
Interprocedural Constant Propagation

David Callahan
Keith D. Cooper

Ken Kennedy
Linda Torczon

Department of Computer Science+
Rice University
Houston, Texas

Abstract

In a compiling system that attempts to improve code for a whole program by optimizing across pro-
cedures, the compiler can generate better code for a specific procedure if it knows which variables will
have constant values, and what those values will be, when the procedure is invoked. This paper
presents a general algorithm for determining for each procedure in a given program the set of inputs
that will have known constant values at run time. The precision of the answers provided by this
method are dependent on the precision of the local analysis of individual procedures in the program.
Since the algorithm is intended for use in a sophisticated software development environment in which
local analysis would be provided by the source editor, the quality of the answers will depend on the
amount of work the editor performs. Several reasonable strategies for local analysis with different lev-
els of complexity and precision are suggested and the results of a prototype implementation in a vec-
torizing Fortran compiler are presented.

1. Introduction

Fortran programmers have learned to expect
optimizing compilers that generate excellent code for a
single procedure. Twenty-five years of development has
led to a well-understood collection of principles for build-
ing optimizing compilers and almost every commercially
available computer system now offers one. One problem
remains, however. The quality of the code produced by
a good Fortran compiler declines considerably in the
presence of calls to independently compiled procedures.
The main reason for this is that the compiler must make
worst case assumptions about what happens on the side
of the interface that it cannot see. For example, when
compiling the called procedure, the standard linkage
convention requires that all the registers be saved and
restored, even though many of them may not be in use
at the point of call.

Intetprocedural data flow analysis attempts to
overcome this problem by propagating information

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage.
the ACM copyright notice and the title of the publication and its date appear.
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish. requites a fee and/
or specific permission.

@ 1986 ACM O-89791-197-O/86/0600-0152 75C

about data usage and creation among the procedures
that form a single program, so that the compiler can
take advantage of contextual information to generate
better code for any single procedure. An important
interprocedural data flow analysis problem is the deter-

mination of which parameters’ to a given procedure will
be constant at run time. Based on this information, a
compiler could perform a number of useful optimizations
that are unavailable to it in current compilation
schemes. For example, many subroutines in the LINPACK
library [DBMS 791 have a parameter to indicate the
stride of indexing for some array. In the typical program
constructed from LINPACK, this stride is passed the
integer constant “1”. In the absence of better informa-
tion, the compiler must assume that the parameter could
take on any value, precluding the application of many
optimizations. In particular, the value “0” would pre-
clude vectorization of array operations within the pro
cedure and a non-constant value would preclude loop
unrolling, both of which have proven effective in improv-
ing performance of programs constructed from LINPACK

[Dong 801.

t This research has been supported by the National Sci-
ence Foundation through grants MCS 81-21844 and MCS 83-
03638 and by IBM Corporation.

‘Here we extend the term parameter to cover global or
imported variables.

152

Constant propagation is a code improvement tech-
nique in which the compiler reasons about the values
that variables may assume at run time. If the compiler
is able to establish that a variable will always have a
known constant value at a particular use point it may
replace an occurrence of that variable by an occurrence
of the constant itself. Whenever all the inputs to an
operation are replaced by known constant values, the
operation may be performed at compile time and the
constant result further propagated to other uses. When
performed in a systematic way, constant propagation
can lead to the evaluation at compile time of many
operations that might be repeatedly performed at run
time. This can significantly improve the performance of
the compiled program.

Techniques for constant propagation within a sin-
gle procedure have been widely discussed in the litera-
ture]Kild 73, Kenn 78, Kenn 81, WeZa 85). However,
these techniques have not been extended to propagate

constants across procedure calls2 for reasons of practical-
ity. In order to compute which variables are constant at
every invocation of a given procedure, the system must
have knowledge of the behavior of every procedure in the
program. In a traditional separate compilation system,

the compiler doesn’t even know which procedures the
program includes until the link editing step immediately
prior to execution. Even if the compiler had this
knowledge, without a database similar to those found in
a programming environment, it would need to examine
every procedure in the program in order to compile just
one of them. This appears to be prohibitiveIy expensive.

