a form accepted by Simplify.

To encode the Cobalt intermediate language in Simplify, we introduce function symbols that
represent term constructors for each kind of expression and statement. For example, the term
assgn(var(x ), deref (var(y)) represents the statement x := ∗y . Next we formalize the representation of
program states. Simplify has built-in axioms about a map data structure, with associated functions select
and update to access elements and (functionally) update the map. This is useful for representing many
components of a state. For example, an environment is a map from variables to locations, and a store is a
map from locations to values.

Given our representation for states, we define axioms for a function symbol evalExpr, which evaluates
an expression in a given state. The evalExpr function represents the function η(·) used in section 2. We
also define axioms for a function evalLExpr which computes the location of a lhs expression given a program
state. Then we provide axioms for the stepIndex, stepEnv, stepStore, stepStack, and stepMem functions,
which together define the state transition function →π from section 3.1. These functions take a state and a
program and return the new value of the state component being “stepped.” As an example, the axioms for
stepping an index and a store through an assignment lhs := e are as follows:

∀η, π, lhs , e.
stmtAt(π, index (η)) = assgn(lhs , e) ⇒

stepIndex (η, π) = index (η) + 1

∀η, π, lhs , e.
stmtAt(π, index (η)) = assgn(lhs , e) ⇒

stepStore(η, π) = update(store(η),evalLExpr (η, lhs),
evalExpr (η, e))

The first axiom says that the new index is the current index incremented by one. The second axiom says
that the new store is the same as the old one, but with the location of lhs updated to the value of e.

Finally, the ↪→π function is defined in terms of the →π function. In the context of intraprocedural
analysis, we do not have access to the bodies of called procedures. Therefore, we conservatively model the
semantics of stepping over a procedure call by a set of axioms that hold for any call. The primary axiom
says that the store after a call preserves the values of local variables in the caller whose locations are not
pointed to before the call. This axiom encodes the fact that locals not reachable from the store cannot be
modified by a call.
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We have implemented and automatically proven sound a dozen Cobalt optimizations and analyses (which
are given in the appendix B). On a modern workstation, the time taken by Simplify to discharge the
optimization-specific obligations for these optimizations ranges from 3 to 104 seconds, with an average of 28
seconds.

5.2 Execution Engine

To run Cobalt optimizations without first rewriting them in some other language, we have implemented an
execution engine for Cobalt as an analysis in the Whirlwind compiler, a successor to Vortex [4].

This analysis stores at each program point a set of substitutions, with each substitution representing a
potential witnessing region. Consider a forward optimization:

ψ1 followed by ψ2 until s ⇒ s′

with witness P filtered through choose

The flow function for our analysis works as follows. First, if the statement being processed satisfies ψ1, then
the flow function adds to the outgoing dataflow fact the substitution that caused ψ1 to be true. Also, for
each substitution θ in the incoming dataflow fact, the flow function checks if θ(ψ2) is true at the current
statement. If it is, then θ is propagated to the outgoing dataflow fact, and otherwise it is dropped. Finally,
merge nodes simply take the intersection of the incoming dataflow facts. After the analysis has reached a
fixed point, if a statement has a substitution θ in its incoming dataflow fact that makes θ(stmt(s)) true and
the choose function selects this statement, then the statement is transformed to θ(s′).

For example, in constant propagation we have ψ1 = stmt(Y := C) and ψ2 = ¬mayDef (Y ). Below we
show the dataflow facts propagated after a few example statements:

S1 : a := 2; [Y 7→ a, C 7→ 2]
S2 : b := 3; [Y 7→ a, C 7→ 2], [Y 7→ b, C 7→ 3]
S3 : c := a;

S1 satisfies ψ1, so its outgoing dataflow fact contains the substitution [Y 7→ a, C 7→ 2]. S2 satisfies ψ2 under
this substitution, so the substitution is propagated; S2 also satisfies ψ1 so [Y 7→ b, C 7→ 3] is added to the
outgoing dataflow fact. In fact, the dataflow information after S2 is very similar to the regular constant
propagation dataflow fact {a 7→ 2, b 7→ 3}. At fixed point, the statement c := a can be transformed to
c := 2 because the incoming dataflow fact contains the map [Y 7→ a, C 7→ 2]. Note that this implementation
evaluates all “instances” of the constant propagation transformation pattern simultaneously.

Our analysis is implemented using our earlier framework for composable optimizations in Whirlwind [12].
This framework allows optimizations to be defined modularly and then automatically combines all-forward
or all-backward optimizations in order to gain mutually beneficial interactions. Analyses and optimizations
written in Cobalt are therefore also composable in this way. Furthermore, Whirlwind’s framework automat-
ically composes an optimization with itself, allowing a recursively defined optimization to be solved in an
optimistic, iterative manner; this property is likewise conferred on Cobalt optimizations. For example, a
recursive version of dead-assignment elimination allows X := E to be removed even if X is used before being
redefined, as long as it is only used by other dead assignments (possibly including itself).7

6 Discussion

In this section, we evaluate our system along three dimensions: expressiveness of Cobalt, debugging value,
and reduced trusted computing base.

7Although Cobalt optimizations can be composed, we have not yet proved that the flow function of our Cobalt engine
satisfies the properties required in [12] for the composition to be sound. We plan to investigate this in future work.

16



Expressiveness. One of the key choices in our approach is to restrict the language in which optimizations
can be written, in order to gain automatic reasoning about soundness. However, Cobalt’s restrictions are
not as onerous as they may first appear. First, much of the complexity of an optimization can be factored
into the profitability heuristic, which is unrestricted. Second, the pattern of a witnessing region — beginning
with a single enabling statement and passing through zero or more innocuous statements before reaching the
statement to be transformed — is common to many forward intraprocedural dataflow analyses, and similarly
for backward intraprocedural dataflow analyses. Third, optimizations that traditionally are expressed as
having effects at multiple points in the program, such as various sorts of code motion, can in fact be
decomposed into several simpler transformations, each of which fits Cobalt’s transformation pattern syntax.

The PRE example in section 2.3 illustrates all three of these points. PRE is a complex code-motion
optimization [14, 10], and yet it can be expressed in Cobalt using simple forward and backward passes with
appropriate profitability heuristics. Our way of factoring complicated optimizations into smaller pieces, and
separating the part that affects soundness from the part that doesn’t, allows users to write optimizations
that are intricate and expressive yet still amenable to automated correctness reasoning.

Even so, the current version of Cobalt does have limitations. For example, it cannot express interproce-
dural optimizations or one-to-many transformations. As mentioned in section 7, our future work will address
these limitations. Also, optimizations and analyses that build complex data structures to represent their
dataflow facts may be difficult to express. Finally, it is possible for limitations in either our proof strategy
or in the automatic theorem prover to cause a sound optimization expressible in Cobalt to be rejected. In
all these cases, optimizations can be written outside of our framework, perhaps verified using translation
validation. Optimizations written in Cobalt and proven correct can peacefully co-exist with optimizations
written “the normal way.”

Debugging benefit. Writing correct optimizations is difficult because there are many corner cases to
consider, and it is easy to miss one. Our system in fact found several subtle problems in previous versions of
our optimizations. For example, we have implemented a form of common subexpression elimination (CSE)
that eliminates not only redundant arithmetic expressions, but also redundant loads. In particular, this
optimization tries to eliminate a computation of ∗X if the result is already available from a previous load.
Our initial version of the optimization precluded pointer stores from the witnessing region, to ensure that
the value of ∗X was not modified. However, a failed soundness proof made us realize that even a direct
assignment Y := . . . can change the value of ∗X , because X could point to Y . Once we incorporated pointer
information to make sure that direct assignments in the witnessing region were not changing the value of
∗X , our implementation was able to automatically prove the optimization sound. Without the static checks
to find the bug, it could have gone undetected for a long time, because that particular corner case may not
occur in many programs.

Reduced trusted computing base. The trusted computing base (TCB) ordinarily includes the en-
tire compiler. In our system we have moved the compiler’s optimization phase, one of the most intricate
and error-prone portions, outside of the TCB. Instead, we have shifted the trust in this phase to three
components: the correctness checker, including the automatic theorem prover, the manual proofs done as
part of our framework, and the engine that executes optimizations. Because all of these components are
optimization-independent, new optimizations can be incorporated into the compiler without enlarging the
TCB. Furthermore, as discussed in section 5, the execution engine is implemented as a single dataflow anal-
ysis common to all user-defined optimizations. This means that the trustworthiness of the execution engine
is akin to the trustworthiness of a single optimization pass in a traditional compiler.

Trust can be further enhanced in several ways. First, we could use an automatic theorem prover that
generates proofs, such as the prover in the Touchstone compiler [21]. This would allow trust to be shifted
from the theorem prover to a simpler proof checker. The manual proofs of our framework are made public
for peer review in appendix A to increase confidence. We could also use an interactive theorem prover such
as PVS [24] to validate these proofs.
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7 Future Work

There are many directions for future work. We plan to extend Cobalt to handle interprocedural optimizations.
One approach would extend the scope of analysis from a single procedure to the whole program’s control-flow
supergraph. A technical challenge for this approach is the need to express the witness P in a way that is
robust across procedure calls. For example, the predicate η(Y ) = C does not make sense once a call is
stepped into, because Y has gone out of scope. We intend to extend the syntax for the witness to be more
precise about which location is being talked about. A different approach to interprocedural analysis would
use pure analyses to define summaries of procedures, which could be used in intraprocedural optimizations
of callers.

