
Interprocedural Constant Propagation 

David Callahan 
Keith D. Cooper 

Ken Kennedy 
Linda Torczon 

Department of Computer Science+ 
Rice University 
Houston, Texas 

Abstract 

In a compiling system that attempts to improve code for a whole program by optimizing across pro- 
cedures, the compiler can generate better code for a specific procedure if it knows which variables will 
have constant values, and what those values will be, when the procedure is invoked. This paper 
presents a general algorithm for determining for each procedure in a given program the set of inputs 
that will have known constant values at run time. The precision of the answers provided by this 
method are dependent on the precision of the local analysis of individual procedures in the program. 
Since the algorithm is intended for use in a sophisticated software development environment in which 
local analysis would be provided by the source editor, the quality of the answers will depend on the 
amount of work the editor performs. Several reasonable strategies for local analysis with different lev- 
els of complexity and precision are suggested and the results of a prototype implementation in a vec- 
torizing Fortran compiler are presented. 

1. Introduction 

Fortran programmers have learned to expect 
optimizing compilers that generate excellent code for a 
single procedure. Twenty-five years of development has 
led to a well-understood collection of principles for build- 
ing optimizing compilers and almost every commercially 
available computer system now offers one. One problem 
remains, however. The quality of the code produced by 
a good Fortran compiler declines considerably in the 
presence of calls to independently compiled procedures. 
The main reason for this is that the compiler must make 
worst case assumptions about what happens on the side 
of the interface that it cannot see. For example, when 
compiling the called procedure, the standard linkage 
convention requires that all the registers be saved and 
restored, even though many of them may not be in use 
at the point of call. 

Intetprocedural data flow analysis attempts to 
overcome this problem by propagating information 
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about data usage and creation among the procedures 
that form a single program, so that the compiler can 
take advantage of contextual information to generate 
better code for any single procedure. An important 
interprocedural data flow analysis problem is the deter- 

mination of which parameters’ to a given procedure will 
be constant at run time. Based on this information, a 
compiler could perform a number of useful optimizations 
that are unavailable to it in current compilation 
schemes. For example, many subroutines in the LINPACK 
library [DBMS 791 have a parameter to indicate the 
stride of indexing for some array. In the typical program 
constructed from LINPACK, this stride is passed the 
integer constant “1”. In the absence of better informa- 
tion, the compiler must assume that the parameter could 
take on any value, precluding the application of many 
optimizations. In particular, the value “0” would pre- 
clude vectorization of array operations within the pro 
cedure and a non-constant value would preclude loop 
unrolling, both of which have proven effective in improv- 
ing performance of programs constructed from LINPACK 

[Dong 801. 

t This research has been supported by the National Sci- 
ence Foundation through grants MCS 81-21844 and MCS 83- 
03638 and by IBM Corporation. 

‘Here we extend the term parameter to cover global or 
imported variables. 
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Constant propagation is a code improvement tech- 
nique in which the compiler reasons about the values 
that variables may assume at run time. If the compiler 
is able to establish that a variable will always have a 
known constant value at a particular use point it may 
replace an occurrence of that variable by an occurrence 
of the constant itself. Whenever all the inputs to an 
operation are replaced by known constant values, the 
operation may be performed at compile time and the 
constant result further propagated to other uses. When 
performed in a systematic way, constant propagation 
can lead to the evaluation at compile time of many 
operations that might be repeatedly performed at run 
time. This can significantly improve the performance of 
the compiled program. 

Techniques for constant propagation within a sin- 
gle procedure have been widely discussed in the litera- 
ture ]Kild 73, Kenn 78, Kenn 81, WeZa 85). However, 
these techniques have not been extended to propagate 

constants across procedure calls2 for reasons of practical- 
ity. In order to compute which variables are constant at 
every invocation of a given procedure, the system must 
have knowledge of the behavior of every procedure in the 
program. In a traditional separate compilation system, 

the compiler doesn’t even know which procedures the 
program includes until the link editing step immediately 
prior to execution. Even if the compiler had this 
knowledge, without a database similar to those found in 
a programming environment, it would need to examine 
every procedure in the program in order to compile just 
one of them. This appears to be prohibitiveIy expensive. 

In an attempt to address these problems, the IRn 
project at Rice University has been developing a pro- 
gramming environment for Fortran that supports the 
development, compilation and optimization of whole pro- 
grams [HoKe 85, CoKT 85, CoKT 861. A central goal of 
this project is to experiment with the systematic 
development of interprocedural data flow information. 
In IR’, the eoutce editor provides local information about 
the behavior of individual subroutines and a program 
composition editor records which subroutines comprise 
the program. Once local information is available and 
the program composition is known, the computation of 

2A notable exception is the paper by Wegman and Za- 
deck (WeZa 851, which describes a single-procedure algorithm 
that can be used to evaluate the effectiveness of inline expan- 
sion of a called procedure. The technique propagates the 
known constants at a single call site into the called procedure 
to determine the size of the code that would result after inline 
expansion and useless code elimination. This approach does 
not extend naturally to handle procedures that are not ex- 
panded inline and may be called from more than one site. 

interprocedural data flow information is the responsibil- 
ity of the program compiler. Most of the required inter- 
procedural information is developed by solving data flow 
analysis problems on the program’s call graph. Since the 
call graph of a program is likely to be large, it is impor- 
tant for the program compiler to employ efficient algo- 
rithms for solving these data flow problems. Previously, 
Cooper and Kennedy have reported nearly-linear algo- 
rithms for the determination of side effects [CoKe 841 
and potential aliases [Coop 851. 