In an attempt to address these problems, the IRn
project at Rice University has been developing a pro-
gramming environment for Fortran that supports the
development, compilation and optimization of whole pro-
grams [HoKe 85, CoKT 85, CoKT 861. A central goal of
this project is to experiment with the systematic
development of interprocedural data flow information.
In IR’, the eoutce editor provides local information about
the behavior of individual subroutines and a program
composition editor records which subroutines comprise
the program. Once local information is available and
the program composition is known, the computation of

2A notable exception is the paper by Wegman and Za-
deck (WeZa 851, which describes a single-procedure algorithm
that can be used to evaluate the effectiveness of inline expan-
sion of a called procedure. The technique propagates the
known constants at a single call site into the called procedure
to determine the size of the code that would result after inline
expansion and useless code elimination. This approach does
not extend naturally to handle procedures that are not ex-
panded inline and may be called from more than one site.

interprocedural data flow information is the responsibil-
ity of the program compiler. Most of the required inter-
procedural information is developed by solving data flow
analysis problems on the program’s call graph. Since the
call graph of a program is likely to be large, it is impor-
tant for the program compiler to employ efficient algo-
rithms for solving these data flow problems. Previously,
Cooper and Kennedy have reported nearly-linear algo-
rithms for the determination of side effects [CoKe 841
and potential aliases [Coop 851.

In this paper, we present a scheme for efficiently
determining which variables have known constant values
on invocation of the various procedures in a given pro-
gram. Of necessity, our method is approximate. Kam
and Ullman have shown that a precise solution to the
simpler problem of intraprocedural constant propagation
is not computable [KaUI 77). Even the approximate
problem commonly solved by compilers within a single
procedure is intractable in an interprocedural setting
because it has the property of flow sensitivity (Myer 811.
Therefore, we present a collection of methods that all
use the same algorithm for propagating constants across
the call graph but differ in the precision of the informa-
tion used to model the behavior of individual procedures.
This collection of algorithms clearly exhibits the tradeoff
between complexity of local analysis by the source editor
and the precision of the approximate sets of constants -
more effort by the editor leads to finding a larger set of
variables with known constant values.

The discussion begins in Section 2 with a presenta-
tion of a very precise method based on inline substitu-
tion and a discussion of the drawbacks of this approach.
The algorithm we propose to use in the IRn environment
is presented in Section 3. It is based on an efficient algo-
rithm for constant propagation in a single procedure due
to Reif and Lewis [ReLe 821 as adapted by Wegman and
Zadeck (WeZa 851. Our algorithm models the body of a
procedure with functions that describe the values of
variables at a call site in terms of the values of variables
on entry to the procedure containing the call. Section 4
describes several methods for defining these functions
and contrasts the completeness of the resulting constant
sets. Section 5 describes our experience with an actual
implementation of interprocedural constant propagation
in a Fortran vectorizer. Finally, conclusions and future
research are discussed in Section 6.

153

2. Mine Substitution

Perhaps the most obvious way to solve the prob-
lem is to convert the program into one large procedure
using systematic inline substitution and employ an
efficient single-procedure method such as the Reif-Lewis
algorithm [ReLe 821 or the Wegman-Zadeck algorithm
[WeZa 851. Recursive procedures can be handled in this
scheme by introducing an explicit stack, combined with
unrolling. This approach is very effective at propagating
constants because, in effect, each call site has its own
private copy of the called procedure. Hence, constant
propagation is not inhibited by having to merge con-
stant sets from several call sites to produce information
for a procedure that is invoked from more than one loca-
tion. Furthermore, inline substitution makes parameter
aliasing explicit in the program, permitting the analysis
to be even more precise. When applied to the example
in Figure 1, the method based on inline substitution will
yield the program in Figure 2.

In spite of its effectiveness, we reject this tech-
nique for practical use on several grounds. First, the
growth in the program’s code size after substitution is
potentially exponential [Sche 771. Since the performance
of the best algorithms for single-procedure constant pro-
pagation is roughly linear in the size of the procedure,
the overall cost of constant propagation is potentially
exponential in the size of the unexpanded program.

procedure main;

0: call j0e(lO,lOO,lOOO);
end;

procedure jotfi, j, k);
1=2*k;
if (j-100) then m = lO*j else m = i;

j3: call ralph(l, m, k);
o-m*2;
q- 2;

7: call ralpk(o, q, k);
write q, m, 0, 1;

end;

procedure ralph(a, b, c);
b=a*c/2000;

end;

Figure 1. An example problem

procedure main;

write 1000, 1000,2000,2000;

end;

Figure 2. After inline substitution.