Currently Cobalt only supports transformations that replace a single statement with a single state-
ment. It should be relatively straightforward to generalize the framework to handle one-to-many statement
transformations, allowing optimizations like inlining to be expressed. Supporting many-to-many statement
transformations, including various kinds of loop restructuring optimizations, would also be interesting.

We plan to try inferring the witnesses, which are currently provided by the user. It may be possible to
use some simple heuristics to guess a witness from the given transformation pattern. As a simple example,
in the constant propagation example of section 2, the appropriate witness, that Y has the value C, is simply
the strongest postcondition of the enabling statement Y := C. Many of the other forward optimizations
that we have written also have this property.

Our current notion of a semantically equivalent transformation reasons only about computations in the
original program that terminate without an error. It would be straightforward to reason about computations
that end in a run-time error by extending the →π function to step to an explicit error state in these situations.
We would also like to extend the notion of semantic equivalence to allow reasoning about nonterminating
computations.

We plan to explore more efficient implementation techniques for the Cobalt execution engine, such as
generating specialized code to run each optimization [31]. Another direction for improving efficiency would
be to allow analyses to be defined over a sparse representation such as a dataflow graph.

Finally, an important consideration that we have not addressed is the interface between the optimization
writer and our automatic correctness checker. It will be critical to provide useful error messages when
an optimization cannot be proven sound. When Simplify cannot prove a given proposition, it returns a
counterexample context, which is a state of the world that violates the proposition. An interesting approach
would be to use this counterexample context to synthesize a small intermediate-language program that
illustrates a potential unsoundness of the given optimization.

8 Related Work

Temporal logic has previously been used to express dataflow analyses and reason about them by hand
[31, 32, 28, 29, 11]. Our language is inspired by recent work in this direction by Lacey et al. [11]. Lacey
describes a language for writing optimizations as guarded rewrite rules evaluated over a labeled CFG, and
our transformation patterns are modeled on this language. Lacey’s intermediate language lacks several con-
structs found in realistic languages, including pointers, dynamic memory allocation, and procedures. Lacey
describes a general strategy, based on relating execution traces of the original and transformed programs, for
manually proving the soundness of optimizations in his language. Three example optimizations are shown
and proven sound by hand using this strategy. Unfortunately, the generality of this strategy makes it difficult
to automate.

Lacey’s guards may be arbitrary CTL formulas, while our guard language can be viewed as a strict
subset of CTL that codifies a particularly common idiom. However, we are still able to express more

18



precise versions of Lacey’s three example optimizations (as well as many others) and to prove them sound
automatically. Further, Lacey’s optimization language has no notion of semantic labels nor of profitability
heuristics. Therefore, expressing optimizations that employ pointer information (assuming Lacey’s language
were augmented with pointers) or optimizations like PRE would instead require writing more complicated
guards, and some optimizations we support may not be expressible by Lacey.

As mentioned in the introduction, much other work has been done on manually proving optimizations
correct [13, 15, 1, 2, 8, 23, 3]. Transformations have also been proven correct mechanically, but not au-
tomatically: the transformation is proven sound using an interactive theorem prover, which requires user
involvement. For example, Young [34] has proven a code generator correct using the Boyer-Moore theorem
prover enhanced with an interactive interface [9].

Instead of proving that the compiler is always correct, translation validation [25, 19] and credible compi-
lation [27, 26] both attack the problem of checking the correctness of a given compilation run. Therefore, a
bug in an optimization only appears when the compiler is run on a program that triggers the bug. Our work
allows optimizations to be proven correct before the compiler is even run once. However, to do so we require
optimizations to be written in a special-purpose language. Our approach also requires the Cobalt execution
engine to be part of the TCB, while translation validation and credible compilation do not require trust in
any part of the compiler.

Proof-carrying code [18], certified compilation [20], typed intermediate languages [33], and typed assembly
languages [16, 17] have all been used to prove properties of programs generated by a compiler. However,
the kinds of properties that these approaches have typically guaranteed are type safety and memory safety.
In our work, we prove the stronger property of semantic equivalence between the original and resulting
programs.

9 Conclusion

We have presented an approach for automatically proving the correctness of compiler optimizations. Our
technique provides the optimization writer with a domain-specific language, called Cobalt, for writing opti-
mizations. Cobalt is both reasonably expressive and amenable to automated correctness reasoning. Using
our technique we have proven correct implementations of several optimizations over a realistic intermedi-
ate language. We believe our approach is a promising step toward the goal of reliable and user-extensible
compilers.
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A Formalization

A.1 Semantics of the Intermediate Language

A.1.1 Preliminaries

The set of indices of program π is denoted Indicesπ. The set of indices of procedure p is denoted Indicesp.
The formal argument name of procedure p in program π is denoted formalp. The index of the first statement
in procedure p of program π is denoted startp. We assume WLOG that no if statements in a procedure p
refer to indices not in Indicesp, nor to the index startp.

8

The arity of an operator op is denoted arity(op). We assume a fixed interpretation function for each
n-ary operator symbol op:

�
op � : Constsn → Consts .

We assume an infinite set Locations of memory locations, with metavariable l ranging over the set. We
assume that the set Consts is disjoint from Locations and contains the distinguished elements true and uninit .
Then the set of values is defined as Values = (Locations ∪ Consts)

An environment is a partial function ρ : Vars ⇀ Locations ; we denote by Environments the set of all
environments. A store is a partial function σ : Locations ⇀ Values ; we denote by Stores the set of all stores.
The domain of an environment ρ is denoted dom(ρ), and similarly for the domain of a store. The notation
ρ[x 7→ l] denotes the environment identical to ρ but with variable x mapping to location l; if x ∈ dom(ρ),
the old mapping for x is shadowed by the new one. The notation σ[l 7→ v] is defined similarly. The notation
σ/{l1, . . . , li} denotes the store identical to σ except that all pairs (l, v) ∈ σ such that l ∈ {l1, . . . , li} are
removed.

The current dynamic call chain is represented by a stack. A stack frame is a triple f = (ι, l, ρ) :
Indices × Locations × Environments. Here ι is the index of the first statement following the call currently
being executed, l is the location in which to put the return value from the call, and ρ is the current
lexical environment at the point of the call. We denote by Frames the set of all stack frames. A stack
ξ =< f1 . . . fn >: Frames∗ is a sequence of stack frames. The set of all stacks is denoted Stacks . Stacks
support two operations defined as follows:

push : (Frames × Stacks) → Stacks
push(f,< f1 . . . fn >) =< f f1 . . . fn >

pop : Stacks ⇀ (Frames × Stacks)
pop(< f1 f2 . . . fn >) = (f1, < f2 . . . fn >),where n > 0

Finally, a memory allocator M is an infinite stream < l1, l2, . . . > of locations. We denote the set of all
memory allocators as MemAllocs.

A state of execution of a program π is a quintuple η = (ι, ρ, σ, ξ,M) where ι ∈ Indices , ρ ∈ Environments ,
σ ∈ Stores , ξ ∈ Stacks , and M ∈ MemAllocs . We denote the set of program states by States . We refer
to the corresponding index of a state η as index (η), and we similarly define accessors env, store, stack, and
mem.

8This last restriction ensures that the entry node of p’s CFG will have no incoming edges.
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A.1.2 State Transition Functions

The evaluation of an expression e in a program state η, where env(η) = ρ and store(σ) = ρ, is given by the
function η(e) : (States × Exprs) → Values defined by:

η(x) = σ(ρ(x))
where x ∈ dom(ρ), ρ(x) ∈ dom(σ)

η(c) = c
η(∗x) = σ(σ(ρ(x)))

where x ∈ dom(ρ), ρ(x) ∈ dom(σ), σ(ρ(x)) ∈ dom(σ)
η(&x) = ρ(x)

where x ∈ dom(ρ)
η(opb1 . . . bn) =

�
op � (η(b1), . . . , η(bn))

where arity(op) = n and ∀1 ≤ j ≤ n.(η(bj) ∈ Consts)

Similarly, the evaluation of a locatable expression lhs in a state η, where env(η) = ρ and store(σ) = ρ, is
given by the function ηl(lhs) : (States × Locatables) → Locations defined by:

ηl(x) = ρ(x)
where x ∈ dom(ρ)

ηl(∗x) = σ(ρ(x))
where x ∈ dom(ρ), ρ(x) ∈ dom(σ), σ(ρ(x)) ∈ Locations

Definition 3 Given a program π, the state transition function →π ⊆ States × States is defined by:

• If stmtAt(π, ι) = decl x then (ι, ρ, σ, ξ, < l, l1, l2, . . . >) →π (ι + 1, ρ[x 7→ l], σ[l 7→ uninit ], ξ, <
l1, l2, . . . >)
where l 6∈ dom(σ)

• If stmtAt(π, ι) = skip then (ι, ρ, σ, ξ,M) →π (ι+ 1, ρ, σ, ξ,M)

• If stmtAt(π, ι) = (lhs := e) then (ι, ρ, σ, ξ,M) →π (ι+ 1, ρ, σ[ηl(lhs) 7→ η(e)], ξ,M)
where η = (ι, ρ, σ, ξ,M)