In this paper, we present a scheme for efficiently 
determining which variables have known constant values 
on invocation of the various procedures in a given pro- 
gram. Of necessity, our method is approximate. Kam 
and Ullman have shown that a precise solution to the 
simpler problem of intraprocedural constant propagation 
is not computable [KaUI 77). Even the approximate 
problem commonly solved by compilers within a single 
procedure is intractable in an interprocedural setting 
because it has the property of flow sensitivity (Myer 811. 
Therefore, we present a collection of methods that all 
use the same algorithm for propagating constants across 
the call graph but differ in the precision of the informa- 
tion used to model the behavior of individual procedures. 
This collection of algorithms clearly exhibits the tradeoff 
between complexity of local analysis by the source editor 
and the precision of the approximate sets of constants - 
more effort by the editor leads to finding a larger set of 
variables with known constant values. 

The discussion begins in Section 2 with a presenta- 
tion of a very precise method based on inline substitu- 
tion and a discussion of the drawbacks of this approach. 
The algorithm we propose to use in the IRn environment 
is presented in Section 3. It is based on an efficient algo- 
rithm for constant propagation in a single procedure due 
to Reif and Lewis [ReLe 821 as adapted by Wegman and 
Zadeck (WeZa 851. Our algorithm models the body of a 
procedure with functions that describe the values of 
variables at a call site in terms of the values of variables 
on entry to the procedure containing the call. Section 4 
describes several methods for defining these functions 
and contrasts the completeness of the resulting constant 
sets. Section 5 describes our experience with an actual 
implementation of interprocedural constant propagation 
in a Fortran vectorizer. Finally, conclusions and future 
research are discussed in Section 6. 
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2. Mine Substitution 

Perhaps the most obvious way to solve the prob- 
lem is to convert the program into one large procedure 
using systematic inline substitution and employ an 
efficient single-procedure method such as the Reif-Lewis 
algorithm [ReLe 821 or the Wegman-Zadeck algorithm 
[WeZa 851. Recursive procedures can be handled in this 
scheme by introducing an explicit stack, combined with 
unrolling. This approach is very effective at propagating 
constants because, in effect, each call site has its own 
private copy of the called procedure. Hence, constant 
propagation is not inhibited by having to merge con- 
stant sets from several call sites to produce information 
for a procedure that is invoked from more than one loca- 
tion. Furthermore, inline substitution makes parameter 
aliasing explicit in the program, permitting the analysis 
to be even more precise. When applied to the example 
in Figure 1, the method based on inline substitution will 
yield the program in Figure 2. 

In spite of its effectiveness, we reject this tech- 
nique for practical use on several grounds. First, the 
growth in the program’s code size after substitution is 
potentially exponential [Sche 771. Since the performance 
of the best algorithms for single-procedure constant pro- 
pagation is roughly linear in the size of the procedure, 
the overall cost of constant propagation is potentially 
exponential in the size of the unexpanded program. 

procedure main; 

0: call j0e(lO,lOO,lOOO); 
end; 

procedure jotfi, j, k); 
1=2*k; 
if (j-100) then m = lO*j else m = i; 

j3: call ralph(l, m, k); 
o-m*2; 
q- 2; 

7: call ralpk(o, q, k); 
write q, m, 0, 1; 

end; 

procedure ralph(a, b, c); 
b=a*c/2000; 

end; 

Figure 1. An example problem 

procedure main; 

write 1000, 1000,2000,2000; 

end; 

Figure 2. After inline substitution. 

Second, systematic use of inline expansion makes the 
program difficult to maintain. After each change to a 
single procedure, the system must either re-expand the 
program or attempt to recreate the change in the 
expanded, optimized program, a process that is likely to 
be very expensive. Therefore, we seek a method that 
performs constant propagation on the whole program 
while keeping the individual procedures separate. Furth- 
ermore, that method should have an efficiency that is 
proportional to the aggregate size of all the code in the 
program. In return for achieving these goals, we are wil- 
ling to sacrifice some constant propagation effectiveness. 

In spite of its drawbacks, inline substitution 
deserves study because it provides us with a standard by 
which to measure the effectiveness of other techniques. 
Furthermore, it can be extremely valuable as an optimi- 
zation technique if used in a controlled way [Ball 791. In 
fact, interprocedural constant propagation can provide 
the information required to efficiently determine when 
inline substitution can be profitably employed [Coop 88, 
WeZa 851. In the next section we present the general 
strategy used in the IR’ programming environment to 
propagate constants across procedure boundaries 
without using inline expansion. 