Second, systematic use of inline expansion makes the
program difficult to maintain. After each change to a
single procedure, the system must either re-expand the
program or attempt to recreate the change in the
expanded, optimized program, a process that is likely to
be very expensive. Therefore, we seek a method that
performs constant propagation on the whole program
while keeping the individual procedures separate. Furth-
ermore, that method should have an efficiency that is
proportional to the aggregate size of all the code in the
program. In return for achieving these goals, we are wil-
ling to sacrifice some constant propagation effectiveness.

In spite of its drawbacks, inline substitution
deserves study because it provides us with a standard by
which to measure the effectiveness of other techniques.
Furthermore, it can be extremely valuable as an optimi-
zation technique if used in a controlled way [Ball 791. In
fact, interprocedural constant propagation can provide
the information required to efficiently determine when
inline substitution can be profitably employed [Coop 88,
WeZa 851. In the next section we present the general
strategy used in the IR’ programming environment to
propagate constants across procedure boundaries
without using inline expansion.

3. General Approach

The goal of interprocedural constant propagation
is to annotate each procedure in the program with a set
CONSTANTS(p) of <name,vahLe> pairs. A pair <z,u> E
CONSTANTS(~) indicates that variable z has value v at
every call site that invokes p. This set approximates
reality; every pair in CONSTANTS(~) denotes a run-time
constant, but not all run-time constants can be found.

For the purpose of computing CONSTANTS(~) we
formulate the problem in a lattice theoretic framework.
With each entry point p we associate a function Vu1
that maps formal parameters to elements of the usual
constant propagation lattice L. Each element of L is one
of three types:

154

. a lattice top element T,

. a lattice bottom element 1, or

. a constant value c

The structure of this lattice is defined by the following
list of rules for the lattice meet operation pI:

1) TA a - a for any lattice element a

2) 1 A a = 1 for any lattice element a

3) CA c - c for any constant c

4) clA c2-1 if cl+ c2

Figure 3 depicts the constant propagation lattice graphi-
calfy. While it is an infinite lattice, it has bounded
depth. In particular, if a variable is modified by assign-
ing it a new value computed by taking the meet of its
old value and some other lattice element, its value can
be reduced at most twice.

For any formal parameter z, let Vu(z) represent
the best current approximation to the value of z on
entry to the procedure. After the analysis is complete, if
Vul(z)-1, the parameter is known to be non-constant; if
Va’dyz)-c, the parameter has the constant value c. The

value T is used as an initial approximation for all
parameters; a parameter retains that value only if the

procedure containing it is never called. Once we have
computed VIZ(Z) for every parameter z of procedure p,
CONSTANTS(P) is simply the set of parameters for which
Val is equal to some constant value.

To compute the Vu1 sets, we associate with each

ci-1 Cl G+1 . .

1

Figure 3. The constant propagation lattice.

procedure PropagateConstant;

var worklist : set;

begin
{ Initialize }
for each procedure p in the program do

for each parameter z to p do
vur(z) :- T;

for each call site 8 in the program do
for each formal parameter y

that receives a value at s do
V4Y) := vayY)AJJ;

worklist := 0;

for each procedure p in the program do
for each parameter z to p do

worklist := worklist u {z};

{ Iterate }
while worklist + 0 do begin

let y be an arbitrary parameter in worklist;
worklist :- worklist - { y};
let p be the procedure containing y;
{ Update worklist)
for each call site s E p and parameter z

such that y E support(J,3 do begin
0ldVal :- Val(z);
Val(z) := Val(z)r\ J:;
if Val(z)<oldVal then

worklist :- worklist IJ {z};
end

end
end

Figure 4. General algorithm

call site s in a given procedure p a jump function’ J,

that gives the value of each parameter at s as a function

of the formal parameters of the procedure p”. J, is actu-
ally a vector of functions, one for each formal parameter
of the procedure invoked at the call site. For each for-
mal parameter y of the procedure called at 8, the com-
ponent function J,’ computes the best approximation
within the lattice L to the value passed to y at call site
s, given the values passed to formal parameters of p.
The support of the function J,’ is the exact set of formal

3The term jump function originated with John Cocke
and is used here for historical reasons.