• If stmtAt(π, ι) = x := new then (ι, ρ, σ, ξ, < l, l1, l2, . . . >) →π (ι + 1, ρ, σ[ρ(x) 7→ l][l 7→ uninit ], ξ, <
l1, l2, . . . >)
where x ∈ dom(ρ), l 6∈ dom(σ)

• If stmtAt(π, ι) = x := p0(b) then (ι, ρ, σ, ξ, < l, l1, l2, . . . >) →π (ι0, {(y, l)}, σ[l 7→ η(b)], push(f, ξ), <
l1, l2, . . . >)
where η = (ι, ρ, σ, ξ, < l, l1, l2, . . . >), ι0 = startp0

, y = formal p0
, l 6∈ dom(σ), x ∈ dom(ρ), f =

(ι+ 1, ρ(x), ρ)

• If stmtAt(π, ι) = (if b goto ι1 else ι2) then (ι, ρ, σ, ξ,M) →π (ι1, ρ, σ, ξ,M)
where (ι, ρ, σ, ξ,M)(b) = true

• If stmtAt(π, ι) = (if b goto ι1 else ι2) then (ι, ρ, σ, ξ,M) →π (ι2, ρ, σ, ξ,M)
where (ι, ρ, σ, ξ,M)(b) 6= true

• If stmtAt(π, ι) = return x then (ι, ρ, σ, ξ,M) →π (ι0, ρ0, σ0, ξ0,M)
where pop(ξ) = ((ι0, l0, ρ0), ξ0), dom(ρ) = {x1, . . . , xi}, σ0 = (σ/{ρ(x1), . . . , ρ(xi)})[l0 7→
(ι, ρ, σ, ξ,M)(x)]

23



We denote the reflexive, transitive closure of →π as →∗

π.

Definition 4 Given a program π, the intraprocedural state transition function ↪→π ⊆ States × States is
defined by:

• If stmtAt(π, ι) is not a procedure call, then η ↪→π η
′

where η →π η
′

• If stmtAt(π, ι) is a procedure call, then η ↪→π η
′

where η →π η′′ →∗

π η′ and η′ is the first state on the trace between η and η′ such that stack(η′) =
stack(η)

We denote the reflexive, transitive closure of ↪→π as ↪→∗

π.
We say that η 6↪→π if there does not exist some η′ such that η ↪→π η

′. �

A.1.3 Programs and Program Transformations

Definition 5 The semantic function of a program π is the partial function
�
π � : Consts × MemAllocs ⇀

Values defined by:
�
π � (c,< l, l1, l2, . . . >) = σ(l) where (ι, {(x, l)}, {(l, uninit)}, <>,< l1, l2, . . . >) →∗

π

(ι+ 1, {(x, l)}, σ,<>,M) and ι 6∈ Indicesπ and stmtAt(π, ι) is defined to be x := main(c).

Definition 6 We say that π′ is a semantically equivalent transformation of π if for all c,M such that�
π � (c,M) = v, it is the case that

�
π′ � (c,M) = v.

A.2 Semantics of Optimizations

Let stmtAt(p, ι) denote the statement at index ι of procedure p.

Definition 7 The control flow graph (CFG) of a procedure p is a graph (Indices p,→cfg), where →cfg⊆
Indicesp × Indicesp and ι1 →cfg ι2 if and only if:

(stmtAt(p, ι1) ∈ {decl x, lhs := e, skip, x := new, x := p(b), return x} ∧ ι2 = ι1 + 1)

∨ (stmtAt(p, ι1) = if b goto ι else ι′ ∧ (ι2 = ι ∨ ι2 = ι′))
�

Before giving the definition of ι |=p
θ ψ, we first define the complete grammar for ψ:

ψ ::= true | false | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | l(t, . . . , t) | t = t | case t of cases endcase

cases ::= ε | case cases
case ::= t �⇒ ψ | decl vars in t �⇒ ψ
vars ::= patvar : τ | patvar : τ, vars

patvar ::= X | Y | Z | E | . . .
τ ::= Stmt | Expr | Call | NonCallExpr | LHS | BaseExpr | Const | Var | Deref | Ref | Fun | Index

The full language for ψ differs from the one presented in section 3 in two ways. First it requires pattern
variables to be explicitly declared and typed. Second, it does not provide an else construct, instead requiring
the user to enumerate all possible cases. The else construct can easily be added to the full language; it
would be handled by desugaring it automatically into the unstated cases.
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The case statement is desugared into ordinary quantifiers. This not only makes the definition of ι |=p
θ ψ

simpler, but it is also required in order to transform case statements into Simplify’s first-order predicate
language. The language for ψ after case statements have been desugared is described by the following
grammar, which is the same as above, but with the cases and case productions removed and the case

predicate replaced by the ∀ predicate:

ψ ::= true | false | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | l(t, . . . , t) | t = t | ∀ vars . ψ
vars ::= patvar : τ | patvar : τ, vars

patvar ::= X | Y | Z | E | . . .
τ ::= Stmt | Expr | Call | NonCallExpr | LHS | BaseExpr | Const | Var | Deref | Ref | Fun | Index

The case statement can be translated into the above desugared language as follows (where we use
ψ1 ⇒ ψ2 as sugar for ¬ψ1 ∨ ψ2):

case t of

decl
−→
X1 in t1 �⇒ ψ1

· · ·

decl
−→
Xn in tn �⇒ ψn

endcase

⇐⇒
∀
−→
X1.(t = t1 ⇒ ψ1) ∧

· · · ∧

∀
−→
Xn.(t = tn ⇒ ψn)

Finally, we define the semantics of ι |=p
θ ψ only for the desugared language. The definition of ι |=p

θ ψ,
which evaluates a formula ψ at index ι in the CFG of procedure p under substitution θ, is as follows:

ι |=p
θ true ⇐⇒ true

ι |=p
θ false ⇐⇒ false

ι |=p
θ ¬ψ ⇐⇒ not ι |=p

θ ψ
ι |=p

θ ψ1 ∨ ψ2 ⇐⇒ ι |=p
θ ψ1 or ι |=p

θ ψ2

ι |=p
θ ψ1 ∧ ψ2 ⇐⇒ ι |=p

θ ψ1 and ι |=p
θ ψ2

ι |=p
θ ∀X : τ. ψ ⇐⇒ ∀t : τ. ι |=p

θ[X 7→t] ψ

ι |=p
θ l(t1, . . . , tn) ⇐⇒ l(θ

�
t1 � p

ι , . . . , θ
�
tn � p

ι ) ∈ Lp(ι)
ι |=p

θ t1 = t2 ⇐⇒ θ
�
t1 � p

ι = θ
�
t2 � p

ι

where the semantics of a term t at index ι in the CFG of procedure p under substitution θ is defined by:

θ
�
t � p

ι =

{

stmtAt(p, ι) if t = currStmt

θ(t) otherwise

A.3 Proof Obligations

A.3.1 Forward Optimizations

Consider a forward transformation pattern of the following form:

ψ1 followed by ψ2 until s ⇒ s′ with witness P

The optimization-specific obligations, to be discharged by an automatic theorem prover, are as follows:

F1. If η ↪→π η
′ and index (η) |=p

θ ψ1, then θ(P)(η′).

F2. If θ(P)(η) and η ↪→π η
′ and index (η) |=p

θ ψ2, then θ(P)(η′).

F3. If θ(P)(η) and η ↪→π η′ and ι = index (η) and stmtAt(π, ι) = θ(s) and stmtAt(π′, ι) = θ(s′), then
η ↪→π′ η′.
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A.3.2 Backward Optimizations

Consider a backward transformation pattern of the following form:

ψ1 preceded by ψ2 since s ⇒ s′ with witness P

We require that the witness P match program points in the original and transformed state, or in other
words that P =⇒ (index (ηold ) = index (ηnew )). The optimization-specific obligations, to be discharged by
an automatic theorem prover, are as follows:

B1. If η ↪→π ηold and η ↪→π′ ηnew and ι = index (η) and stmtAt(π, ι) = θ(s) and stmtAt(π′, ι) = θ(s′), then
θ(P)(ηold , ηnew ).

B2. If θ(P)(ηold , ηnew ) and ηold ↪→π η′old and ιold = index (ηold ) and ιnew = index (ηnew ) and ιold |=π
θ ψ2

and stmtAt(π, ιold ) = stmtAt(π′, ιnew ), then there exists some η′new such that ηnew ↪→π′ η′new and
θ(P)(η′old , η

′

new ).

B3. If θ(P)(ηold , ηnew ) and ηold ↪→π η and ιold = index (ηold ) and ιnew = index (ηnew ) and ιold |=π
θ ψ1 and

stmtAt(π, ιold ) = stmtAt(π′, ιnew ), then ηnew ↪→π′ η.

In rule B1, we assume that both programs can step. However, we in fact need to prove that the trans-
formed program steps if the original one does, in order to show that the transformed program is semantically
equivalent to the original one. Unfortunately, it is not possible to prove this for B1 using only local knowl-
edge. Therefore, we allow B1 to assume that the transformed program steps, and we separately prove the
property using some additional obligations.

We introduce the notion of an error predicate ε(η). Intuitively, the error predicate says what the state
of the original program must look like at the point in the trace where a transformation is allowed, if that
transformation would get stuck. We then show that the error predicate would continue to hold on the
original program throughout the witnessing region, eventually implying that the original program itself will
get stuck. So we will have shown that the transformed program gets stuck only if the original one does.

We currently infer the error predicate: it is simply a predicate stating the conditions under which
the transformed statement s′ is “stuck” — it cannot take a step. This inference has been sufficient to
automatically prove soundness of all the backward optimizations we have written. However, in our obligations
below, we allow an arbitrary error predicate to be specified.

B1′. If η ↪→π ηold and η 6↪→π′ and ι = index (η) and stmtAt(π, ι) = θ(s) and stmtAt(π′, ι) = θ(s′), then
θ(ε)(ηold ).

B2′. If θ(ε)(η) and η ↪→π η
′ and ι = index (η) and ι |=π

θ ψ2, then θ(ε)(η′).

B3′. If θ(ε)(η) and ι = index (η) and ι |=π
θ ψ1, then η 6↪→π.

A.3.3 Analyses

Consider a pure analysis of the following form:

ψ1 followed by ψ2 defines label with witness P

The optimization-specific obligations, to be discharged by an automatic theorem prover, are as follows:

A1. If η ↪→π η
′ and index (η) |=p

θ ψ1, then θ(P)(η′).

A2. If θ(P)(η) and η ↪→π η
′ and index (η) |=p

θ ψ2, then θ(P)(η′).
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A.4 Metatheory

A.4.1 Forward Optimizations

Theorem 1 If O is a forward optimization with transformation pattern ψ1 followed by ψ2 until

s ⇒ s′ with witness P satisfying conditions F1, F2, and F3, then O is sound.
Proof:

Let π be an intermediate-language program, p be a procedure in π, ∆ ⊆
�
Opat � (p), and let π∆ be the

program identical to π but with p replaced by app(s′, p,∆). It suffices to show that π∆ is a semantically
equivalent transformation of π. Let c be a constant and M be a memory allocator such that

�
π � (c,M) = v.

By definition 6 we must show that also
�
π∆ � (c,M) = v.

Since
�
π � (c,M) = v, by definition 5 we have that (ι, {(x, l)}, {(l, uninit)}, <>,< l1, l2, . . . >) →∗

π (ι +
1, {(x, l)}, σ,<>,M′) and stmtAt(π, ι) is defined to be x := main(c) and ι 6∈ Indicesπ and v = σ(l), where
M =< l, l1, l2, . . . >. Define � π to act like →π ordinarily, but to act like ↪→π when executing a state at
some node with index ι0 such that some (ι0, θ) ∈ ∆. Then we have that

(ι, {(x, l)}, {(l, uninit)}, <>,< l1, l2, . . . >) � π η1 � π η2 � π · · · � π ηk−1 � π (ι+ 1, {(x, l)}, σ,<>,M′)

for some η1, . . . , ηk−1. To prove that
�
π∆ � (c,M) = v we will show that also

(ι, {(x, l)}, {(l, uninit)}, <>,< l1, l2, . . . >) � π∆
η1 � π∆

η2 � π∆
· · · � π∆

ηk−1 � π∆
(ι+1, {(x, l)}, σ,<>,M′)

where stmtAt(π∆, ι) is defined to be x := main(c).
Let ηk = (ι+ 1, {(x, l)}, σ,<>,M′). We show by induction on k that every prefix of the trace in π up to

ηj , for all 1 ≤ j ≤ k, is mirrored in π∆.

• Case j=1. Since stmtAt(π, ι) = stmtAt(π∆, ι) = x := main(c) and (ι, {(x, l)}, {(l, uninit)}, <>,<
l1, l2, . . . >) � π η1, by definition of � π we have (ι, {(x, l)}, {(l, uninit)}, <>,< l1, l2, . . . >) →π η1.
Therefore also (ι, {(x, l)}, {(l, uninit)}, <>,< l1, l2, . . . >) →π∆

η1, so (ι, {(x, l)}, {(l, uninit)}, <>,<
l1, l2, . . . >) � π∆

η1.

• Case 1 < j ≤ k. By induction we have that (ι, {(x, l)}, {(l, uninit)}, <>,< l1, l2, . . . >) � π∆
η1 � π∆

· · · � π∆
ηj−1. Let index (ηj−1) = ιj−1. We have two sub-cases:

– ¬∃θ.((ιj−1 , θ) ∈ ∆). Then by the definition of π∆ we have stmtAt(π, ιj−1) = stmtAt(π∆, ιj−1).
Therefore, since ηj−1 � π ηj , by definition of � π we have ηj−1 →π ηj . Then also ηj−1 →π∆

ηj ,
so ηj−1 � π∆

ηj and the result follows.

– ∃θ.((ιj−1 , θ) ∈ ∆). Then by the definition of π∆, there is some θ such that stmtAt(π∆, ιj−1) =
θ(s′). Then also (ιj−1, θ) ∈

�
Opat � (p), so we have ιj−1 |=p

θ stmt(i), so stmtAt(π, ιj−1) = θ(s).

By definition of � π we know that (ι, {(x, l)}, {(l, uninit)}, <>,< l1, l2, . . . >) →∗

π ηj−1, and we
also have stmtAt(π, ι) = x := main(c) and ιj−1 ∈ Indicesp. Assume

(ι, {(x, l)}, {(l, uninit)}, <>,< l1, l2, . . . >) →π η
′

1 →π · · · →π η
′

v

where η′v = ηj−1. Then there must be some t such that 1 ≤ t < v and index (η′t) = startp, repre-
senting the first statement executed on the same invocation of p as in ηj−1. Then let η′′w, . . . , η

′′

1

be identical to the sequence η′v , . . . , η
′

t, but with all states that are not in the same invocation
of p as in ηj−1 removed. Let index (η′′x) = ι′′x for all 1 ≤ x ≤ w. Then ι′′w = ιj−1. It is easy
to show that η′′1 ↪→π · · · ↪→π η′′w. Also, by the definition of an intraprocedural CFG we have
that n′′

w, . . . , n
′′

1 represents a backward path in the CFG of p to the entry node. Therefore, since
(ιj−1, θ) ∈

�
Opat � (p), it follows that there exists some r such that 1 ≤ r < w and ι′′r |=p

θ ψ1, and
for all q such that r < q < w we have ι′′q |=p

θ ψ2.

First we prove ∀q.(r < q ≤ w) ⇒ θ(P)(η′′q ). We prove it by induction on q:
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∗ (base case) q = r + 1. So we have η′′r ↪→π η′′q and index (η′′r ) |=p
θ ψ1, and the result follows

from condition F1.

∗ (inductive case) q > r + 1. By the inductive hypothesis we have θ(P)(η′′q−1). We also know
that η′′q−1 ↪→p η

′′

q and, since r < q − 1 < w, index (η′′q−1) |=
p
θ ψ2. Then the result follows from

condition F2.

So we have shown in particular that θ(P)(ηj−1) holds. We saw above that ηj−1 � π ηj , and
by definition of � π that means ηj−1 ↪→π ηj . We also know that stmtAt(π, ιj−1) = θ(s) and
stmtAt(π∆, ιj−1) = θ(s′). Then by condition F3 we have ηj−1 ↪→π∆

ηj , so also ηj−1 � π∆
ηj and

the result follows.

A.4.2 Backward Optimizations

Lemma 1 Let O be a backward optimization with transformation pattern ψ1 preceded by ψ2 since

s ⇒ s′ with witness P and error predicate ε such that B1′-B3′ hold. Let p be a procedure, π be a
program containing p, ι ∈ Indicesp, and stmtAt(π, ι) = θ(s). Let η be a state such that index (η) = ι. Let π′

be a program such that stmtAt(π′, ι) = θ(s′) and η 6↪→π′ . If

η ↪→π η1 ↪→π · · · ↪→π ηk

and for all 1 ≤ j < k we have index (ηj) |=
p
θ ψ2 and index (ηk) |=p

θ ψ1, then ηk 6↪→π.

Proof: We will first prove by induction on k that θ(ε(ηj) holds for all 1 ≤ j ≤ k.

• Case j = 1. Since η →π η1 and η 6↪→π′ and stmtAt(π, ι) = θ(s) and stmtAt(π′, ι) = θ(s′), the result
follows from B1′.

• Case 1 < j ≤ k. By induction, assume that θ(ηj−1) holds. We are given that ηj−1 →π ηj , and since
(j − 1) ≤ k we also have that index (ηj−1) |=

p
θ ψ2. Then the result follows from B2′.

So in particular we have shown that θ(ηk) holds. We are given that index (ηk) |=p
θ ψ1, so by B3′ we have

ηk 6↪→π.
Theorem 2 If O is a backward optimization with transformation pattern ψ1 preceded by ψ2 since

s ⇒ s′ with witness P with error predicate ε and satisfying conditions B1, B2, B3, B1′, B2′, and B3′,
then O is sound.
Proof: Let π be an intermediate-language program, p be a procedure in π, ∆ ⊆

�
Opat � (p), and let π∆ be

the program identical to π but with p replaced by app(s′, p,∆). It suffices to show that π∆ is a semantically
equivalent transformation of π.