‘For the purposes of this discussion, ignore the issue of
global variables used as parameters. These can be treated as
an extended set of parameters.

155

parameters of p that are used in the computation of J,Y

Given these definitions, the interprocedural con-
stant propagation problem can be solved using an analo-
gue of the Wegman-Zadeck method for constant propa-
gation in a single procedure [WeZa 851. The interpro-
cedural algorithm, shown in Figure 4, assumes that each
parameter used in the program has a unique name, so
the procedure to which it is a parameter can be uniquely
determined from the parameter name. The algorithm
uses a worklist of parameters to be processed. It is
guaranteed to converge because the lattice is of finite
depth and a parameter is only added to the worklist
when its value has been reduced. Since the value of any
parameter can be reduced at most twice, each procedure
parameter can appear on the worklist at most two times.

If eost(J:) is the cost of evaluating J,‘, the total
amount of work done by the computation is proportional
to

s I

where s ranges over all call sites in the program and z
ranges over all formal parameters that are bound by the
call at 8. This bound is based on the observation that
Jf is evaluated each time some parameter in support(J:)
is reduced in value. Because of the structure of the lat-
tice, a parameter can be reduced in value at most twice.
If the cost of evaluating each J,’ is bounded by a con-
stant, implying that the size of the support is also
bounded by a constant, the cost is proportional to the
sum over each edge in the call graph of the number of
parameters passed along that edge.

The tricky part of this method is the construction
of the jump functions J,. The next section describes
three methods for implementing them.

4. Jump Functions

In developing algorithms for the construction of
jump functions, we should keep the following principles
in mind.

. For any parameter z at a call site s that can be
determined to be constant by inspection of the
source of the procedure containing s, set JJ=c
where c is the known constant value. This implies
that support(Jf) = 0.

. For any parameter z at call site s that cannot be
determined as a function of input parameters to
the procedure containing s, set J: to be 1. For
example, z might be passed a value that is read in
from an external medium. Again, this implies that

SUPPO~ Jbl) = ia
. For any parameter z at call site s that is deter-

minable at compile time but not a constant. J: is
a function of parameters to the calling procedure
and local constants of the calling procedure. In
this case, support(Jf) is non-empty.

Taken together, these principles gives rise to a range of
strategies for constant propagation. The boundary
between these three classes of values depends on the
sophistication of the techniques used in the source editor
to determine jump functions. If the complexity of com-
puting a particular jump function exceeds the capabili-
ties of the editor, it can simply give up and assign
J,’ = 1. Torczon discusses three strategies of different
complexity for developing jump functions [Tort 851 -
one that only finds jump functions that are constant or
bottom, one that also discovers jump functions that pass
a parameter through to a call site without change, and a
third that employs a sophisticated symbolic interpreta-
tion algorithm such as the one proposed by Reif and
Lewis [ReLe 821. We describe each of these in the follow-
ing sections.

4.1. All or Nothing

A particularly easy to implement technique would
have the source editor employ a single-procedure con-
stant propagation technique, such as the Wegman-

procedure main;

0: call j0~10,100,1000);
end;

procedure joe(i, j, k);

192ooo;
m- 1000;

B: call ralph(l, m, k);
o-m*2;
q-2;

7: C811 talph(0, q, k);
write q, m, 0, 1;

end;

procedure ralph(a, b, c);
b=a#c/2000;

end;

Figure 5. After all-or-nothing analysis.

156

Zadeck algorithm to determine which variables are con-
stant at each call site, under the assumption that none
of the parameters to the routine containing the cali site
are constant. Then each jump function J,” is set to a con-
stant value if the analysis determines that z must be
constant at 8 and to 1 otherwise. This approach would
find constants that can be propagated over a single call.
It would miss all constants that must be propagated
completely through an intermediate procedure.

In the example of Figure 1,this method would dis-
cover that i, j and k are constant on entry to joe and
that b is constant at call site 7 although not at call site
p. Because procedure joe is analyzed to produce Jb
before the interprocedural propagation takes place, it
cannot discover that k is constant at call site ,8, even
though it is directly passed from the entry to j3. The
overall effect of the propagated information after optimi-
zation is shown in Figure 5.