We define an infinite family of generalized intermediate-language programs as follows. Let πj
∆ denote the

program that acts like π∆ for the first j states but henceforth acts like π. Formally, we define the transition
relation of πj

∆ directly as a relation →
π

j

∆

on prefixes of execution traces, rather than as a relation on states.

Let T = [η1 · · · ηr] denote a partial trace of πj
∆ such that index (η1) 6∈ Indices

π
j

∆

and s
π

j

∆

index(η1)
is a call to

main. We say that T →
π

j

∆

T ′ if and only if T ′ = [η1 · · · ηr+1], where

• r ≤ j ⇒ ηr →π∆
ηr+1

• r > j ⇒ ηr →π ηr+1

Let →∗

π
j

∆

denote the reflexive, transitive closure of →
π

j

∆

. We also define an intraprocedural version ↪→
π

j

∆

in the identical way that ↪→π is defined for →π. Finally, we define the semantic function of πj
∆ by the

straightforward modification of Definition 5.
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We prove that for all j ≥ 1, πj
∆ is a semantically equivalent transformation of π. Since π∆ = π∞

∆ and
the semantic equivalence relation is transitive, it then follows easily that π∆ is a semantically equivalent
transformation of π. The proof proceeds by induction on j.

For the base case, j = 1. Let c be a constant and M =< l, l1, l2, . . . > such that
�
π � (c,M) = v.

By Definition 6 we must show that
�
π1

∆ � (c,M) = v. By Definition 5 we have that v = σ(l) and
(ι, {(x, l)}, {(l, uninit)}, <>,< l1, l2, . . . >) →∗

π (ι + 1, {(x, l)}, σ,<>,M) and stmtAt(π, ι) is defined to be
x := main(c) and ι 6∈ Indicesπ . Therefore assume that

(ι, {(x, l)}, {(l, uninit)}, <>,< l1, l2, . . . >) →π η2 →π · · · →π ηk →π (ι + 1, {(x, l)}, σ,<>,M)

Let η1 = (ι, {(x, l)}, {(l, uninit)}, <>,< l1, l2, . . . >) and ηk+1 = (ι + 1, {(x, l)}, σ,<>,M). Also let sπ∆

n

be x := main(c). Then we claim that

[η1] →π1

∆
[η1, η2] →π1

∆
· · · →π1

∆
[η1, . . . , ηk, ηk+1]

If we can prove this, then the result follows. We prove inductively that each transition in the above sequence
of transitions holds.

• Base Case. We must show that [η1] →π1

∆
[η1, η2]. We’re given that η1 →π η2 and stmtAt(π, ι) =

stmtAt(π1
∆, ι) = x := main(c). Then η1 →π∆

η2, so by the definition of →π1

∆
the result follows.

• Inductive Case. By induction we have [η1] →π1

∆
[η1, η2] →π1

∆
· · · →π1

∆
[η1, . . . , ηq ], for some 1 <

q ≤ k. We’re given that ηq →π ηq+1. Then by the definition of →π1

∆
we have that [η1, . . . , ηq] →π1

∆

[η1, . . . , ηq+1].

For the inductive case, j > 1 and πj−1
∆ is a semantically equivalent transformation of π. We will prove that

πj
∆ is a semantically equivalent transformation of πj−1

∆ . Let c be a constant and M =< l, l1, l2, . . . > such

that
�
π � (c,M) = v. It suffices to show that

�
πj

∆ � (c,M) = v. Since πj−1
∆ is a semantically equivalent transfor-

mation of π, we know that
�
πj−1

∆ � (c,M) = v. Then we have that v = σ(l) and [(ι, {(x, l)}, {(l, uninit)}, <>
,< l1, l2, . . . >)] →∗

π
j−1

∆

[(ι, {(x, l)}, {(l, uninit)}, <>,< l1, l2, . . . >), η2, . . . , ηk, (ι+1, {(x, l)}, σ,<>,M)] and

stmtAt(π, ι) = stmtAt(πj−1
∆ , ι) is defined to be x := main(c) and ι 6∈ Indicesπ. Therefore assume that

[η1] →π
j−1

∆

[η1, η2] →π
j−1

∆

· · · →
π

j−1

∆

[η1, . . . , ηk+1]

where η1 = (ι, {(x, l)}, {(l, uninit)}, <>,< l1, l2, . . . >) and ηk+1 = (ι+ 1, {(x, l)}, σ,<>,M).
For each 1 ≤ t ≤ k + 1, let Φ(t, θ) denote the following predicate:

t > j ∧
(index (ηj), θ) ∈ ∆ ∧
stmtAt(π, index (ηj)) = θ(s) ∧
stmtAt(π∆, index (ηj)) = θ(s′) ∧
∀m.((j < m < t ∧ ηj ↪→

∗

π ηm) ⇒ index (ηm) 6|=π
θ ψ1)

Define �
π

j−1

∆

as a view on the above execution trace, in the following way: �
π

j−1

∆

acts like →
π

j−1

∆

ordinarily, but it acts like ↪→
π

j−1

∆

when it is either at a state ηt such that Φ(t, θ) for some θ, or it is at the

state ηj , where (index (ηj), θ) ∈ ∆. Then we have

[η′1] �
π

j−1

∆

[η′1, η
′

2] �
π

j−1

∆

· · · �
π

j−1

∆

[η′1, . . . , η
′

z ]

where η1 = η′1 and ηk+1 = η′z.
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Then we claim that
[η′′1 ] �

π
j

∆

[η′′1 , η
′′

2 ] �
π

j

∆

· · · �
π

j

∆

[η′′1 , η
′′

2 , . . . , η
′′

z ]

where �
π

j

∆

acts like →
π

j

∆

ordinarilly, but acts like ↪→
π

j

∆

when it is either at a state η′′y such that η′y = ηt

and Φ(t, θ) for some θ, or it is at a state η′′y such that η′y = ηj , where (index (ηj), θ) ∈ ∆. Further, each η′′y is
defined as follows. For each 1 ≤ y ≤ z:

• If there exists θ such that Φ(t, θ), where 1 ≤ t ≤ k + 1 and η′y = ηt, then θ(P)(η′y , η
′′

y ).

• Else η′y = η′′y .

If we can prove this, then we have that η′′z = η′z = ηk+1, and the result follows.
We prove inductively that each of the partial traces in the sequence above exists.

• For the base case, y = 1. We saw above that η1 = η′1. Since j > 1, we have 1 6> j, so ∀θ.¬Φ(1, θ).
Therefore we must prove that η′1 = η′′1 . We’re given that η1 = (ι, {(x, l)}, {(l, uninit)}, <>,< l1, l2, . . . >
) and stmtAt(π, ι) = x := main(c). Therefore [η′1] is a valid partial trace for πj

∆.

• For the inductive case, y > 1 and [η′′1 , . . . , η
′′

y−1] is a valid partial trace for πj
∆ with each component

state meeting the definition above. We must show that there exists η′′y meeting the definition above

such that [η′′1 , . . . , η
′′

y ] is a valid partial trace for πj
∆. Let t be the integer between 1 and k+1 such that

η′y−1 = ηt. There are several cases.

– t < j. Since t 6> j, by definition of Φ we have that η′′y−1 = η′y−1. By the definition of �
π

j−1

∆

,

η′y−1 →π∆
η′y. Then by definition of �

π
j

∆

we have [η′′1 , . . . , η
′′

y−1] �
π

j

∆

[η′′1 , . . . , η
′′

y−1, η
′

y]. Since

t+ 1 6> j, by definition of Φ we must show that η′′y = η′y, so the result follows.

– t = j. Then by definition of Φ we have that η′′y−1 = η′y−1. There are two sub-cases.

∗ ¬∃θ.(index (ηj), θ) ∈ ∆. Then by definition of �
π

j−1

∆

, we have η′y−1 →π η′y. Also

stmtAt(π, index (ηj)) = stmtAt(π∆, index (ηj)), so we have η′y−1 →π∆
η′y. Therefore by defini-

tion of �
π

j

∆

we have [η′′1 , . . . , η
′′

y−1] �
π

j

∆

[η′′1 , . . . , η
′′

y−1, η
′

y]. Since ¬∃θ.(index (ηj), θ) ∈ ∆, by

definition of Φ we must show that η′y = η′′y , so the result follows.

∗ ∃θ.(index (ηj), θ) ∈ ∆. Then by definition of π∆, there is some θ such that (index (ηj), θ) ∈ ∆
and stmtAt(π∆, index (ηj)) = θ(s′). Then by definition of �

π
j−1

∆

, we have η′y−1 ↪→π η′y.

Further, since ∆ ⊆
�
Opat � , we have stmtAt(π, index (ηj)) = θ(s). Let η′y = ηt′ , for some

j < t′ ≤ k + 1. Since η′y−1 ↪→π η
′

y, we vacuously have that ∀m.((j < m < t′ ∧ ηj ↪→
∗

π ηm) ⇒
index (ηm) 6|=π

θ ψ1). Therefore we have shown Φ(t′, θ), so by definition of Φ and �
π

j

∆

we have

to show that there exists η′′y such that η′′y−1 ↪→π∆
η′′y and θ(P)(η′y , η

′′

y ).
We have two cases. Suppose there exists η′′y such that η′′y−1 ↪→π∆

η′′y . Then by condition B1
the result follows.
Now suppose there does not exist η′′y such that η′′y−1 ↪→π∆

η′′y , so that η′′y−1 6↪→π∆
. We are given

that (index (ηj), θ) ∈ ∆. By definition of πj−1
∆ we know that πj−1

∆ acts like π from ηj on in the
sequence [η1, . . . , ηk+1]. Further, ηk+1 = (ι + 1, {(x, l)}, σ,<>,M), where ι + 1 6∈ Indicesπ.
Therefore one of the states between ηj and ηk+1 exclusive must represent the return node
from the same invocation of p as ηj . Therefore we have that there exists some j < r ≤ k such
that index (ηr) |=

π
θ ψ1 and for all t ≤ q < r such that ηq is in the same invocation of p as ηt,

we have index (ηq) |=
π
θ ψ2. Then by Lemma 1 we have ηr 6↪→π , and we have a contradiction.

– t > j. There are two sub-cases.
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∗ ¬∃θ.Φ(t, θ). By definition of �
π

j−1

∆

, we have η′y−1 →π η
′

y. Therefore η′′y−1 = η′y−1, and for all

θ we have that either (index (ηj), θ) 6∈ ∆ or stmtAt(π, ηj) 6= θ(s) or stmtAt(π∆, ηj) 6= θ(s′) or
∃m.(j < m < t ∧ ηj ↪→

∗

π ηm ∧ index (ηm) 6|=π
θ ψ1). Then also ¬∃θ.Φ(t′, θ), where η′y = ηt′ , so

by the definition of �
π

j

∆

we must show that η′′y−1 →π η
′′

y , where η′y = η′′y . Since η′y−1 →π η
′

y,

the result follows.

∗ ∃θ.Φ(t, θ). Therefore θ(P)(η′y−1, η
′′

y−1) and by definition of �
π

j−1

∆

, we have η′y−1 ↪→π η
′

y. We

have two sub-cases.

· index (ηt) 6|=π
θ ψ1. Then since η′y−1 →π η′y, we have ∀m.((j < m < t′ ∧ ηj ↪→

∗

π ηm) ⇒
index (ηm) 6|=π

θ ψ1), where η′y = ηt′ , so Φ(t′, θ). Then we must show that η′′y−1 ↪→π η′′y ,
where θ(P)(η′y , η

′′

y ).
Since ∃θ.Φ(t, θ), we have (index (ηj), θ) ∈ ∆. We know that ηj+1 →π · · · →π ηt. Therefore
either index (ηw) |=π

θ ψ2 for all j+1 ≤ w < t such that ηw is a state in the same invocation
of p as ηj , or there exists j + 1 ≤ w < t such that index (ηw) |=π

θ ψ1 and ηw is a state in
the same invocation of p as ηj . Since we saw above that ∀m.((j < m < t′ ∧ ηj ↪→

∗

π ηm) ⇒
index (ηm) 6|=π

θ ψ1), it must be the case that index (ηt) |=
π
θ ψ2. Therefore the result follows

from condition B2.

· index (ηt) |=π
θ ψ1. Then by the definition of Φ we have ¬Φ(t′, θ), where η′y =

ηt′ . Since θ is the unique substitution such that stmtAt(π, index (ηj)) = θ(s) and
stmtAt(π∆, index (ηj)) = θ(s′), we have ¬∃θ.Φ(t′, θ). Therefore by the definition of �

π
j

∆

we must show that η′′y−1 ↪→π η
′

y. The result follows from condition B3.

A.4.3 Pure Analyses

Let ψ1 followed by ψ2 defines label with witness P be a pure analysis. We say that the analysis is sound
if for all programs π, all procedures p in π, all indices ι in Indicesp, and all substitutions θ, the following
condition holds: If the analysis puts a label of the form θ(label ) on the node of p’s CFG with index ι, then
θ(P) holds at all program states η of all execution traces of π such that index (η) = ι.

Theorem 3 If ψ1 followed by ψ2 defines label with witness P is a pure analysis satisfying conditions
A1 and A2, then the analysis is sound.

Proof: Identical to the argument used in the proof of Theorem 1 to show that θ(P) holds at any execution’s
program state just before a transformed statement is executed. (Note that conditions A1 and A2 are the
same as F1 and F2.)

B Source code of optimizations we have expressed in Cobalt

-------------------------------------------------------------------------------------------------

--

-- We first define the optimizations, and the label definitions

-- follow. The following is a simple self-assignment removal

-- optimization.

--

-------------------------------------------------------------------------------------------------

opt self_assign_elim =

decl X:Var in

TRUE

followed_by

FALSE
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until

X := X ==> skip

with_witness

TRUE

-------------------------------------------------------------------------------------------------

--

-- Copy propagation

--

-------------------------------------------------------------------------------------------------

opt copy_prop =

decl X:Var,Y:Var,Z:Var in

stmt(Y := Z)

followed_by

AND(NOT(mayDef(Y)), NOT(mayDef(Z)))

until

X := Y ==> X := Z

with_witness

EQ(evalExpr(eta,Y),evalExpr(eta,Z))

-------------------------------------------------------------------------------------------------

--

-- Contant propagation.

--

-------------------------------------------------------------------------------------------------

opt const_prop1 =

decl X:Var,Y:Var,C:Const in

stmt(Y := C)

followed_by

NOT(mayDef(Y))

until

X := Y ==> X := C

with_witness

-- We use evalExpr(eta,C) instead of just C because otherwise

-- there would be a type mismatch. The pattern variable C ranges

-- over AST nodes of type constant, and the AST node contains

-- the actual constant value. For example, C could be bound to

-- an AST node Const(i), where i is the constant value stored at

-- the AST node. However, the lhs of the equality is

-- evalExpr(eta,Y), which evaluates to a value, not an AST

-- node. So we need to convert the AST node C into the constant

-- it stores, and evalExpr(eta,C) does exactly that. It would be

-- easy to automatically insert such conversions.

EQ(evalExpr(eta,Y), evalExpr(eta,C))

opt const_prop2 =

decl X:Var,Y:Var,B:BaseExpr,C:Const in

stmt(Y := C)

followed_by

NOT(mayDef(Y))

until

X := +(B,Y) ==> X := +(B,C)

with_witness

EQ(evalExpr(eta,Y), evalExpr(eta,C))

opt const_prop3 =

decl X:Var,Y:Var,B:BaseExpr,C:Const in

stmt(Y := C)
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followed_by

NOT(mayDef(Y))

until

X := +(Y,B) ==> X := +(C,B)

with_witness

EQ(evalExpr(eta,Y), evalExpr(eta,C))

opt const_prop4 =

decl Y:Var,I1:Index,I2:Index,C:Const in

stmt(Y := C)

followed_by

NOT(mayDef(Y))

until

if Y goto I1 else I2 ==> if C goto I1 else I2

with_witness

EQ(evalExpr(eta,Y), evalExpr(eta,C))

-------------------------------------------------------------------------------------------------

--

-- Constant folding

--

-------------------------------------------------------------------------------------------------

opt const_fold =

TRUE

followed_by

FALSE

until

-- semanticPlus, which is a primitive, represents [[+]], the

-- semantic function for the + symbol. The backquote ‘ operator

-- says that semanticPlus(C1,C2) must be evaluated first, and

-- then the resulting constant is used to create the rhs of the

-- transformed statement. If we did not use backquote, the

-- transformed statement would be interpreted as an assignment

-- whose rhs is a call to semanticPlus.

X := +(C1,C2) ==> X := ‘semanticPlus(C1,C2)‘

with_witness

TRUE

-------------------------------------------------------------------------------------------------

--

-- branch folding

--

-------------------------------------------------------------------------------------------------

opt branch_folding1 =

decl I1:Index,I2:Index in

TRUE

followed_by

FALSE

until

if true goto I1 else I2 ==> if true goto I1 else I1

with_witness

TRUE

opt branch_folding2 =

decl I1:Index,I2:Index in

TRUE

followed_by
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FALSE

until

if false goto I1 else I2 ==> if false goto I2 else I2

with_witness

TRUE

-------------------------------------------------------------------------------------------------

--

-- Common subexpression elimination

--

-------------------------------------------------------------------------------------------------

opt cse =

decl E:NonCallExpr, Z:Var, X:Var in

AND(stmt(Z := E),syntacticUnchanged(E))

followed_by

AND(NOT(mayDef(Z)),unchanged(E))

until

X := E ==> X := Z

with_witness

EQ(evalExpr(eta,Z), evalExpr(eta,E))

-------------------------------------------------------------------------------------------------

--

-- Dead assignment elimination. We use the non-pointer versions of

-- labels (e.g. npMayUse) because in backwards optimizations, we cannot

-- use the result of a forward analysis.

--

-------------------------------------------------------------------------------------------------

opt dead_assign_elim =

decl X:Var,E:NonCallExpr,Y:Var in

AND(OR(syntacticDef(X),stmt(return Y)),

NOT(npMayUse(X)))

preceded_by

NOT(npMayUse(X))

until

X := E ==> skip

with_witness

equalUpTo(X,eta1,eta2)

-------------------------------------------------------------------------------------------------

--

-- Code hoisting. We use the non-pointer versions of labels

-- (e.g. npMayUse, npMayDef) because in backwards optimizations, we cannot use

-- the result of a forward analysis.

--

-- With an appropriate profitability heuristic, this transformation

-- pattern can be used to implement PRE.