4.2. Pass Through

One way to enhance the all-or-nothing technique
is to recognize those situations when a variable is
directly passed through a procedure to a call site. This
case arises in our example because k is passed by joe to
call site j3. In other words, we would determine that

Jj = k.

This is an easy extension to implement because the
determination can be based on DEF-USE chains [AhUI 77,
Kenn 781, which are required by the single-procedure
constant propagation methods. If we trace back from a
call site 8 to all definition points for variable y, passed
to x at s, and find that the only such point is the pro-
cedure entry, we may safely set J+y.

This enhancement is only slightly more difficult to
implement than the all-or-nothing method, yet it finds
constants that are passed through several procedures, a
common practice in code based upon libraries like LIN-

PACK. In our example, this method would discover that
k was constant at call site p but would set k to 1 at call
site 7 because the single-procedure analysis must assume
that ralph could change k as a side effect at call site 8.
We will discuss this problem shortly.

4.3. Symbolic Interpretation

Suppose we take a much more aggressive approach
and build jump functions by symbolic interpretation. A
simple way to view the construction of a symbolic J: is
as follows.

1)
‘4

Make a fresh copy of the procedure containing s.

Replace all input statements by an assignment of
1 to each of the variables read.

3) Replace each call site other than s by an assign-
ment of 1 to each of the actual parameters.

4 Eliminate all statements that cannot affect the
value of the actual parameter passed to z at s
using a traditional dead code eliminator based on
DEF-USE chains such as the one described by Ken-
nedy [Kenn 811.

In practice, we would use a much more efficient tech-
nique for constructing these jump functions, such an an
adaptation of the Reif and Lewis symbolic interpretation
algorithm [ReLe 821.

Using this technique on the example in Figure 1,
we would get the following jump functions.

Jj - 2 *k

Jb - if j-100 then 1000 else i fi
Jb - k

J; =I

J; = 2

Jr, -1

When the algorithm is applied with these jump function,
it will discover that a is passed the constant 2000 and c
is passed the constant 1000 at call site B. Unfortunately,
the information at 7 is not as good. Both J$ and J; are
unknown because of the possible side effects at call site
8. The problem is that we know nothing about the com-
putations performed by ralph . The next section
discusses the possibility of using information from the
solution of other interprocedural data flow problems to
sharpen our analysis.

4.4. Side Effect Information

A particularly interesting aspect of the computa-
tion of jump functions is their dependence on the solu-
tion of other interprocedural data flow problems. Sup-
pose the procedure p contains a call to another pro-
cedure q on every path through p to call site s. How
does this affect the jump function for s? In the absence
of better information, we must assume that every formal
parameter to q and every global variable is changed
upon return from q. Hence, any jump function that
depends upon one of those variables must be set to 1.

However, we can use the results of interprocedural
side effect analysis to obtain better information. Sup-
pose we can formulate jump functions to conditionally

157

depend on whether certain variables may be modified by
some procedure invocation. For example, suppose the
value passed to a parameter at call site s depends on
whether or not another variable is modified at call site t.

Jl=if CZEMOD(~) then 1 else a+b fi

where MOD(t) is the set of variables that may be
modified as a side effect of invoking the procedure called
at t. In the IRn environment, the program compiler
develops a complete collection of MOD sets for the pro-
gram based on information gathered by the source editor
and the program composition editor [CoKe 84, CoKT 85,
CoKT 861. This information could be very useful for
interprocedural constant propagation. In our example,
the jump functions for a and 6 at 7 become:

J; - if mEMOD@) then 1
else if j-100 then 2ooO else 2*i fi

J; - if ~EMoD(~) then 1 else k fi

This would lead to the discovery that c was constant at
7 and hence c-1060 on entry to ralph In Figure 6, we

show the code resulting from these improvements. The
assignment in ralph has been simplified and, since we
know that parameters a and c to ralph are not modified,
it is safe to propagate constant values into the
corresponding actual parameter positions at call sites p
and 7. Notice also that we can eliminate all references
to 1 in joe by propagating its constant value into the
write statement.

procedure main;
a: call j0e(10,100,1000);

end;

procedure joefi, j, k);

m- 1000;
8: call raIph(2000, m, 1000);

o-m*2;
q- 2;

7: call ralph(0, q, 1000);
write q, m, 0, 2000;

end;

procedure ralph(a, b, c);
b - a/2;

end;

Figure 8. Using symbolic jump functions.