--

-------------------------------------------------------------------------------------------------

opt code_dup_hoisting =

decl X:Var,E:NonCallExpr in
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AND(stmt(X := E),

NOT(npMayUse(X)))

preceded_by

AND(npUnchanged(E),

NOT(npMayUse(X)),

NOT(npMayDef(X)))

until

skip ==> X := E

with_witness

equalUpTo(X,eta1,eta2)

-------------------------------------------------------------------------------------------------

--

-- Code sinking. With an appropriate profitability

-- heuristic, this transformation pattern can be used

-- to implement partial dead code elimination.

--

-------------------------------------------------------------------------------------------------

opt code_dup_sinking =

decl X:Var,E:NonCallExpr in

AND(stmt(X := E),

syntacticUnchanged(E))

followed_by

AND(unchanged(E),

NOT(mayUse(X)),

NOT(mayDef(X)))

until

skip ==> X := E

with_witness

EQ(evalExpr(eta,X),evalExpr(eta,E))

-------------------------------------------------------------------------------------------------

--

-- Removal of redundant loads.

--

-------------------------------------------------------------------------------------------------

opt load_removal =

decl X:Var,Y:Var,Z:Var in

stmt(Y := &Z)

followed_by

NOT(mayDef(Y))

until

X := *Y ==> X := Z

with_witness

EQ(evalExpr(eta,Y),evalExpr(eta,&Z))

-------------------------------------------------------------------------------------------------

--

-- We now define labels. We start with the stmt label
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--

-------------------------------------------------------------------------------------------------

define stmt(S:Stmt) = EQ(S,currStmt)

-------------------------------------------------------------------------------------------------

--

-- syntacticDef label

--

-------------------------------------------------------------------------------------------------

define syntacticDef(Z:Var) =

CASE currStmt OF

skip => FALSE

decl X:Var in decl X => EQ(Z,X)

decl X:Var,I1:Index,I2:Index in if X goto I1 else I2 => FALSE

decl C:Const,I1:Index,I2:Index in if C goto I1 else I2 => FALSE

decl X:Var,C:Const in X := C => EQ(Z,X)

decl X:Var,Y:Var in X := Y => EQ(Z,X)

decl X:Var,Y:Var in *X := Y => FALSE

decl X:Var,Y:Var in X := *Y => EQ(Z,X)

decl X:Var,Y:Var in X := &Y => EQ(Z,X)

decl X:Var in X := new => EQ(Z,X)

decl X:Var,A:Var,B:Var in X := +(A,B) => EQ(Z,X)

decl X:Var,A:Var,C:Const in X := +(A,C) => EQ(Z,X)

decl X:Var,C:Const,B:Var in X := +(C,B) => EQ(Z,X)

decl X:Var,C1:Const,C2:Const in X := +(C1,C2) => EQ(Z,X)

decl X:Var,Y:Var,P:Fun in X := P(Y) => EQ(Z,X)

decl X:Var in return X => FALSE

ENDCASE

-------------------------------------------------------------------------------------------------

--

-- syntacticUse label

--

-------------------------------------------------------------------------------------------------

define syntacticUse(Z:Var) =

CASE currStmt OF

skip => FALSE

decl X:Var in decl X => FALSE

decl X:Var,I1:Index,I2:Index in if X goto I1 else I2 => EQ(Z,X)

decl C:Const,I1:Index,I2:Index in if C goto I1 else I2 => FALSE

decl X:Var,C:Const in X := C => FALSE

decl X:Var,Y:Var in X := Y => EQ(Z,Y)

decl X:Var,Y:Var in *X := Y => OR(EQ(Z,Y), EQ(Z,X))

decl X:Var,Y:Var in X := *Y => EQ(Z,Y)

decl X:Var,Y:Var in X := &Y => EQ(Z,Y)

decl X:Var in X := new => FALSE

decl X:Var,A:Var,B:Var in X := +(A,B) => OR(EQ(Z,A),EQ(Z,B))

decl X:Var,A:Var,C:Const in X := +(A,C) => EQ(Z,A)

decl X:Var,C:Const,B:Var in X := +(C,B) => EQ(Z,B)

decl X:Var,C1:Const,C2:Const in X := +(C1,C2) => FALSE

decl X:Var,Y:Var,P:Fun in X := P(Y) => EQ(Z,Y)

decl X:Var in return X => EQ(Z,X)

ENDCASE

-------------------------------------------------------------------------------------------------

--

-- syntacticUnchanged label
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--

-------------------------------------------------------------------------------------------------

define syntacticUnchanged(E:NonCallExpr) =

CASE E OF

decl Z:Var in Z => NOT(syntacticDef(Z))

decl Z:Var in &Z => NOT(syntacticDef(Z))

decl C:Const in C => TRUE

decl C1:Const,C2:Const in +(C1,C2) => TRUE

decl X:Var,Y:Var in +(X,Y) => AND(NOT(syntacticDef(X)),NOT(syntacticDef(Y)))

decl X:Var,C:Const in +(X,C) => NOT(syntacticDef(X))

decl X:Var,C:Const in +(C,X) => NOT(syntacticDef(X))

decl Z:Var in *Z => NOT(syntacticDef(Z))

ENDCASE

-------------------------------------------------------------------------------------------------

--

-- npMayDef label: conservative version of mayDef that does not

-- use pointer information.

--

-------------------------------------------------------------------------------------------------

define npMayDef(Z:Var) =

CASE currStmt OF

skip => syntacticDef(Z)

decl X:Var in decl X => syntacticDef(Z)

decl X:Var,I1:Index,I2:Index in if X goto I1 else I2 => syntacticDef(Z)

decl C:Const,I1:Index,I2:Index in if C goto I1 else I2 => syntacticDef(Z)

decl X:Var,C:Const in X := C => syntacticDef(Z)

decl X:Var,Y:Var in X := Y => syntacticDef(Z)

decl X:Var,Y:Var in *X := Y => TRUE

decl X:Var,Y:Var in X := *Y => syntacticDef(Z)

decl X:Var,Y:Var in X := &Y => syntacticDef(Z)

decl X:Var in X := new => syntacticDef(Z)

decl X:Var,A:Var,B:Var in X := +(A,B) => syntacticDef(Z)

decl X:Var,A:Var,C:Const in X := +(A,C) => syntacticDef(Z)

decl X:Var,C:Const,B:Var in X := +(C,B) => syntacticDef(Z)

decl X:Var,C1:Const,C2:Const in X := +(C1,C2) => syntacticDef(Z)

decl X:Var,Y:Var,P:Fun in X := P(Y) => TRUE

decl X:Var in return X => syntacticDef(Z)

ENDCASE

-------------------------------------------------------------------------------------------------

--

-- npMayUse: conservative version of mayUse that does not use

-- pointer information.

--

-------------------------------------------------------------------------------------------------

define npMayUse(Z:Var) =

CASE currStmt OF

skip => syntacticUse(Z)

decl X:Var in decl X => syntacticUse(Z)

decl X:Var,I1:Index,I2:Index in if X goto I1 else I2 => syntacticUse(Z)

decl C:Const,I1:Index,I2:Index in if C goto I1 else I2 => syntacticUse(Z)

decl X:Var,C:Const in X := C => syntacticUse(Z)

decl X:Var,Y:Var in X := Y => syntacticUse(Z)

decl X:Var,Y:Var in *X := Y => syntacticUse(Z)

decl X:Var,Y:Var in X := *Y => TRUE
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decl X:Var,Y:Var in X := &Y => syntacticUse(Z)

decl X:Var in X := new => syntacticUse(Z)

decl X:Var,A:Var,B:Var in X := +(A,B) => syntacticUse(Z)

decl X:Var,A:Var,C:Const in X := +(A,C) => syntacticUse(Z)

decl X:Var,C:Const,B:Var in X := +(C,B) => syntacticUse(Z)

decl X:Var,C1:Const,C2:Const in X := +(C1,C2) => syntacticUse(Z)

decl X:Var,Y:Var,P:Fun in X := P(Y) => TRUE

decl X:Var in return X => syntacticUse(Z)

ENDCASE

-------------------------------------------------------------------------------------------------

--

-- npUnchanged label: conservative version of unchanged that does not

-- use pointer information.

--

-------------------------------------------------------------------------------------------------

define npUnchanged(E:NonCallExpr) =

CASE E OF

decl Z:Var in Z => NOT(npMayDef(Z))

decl Z:Var in &Z => NOT(npMayDef(Z))

decl C:Const in C => TRUE

decl C1:Const,C2:Const in +(C1,C2) => TRUE

decl X:Var,Y:Var in +(X,Y) => AND(NOT(npMayDef(X)),NOT(npMayDef(Y)))

decl X:Var,C:Const in +(X,C) => NOT(npMayDef(X))

decl X:Var,C:Const in +(C,X) => NOT(npMayDef(X))

decl Z:Var in *Z => FALSE

ENDCASE

-------------------------------------------------------------------------------------------------

--

-- mayDef label

--

-------------------------------------------------------------------------------------------------

define mayDef(Z:Var) =

CASE currStmt OF

skip => syntacticDef(Z)

decl X:Var in decl X => syntacticDef(Z)

decl X:Var,I1:Index,I2:Index in if X goto I1 else I2 => syntacticDef(Z)

decl C:Const,I1:Index,I2:Index in if C goto I1 else I2 => syntacticDef(Z)

decl X:Var,C:Const in X := C => syntacticDef(Z)

decl X:Var,Y:Var in X := Y => syntacticDef(Z)

decl X:Var,Y:Var in *X := Y => OR(syntacticDef(Z),mayPointTo(X,Z))

decl X:Var,Y:Var in X := *Y => syntacticDef(Z)

decl X:Var,Y:Var in X := &Y => syntacticDef(Z)

decl X:Var in X := new => syntacticDef(Z)

decl X:Var,A:Var,B:Var in X := +(A,B) => syntacticDef(Z)

decl X:Var,A:Var,C:Const in X := +(A,C) => syntacticDef(Z)

decl X:Var,C:Const,B:Var in X := +(C,B) => syntacticDef(Z)

decl X:Var,C1:Const,C2:Const in X := +(C1,C2) => syntacticDef(Z)

decl X:Var,Y:Var,P:Fun in X := P(Y) => OR(syntacticDef(Z),NOT(isNotTainted(Z)))

decl X:Var in return X => syntacticDef(Z)

ENDCASE

-------------------------------------------------------------------------------------------------

--

-- mayUse label

--

-------------------------------------------------------------------------------------------------
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define mayUse(Z:Var) =

CASE currStmt OF

skip => syntacticUse(Z)

decl X:Var in decl X => syntacticUse(Z)

decl X:Var,I1:Index,I2:Index in if X goto I1 else I2 => syntacticUse(Z)

decl C:Const,I1:Index,I2:Index in if C goto I1 else I2 => syntacticUse(Z)

decl X:Var,C:Const in X := C => syntacticUse(Z)

decl X:Var,Y:Var in X := Y => syntacticUse(Z)

decl X:Var,Y:Var in *X := Y => syntacticUse(Z)

decl X:Var,Y:Var in X := *Y => OR(syntacticUse(Z),mayPointTo(Y,Z))

decl X:Var,Y:Var in X := &Y => syntacticUse(Z)

decl X:Var in X := new => syntacticUse(Z)

decl X:Var,A:Var,B:Var in X := +(A,B) => syntacticUse(Z)

decl X:Var,A:Var,C:Const in X := +(A,C) => syntacticUse(Z)

decl X:Var,C:Const,B:Var in X := +(C,B) => syntacticUse(Z)

decl X:Var,C1:Const,C2:Const in X := +(C1,C2) => syntacticUse(Z)

decl X:Var,Y:Var,P:Fun in X := P(Y) => TRUE

decl X:Var in return X => syntacticUse(Z)

ENDCASE

-------------------------------------------------------------------------------------------------

--

-- unchanged label

--

-------------------------------------------------------------------------------------------------

define unchanged(E:NonCallExpr) =

CASE E OF

decl Z:Var in Z => NOT(mayDef(Z))

decl Z:Var in &Z => NOT(mayDef(Z))

decl C:Const in C => TRUE

decl C1:Const,C2:Const in +(C1,C2) => TRUE

decl X:Var,Y:Var in +(X,Y) => AND(NOT(mayDef(X)),NOT(mayDef(Y)))

decl X:Var,C:Const in +(X,C) => NOT(mayDef(X))

decl X:Var,C:Const in +(C,X) => NOT(mayDef(X))

decl Z:Var in *Z =>

CASE currStmt OF

skip => NOT(mayDef(Z))

decl X:Var in decl X => NOT(mayDef(Z))

decl X:Var,I1:Index,I2:Index in if X goto I1 else I2 => NOT(mayDef(Z))

decl C:Const,I1:Index,I2:Index in if C goto I1 else I2 => NOT(mayDef(Z))

decl X:Var,C:Const in X := C => AND(NOT(mayDef(Z)),doesNotPointTo(Z,X))

decl X:Var,Y:Var in X := Y => AND(NOT(mayDef(Z)),doesNotPointTo(Z,X))

decl X:Var,Y:Var in *X := Y => FALSE

decl X:Var,Y:Var in X := *Y => AND(NOT(mayDef(Z)),doesNotPointTo(Z,X))

decl X:Var,Y:Var in X := &Y => AND(NOT(mayDef(Z)),doesNotPointTo(Z,X))

decl X:Var in X := new => AND(NOT(mayDef(Z)),doesNotPointTo(Z,X))

decl X:Var,A:Var,B:Var in X := +(A,B) => AND(NOT(mayDef(Z)),doesNotPointTo(Z,X))

decl X:Var,A:Var,C:Const in X := +(A,C) => AND(NOT(mayDef(Z)),doesNotPointTo(Z,X))

decl X:Var,C:Const,B:Var in X := +(C,B) => AND(NOT(mayDef(Z)),doesNotPointTo(Z,X))

decl X:Var,C1:Const,C2:Const in X := +(C1,C2) => AND(NOT(mayDef(Z)),doesNotPointTo(Z,X))

decl X:Var,Y:Var,P:Fun in X := P(Y) => FALSE

decl X:Var in return X => NOT(mayDef(Z))

ENDCASE

ENDCASE

-------------------------------------------------------------------------------------------------

--

-- fnCall label
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--

-------------------------------------------------------------------------------------------------

define fnCall() =

CASE currStmt OF

skip => FALSE

decl X:Var in decl X => FALSE

decl X:Var,I1:Index,I2:Index in if X goto I1 else I2 => FALSE

decl C:Const,I1:Index,I2:Index in if C goto I1 else I2 => FALSE

decl X:Var,C:Const in X := C => FALSE

decl X:Var,Y:Var in X := Y => FALSE

decl X:Var,Y:Var in *X := Y => FALSE

decl X:Var,Y:Var in X := *Y => FALSE

decl X:Var,Y:Var in X := &Y => FALSE

decl X:Var in X := new => FALSE

decl X:Var,A:Var,B:Var in X := +(A,B) => FALSE

decl X:Var,A:Var,C:Const in X := +(A,C) => FALSE

decl X:Var,C:Const,B:Var in X := +(C,B) => FALSE

decl X:Var,C1:Const,C2:Const in X := +(C1,C2) => FALSE

decl X:Var,Y:Var,P:Fun in X := P(Y) => TRUE

decl X:Var in return X => FALSE

ENDCASE

-------------------------------------------------------------------------------------------------

--

-- addrTaken label

--

-------------------------------------------------------------------------------------------------

define addrTaken(Z:Var) =

CASE currStmt OF

skip => FALSE

decl X:Var in decl X => FALSE

decl X:Var,I1:Index,I2:Index in if X goto I1 else I2 => FALSE

decl C:Const,I1:Index,I2:Index in if C goto I1 else I2 => FALSE

decl X:Var,C:Const in X := C => FALSE

decl X:Var,Y:Var in X := Y => FALSE

decl X:Var,Y:Var in *X := Y => FALSE

decl X:Var,Y:Var in X := *Y => FALSE

decl X:Var,Y:Var in X := &Y => EQ(Z,Y)

decl X:Var in X := new => FALSE

decl X:Var,A:Var,B:Var in X := +(A,B) => FALSE

decl X:Var,A:Var,C:Const in X := +(A,C) => FALSE

decl X:Var,C:Const,B:Var in X := +(C,B) => FALSE

decl X:Var,C1:Const,C2:Const in X := +(C1,C2) => FALSE

decl X:Var,Y:Var,P:Fun in X := P(Y) => FALSE

decl X:Var in return X => FALSE

ENDCASE

-------------------------------------------------------------------------------------------------

--

-- Pointer information

--

-- We define two simple points-to analyses (simpleNotPntTo and

-- isNotTainted), and then combine them together to get the

-- doesNotPointTo and mayPointTo labels. The simpleNotPntTo analysis

-- uses npMayDef, which is a version of mayDef that does not use

-- pointer information (since we can’t assume pointer information

-- while we’re computing it).

--
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-------------------------------------------------------------------------------------------------

analysis isNotTainted(X:Var) =

stmt(decl X)

followed_by

NOT(addrTaken(X))

defines

isNotTainted(X:Var)

with_witness

-- This witness says that for any location L, the result of

-- evaluating *L (using evalLocDeref, which is a primitive, much

-- like evalExpr) is not equal to &X. In other words, no store

-- location points to X.

FORALL L . IMPLIES(isLoc(L),

NEQ(evalLocDeref(eta,L),

evalExpr(eta,&X)))

analysis simpleNotPntTo(X:Var,Y:Var) =

decl Z:Var in

AND(stmt(X := &Z),hasBeenDeclared(Y),NOT(syntacticUse(Y)))

followed_by

NOT(npMayDef(X))

defines

simpleNotPntTo(X:Var,Y:Var)

with_witness

NEQ(evalExpr(eta,X),evalExpr(eta,&Y))

analysis hasBeenDeclared(X:Var) =

stmt(decl X)

followed_by

TRUE

defines

hasBeenDeclared(X:Var)

with_witness

-- This witness says that X is not stuck in the machine state

-- eta, which basically means that X is in the domain of the

-- environment component of eta.

isExprNotStuck(eta,X)

define doesNotPointTo(X:Var,Y:Var) = OR(simpleNotPntTo(X,Y),

isNotTainted(Y))

define mayPointTo(X:Var,Y:Var) = NOT(doesNotPointTo(X,Y))
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