It is important to note that the MOD sets for the
context program are likely to change between the time
the source editor creates the jump function and the time
the constant propagation problem is solved. Care must
be taken to ensure that the constant propagation phase
uses the current value of MOD rather than the old value.
If the compiling system performs side effect analysis
before constant propagation, up-to-date information
about side effects will be available when the jump func-
tions are evaluated. Without the ability to build jump
functions that are conditional on MOD information in this
way, the editor would be forced to make J+J~d.

4.5. Returned Constants

The inability of the constant propagation algo-
rithm to determine the value of the parameter returned
by Ralph through formal parameter 6 illustrates a
further problem. This situation could be improved by
creating the analogue of jump functions for values
returned by a procedure call. Let R; be a function,
defined over the same lattice as the jump functions, that
provides a value for the output parameter z of procedure
p in terms of the input parameters to p. We shall call
this a return jump function. A method based on symbolic
interpretation would discover that

R,b,,,* - a * c/2000.

If we then permitted J: for example 1 to be redefined as

J; = if mEMoD th en R!~,A(JB,J$,J$)X~
else if j-100 then 2000 else 2 *i fi

the technique would discover that a is passed the con-
stant value 2000 at 7 as well as ,B. Hence a-2000 on

procedure main;
cv: call joe(lO,lOO,lOOO);

end;

procedure joe(i, j, k);
write 1000, 1000,2000,2000;

end;

procedure ralph(a, b, c);
b-1000;

end;

Figure 7. Using return jump functions.

158

entry to talph and it always sets b-1000 on exit. Figure
7 depicts the example program after each individual rou-
tine has been optimized in the light of interprocedural
constants and return jump functions. Since the values of
q,wa,o and 1 have been substituted in the write state-
ment, all other statements in joe can be eliminated.
This result is pleasingly close to the one for inline substi-
tution.

It may occur to the reader that return jump func-
tions might be defined in terms of other return jump
functions. There is no reason that this should not per-
mitted as long as the system is careful to insure against
infinite invocation loops. In the implementation dis-
cussed in the next section, we permit an arbitrary use of
return jump functions, relying on the acyclic call graph
to limit the number of invocations.

Clearly the return jump functions can also be very
useful in optimizing code for a single module. They pro-
vide a clean representation of the effect of executing a

procedure in the presence of values specific to the call
site. Because of this, they can be used to provide some
of the benefits of inline expansion. We plan to evaluate
their usefulness in the optimizing module compiler for
the IR” environment.

5. Implementation

We have implemented essentially the full symbolic
constant propagation system using both side effect and
returned constant information in the Rice vectorizing
compiler system, called PFC [AlKe 841. In this section
we describe some of the details of that implementation.

PFC is a monolithic system which accepts all the
modules of a program and analyzes them in two passes.
The first pass builds the call graph and records the local
information needed to support side effect analysis, alias
analysis and constant propagation. The next pass com-
putes interprocedural information by solving data flow
problems on the program’s call graph. Finally, each pro-
cedure is individually vectorized using the computed
interprocedural information,

In propagating constants, the jump functions are
represented by expression trees, in which interior nodes
are labelled with arithmetic operators and leaves are
labelled with constants and variables. The variables are
either scalar forma1 parameters or scalar COMMON vari-
ables. These expressions are initially built after parsing
but before interprocedural side effect analysis informa-
tion or aliasing information is available.

The expressions also contain two types of
“dummy” operator nodes. The first type represents a
point where the “value” computed by the subtree of the
dummy node was passed to a subroutine call. It consists
of the index of an edge in the call graph representing
that call site and an integer indicating which parameter
position it held. The presence of such an operator indi-
cates that the interprocedural MOD information must be
interrogated to determine whether that value is modified
as a side effect of the call.

The second type of dummy operator indicates that
a parameter or COMMON variable was used in construct-
ing the expression tree. Expressions containing this
operator can be “invalidated” (or made nonconstant) if
later passes reveal that the variable is aliased. Even
though the jump functions are constructed as a part of a
monolithic process that examines the whole program at
once, it is useful to arrange the evaluation of the jump
function to interrogate the interprocedural MOD and alias
information because it avoids an extra pass over the
source of the individual modules. If this were not done,
PFC would need to reread the source after computing
MOD and alias information to construct the jump func-
tions. Hence, the method designed for use in a program-
ming environment is also suitable for a more traditional
compiling framework.

In addition to jump functions that map from con-
stants available upon procedure entry to values avail-
able at call sites, return jump functions are also con-
structed. In addition to the advantages already stated,
this permits a natural treatment of BLOCK DATA subrou-
tines in Fortran. If special dummy calls to the BLOCK
DATA routines are inserted at the beginning of each pro-
cedure that uses the COMMON blocks they initialize,
return jump functions provide a rich source of constants
to be propagated throughout the program. Since BLOCK
DATA subroutines are the only way to initialize common
blocks in Fortran, this is a particularly useful technique
for that language.

Once MOD information is available, all of the
expression trees are traversed and if the first type of
dummy node is encountered, then the call site and
parameter position are checked to see if the actual
parameter could be modified by the call site. If so, that
subtree is replaced by the output expression of the rou-
tine with the variables in the output expression replaced
with appropriate input values at the call site. A side
benefit of this approach is that if a subroutine initializes
some constants, those constant values will be detected
and propagated to other routines.

159

In this implementation, strongly-connected regions
in the call graph are identified to support the algorithm
for computing interprocedural side effects. For most
Fortran 77 programs, the call graph will be acyclic, per-
mitting the procedures to be processed in reverse topo-
logical order, sometimes called reuerse invocation order
[Alle 741, to derive a solution to the side effect problem
in linear time. The use of reverse invocation order also
benefits constant propagation because jump functions
need not be checked any further when a dummy node is
replaced with the output expression corresponding to a
procedure invocation. Parameters modified inside a
recursive region are assumed to be variant. Any vari-
able involved in an alias with a variable which is
modified is assumed to be nonconstant.

Once the effects of aliasing and the side effects of
external procedure calls have been incorporated into the
expression trees representing the jump functions, the
actual propagation is straightforward. The strongly con-
nected regions are visited in topological order and each
procedure in each region is processed. If every incoming
edge assigns a variable the same constant value, then
that variable is deemed constant with that value at pro-
cedure invocation. Otherwise the variable is assigned
the special value 1. Finally, each edge in the procedure
is visited and the expression trees evaluated to yield
values for the associated parameters.

This implementation differs from the general algo-
rithm of Section 3 in that it will not identify constants
that are passed into a recursive region then passed
around a set of recursive calls. This is because the imple-
mentation was undertaken before we discovered the
“optimistic” algorithm of Figure 4. A straightforward
revision of the implementation to use the optimistic
algorithm is underway. In any case, this deficiency is
less important for Fortran, because the current standard
precludes dynamic recursion.

We have not yet tried the system on a large
variety of programs, so it would be premature to report
any empirical evidence about the value of interpro-
cedural constant propagation. We plan to report these
results as a part of a general study of interprocedural
data flow analysis in PFC.

6. Conclusions

We have presented an efficient procedure for com-
puting interprocedural constants in a programming
environment. The method is based on an algorithm
adapted from the single-procedure methods of Reif and
Lewis [ReLe 821 and Wegman and Zadeck [WeZa 851.

The approach is linear in the size of the call graph if we
assume that the number of input parameters to each
procedure is bounded, that the jump functions all have
bounded support, and that the evaluation time for each
jump function is bounded by a constant.

An experimental implementation in the Rice vec-
torization system PFC has established the practicality of

the approach. We are currently implementing the algo-
rithm in the program compiler of the lRn programming
environment. We believe that the technique presented
here will approach the method of inline substitution for
effectiveness. We expect to evaluate this algorithm in
two ways: directly in our own compiler and by using lRn
as a preprocessor to generate modified source for compi-
lation by existing optimizing compilers like IBM’s VS
Fortran and DEC’s VMS Fortran.

There is one important extension to the technique
presented here. The constant propagation lattice can be
replaced by any lattice of bounded depth, yielding an
algorithm that might be used for other purposes such as
propagating inequalities. Such information could be
used to improve the performance of vectorization sys-
tems like PFC, in which the knowledge that a parameter
is greater than “0” or greater than “1” might make an
otherwise unsafe transformation possible [AlKe 841.

7. References

[AhUl 771

[Alle 74)

(AIKe 841

[Ball 791

[Coop 83)

A. Aho and J. Ullman. Principles of Com-
piler Design. Addison-Wesley. 1977.

F. E. Allen. Interprocedural data flow
analysis. Proceedings IFIP Congress 74,
North-Holland Publishing Co.: Amsterdam.
1974.

J. R. Allen and K. Kennedy. PFC: a pro-
gram to convert Fortran to parallel form.
Supercomputers: Design and Application8 (K.

Hwang, ed.). IEEE Computer Society Press,
1984.

J. E. Ball. Predicting the effects of optimi-
zation on a procedure body. Proceedings of
SIGPLAN ‘79 Symposium on Compiler Con-

struction, SIGPLAN Notices, 14(8). 1979.

K. D. Cooper. Interprocedural information
in a programming environment. Ph.D.
Dissertation, Department of Mathematical
Sciences, Rice University, Houston, TX.
May 1983.

160

[Coop 851

[CoKe 841

(CoKT 851

[COKT 861

]Dong 801

[DBMS 791

[HoKe 851

[KaUI 771

[Kenn 781

[Kenn 811

[Kild 73)

[Myer 811

K. D. Cooper. Analyzing aliases of reference
forma1 parameters. Proceedings of Twelfth
POPL. 1985.

K. D. Cooper and K. Kennedy. Efficient
computation of flow insensitive interpro-
cedural summary information. Proceedings
of SIGPLAN ‘84 Symposium on Compiler
Construction, SIGPLAN Notices, 19(6). 1984.

K. D. Cooper, K. Kennedy, and L. Torczon.
The impact of interprocedural analysis and
optimization on the design of a software
development environment. Proceedings of
SIGPLAN ‘85 Symposium on Language
Issues in Programming Environment, SIG-
PLAN Notices, 20(7). July 1985.

K. D. Cooper, K. Kennedy and L. Torczon.
Optimization of compiled code in the lRn
programming environment. Proceedings of
the Nineteenth Annual Hawaii International
Conference on Systems Sciences. January,
1986.

J. Dongarra. LINPACK working note #3:
FORTRAN BL4S timing. Technical Report
ANL-80-24, Argonne National Laboratory,
February 1980.

J. J. Dongarra, J. R. Bunch, C. B. Moler,
and G. W. Stewart. LINPACK Users’
Guide. SIAM, Philadelphia. 1979.

R. T. Hood and K. Kennedy. A program-
ming environment for Fortran. Proceedings
of the Eighteenth Annual Hawaii Interna-
tional Conference on Systems Sciences, 1985.

J. Kam and J. Ullman. Monotone data flow
analysis frameworks. Acta Injormatica, 7.
1977.

K. Kennedy. Use-definition chains with
applications. J. Computer Languages, 3(3).

1978.

K. Kennedy. A survey of data flow analysis
techniques. Program Flow Analysis: Theory
and Applications (S.S. Muchnick and N.D.
Jones, eds.). Prentice-Hall. 1981. pp. 5-54.

G. Kildall. A unified approach to global
program optimization. Proceedings of First
POPL. 1973.

E. W. Myers. A precise inter-procedural
data flow algorithm. Proceedings of Eighth

POPL. 1981.

[ReLe 821 J. H. Reif and H. R. Lewis. Symbolic
evaluation and the global value graph. TR
37-82, Aiken Computation Laboratory, Har-
vard University. 1982.

[Sche 771 R. W. Scheifler. An analysis of inline substi-
tution for a structured programming
language. Communications of the ACM,

20(9). 1977.

(Tort 851 L. Torczon. Compilation dependences in an
ambitious optimizing compiler. Ph.D.
Dissertation, Department of Computer Sci-
ence, Rice University, Houston, TX. May
1985.

[WeZa 85) M. Wegman and F. K. Zadeck. Constant
propagation with conditional branches.
Proceedings of Twelfth POPL. 1985.

161