3. General Approach 

The goal of interprocedural constant propagation 
is to annotate each procedure in the program with a set 
CONSTANTS(p) of <name,vahLe> pairs. A pair <z,u> E 
CONSTANTS(~) indicates that variable z has value v at 
every call site that invokes p. This set approximates 
reality; every pair in CONSTANTS(~) denotes a run-time 
constant, but not all run-time constants can be found. 

For the purpose of computing CONSTANTS(~) we 
formulate the problem in a lattice theoretic framework. 
With each entry point p we associate a function Vu1 
that maps formal parameters to elements of the usual 
constant propagation lattice L. Each element of L is one 
of three types: 
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. a lattice top element T, 

. a lattice bottom element 1, or 

. a constant value c 

The structure of this lattice is defined by the following 
list of rules for the lattice meet operation pI: 

1) TA a - a for any lattice element a 

2) 1 A a = 1 for any lattice element a 

3) CA c - c for any constant c 

4) clA c2-1 if cl+ c2 

Figure 3 depicts the constant propagation lattice graphi- 
calfy. While it is an infinite lattice, it has bounded 
depth. In particular, if a variable is modified by assign- 
ing it a new value computed by taking the meet of its 
old value and some other lattice element, its value can 
be reduced at most twice. 

For any formal parameter z, let Vu(z) represent 
the best current approximation to the value of z on 
entry to the procedure. After the analysis is complete, if 
Vul(z)-1, the parameter is known to be non-constant; if 
Va’dyz)-c, the parameter has the constant value c. The 

value T is used as an initial approximation for all 
parameters; a parameter retains that value only if the 

procedure containing it is never called. Once we have 
computed VIZ(Z) for every parameter z of procedure p, 
CONSTANTS(P) is simply the set of parameters for which 
Val is equal to some constant value. 

To compute the Vu1 sets, we associate with each 

ci-1 Cl G+1 . . 

1 

Figure 3. The constant propagation lattice. 

procedure PropagateConstant; 

var worklist : set; 

begin 
{ Initialize } 
for each procedure p in the program do 

for each parameter z to p do 
vur(z) :- T; 

for each call site 8 in the program do 
for each formal parameter y 

that receives a value at s do 
V4Y) := vayY)AJJ; 

worklist := 0; 

for each procedure p in the program do 
for each parameter z to p do 

worklist := worklist u {z}; 

{ Iterate } 
while worklist + 0 do begin 

let y be an arbitrary parameter in worklist; 
worklist :- worklist - { y}; 
let p be the procedure containing y; 
{ Update worklist ) 
for each call site s E p and parameter z 

such that y E support(J,3 do begin 
0ldVal :- Val( z); 
Val(z) := Val(z)r\ J:; 
if Val(z)<oldVal then 

worklist :- worklist IJ {z}; 
end 

end 
end 

Figure 4. General algorithm 

call site s in a given procedure p a jump function’ J, 

that gives the value of each parameter at s as a function 

of the formal parameters of the procedure p”. J, is actu- 
ally a vector of functions, one for each formal parameter 
of the procedure invoked at the call site. For each for- 
mal parameter y of the procedure called at 8, the com- 
ponent function J,’ computes the best approximation 
within the lattice L to the value passed to y at call site 
s, given the values passed to formal parameters of p. 
The support of the function J,’ is the exact set of formal 

3The term jump function originated with John Cocke 
and is used here for historical reasons. 

‘For the purposes of this discussion, ignore the issue of 
global variables used as parameters. These can be treated as 
an extended set of parameters. 
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parameters of p that are used in the computation of J,Y 

Given these definitions, the interprocedural con- 
stant propagation problem can be solved using an analo- 
gue of the Wegman-Zadeck method for constant propa- 
gation in a single procedure [WeZa 851. The interpro- 
cedural algorithm, shown in Figure 4, assumes that each 
parameter used in the program has a unique name, so 
the procedure to which it is a parameter can be uniquely 
determined from the parameter name. The algorithm 
uses a worklist of parameters to be processed. It is 
guaranteed to converge because the lattice is of finite 
depth and a parameter is only added to the worklist 
when its value has been reduced. Since the value of any 
parameter can be reduced at most twice, each procedure 
parameter can appear on the worklist at most two times. 

If eost(J:) is the cost of evaluating J,‘, the total 
amount of work done by the computation is proportional 
to 

s I 

where s ranges over all call sites in the program and z 
ranges over all formal parameters that are bound by the 
call at 8. This bound is based on the observation that 
Jf is evaluated each time some parameter in support( J:) 
is reduced in value. Because of the structure of the lat- 
tice, a parameter can be reduced in value at most twice. 
If the cost of evaluating each J,’ is bounded by a con- 
stant, implying that the size of the support is also 
bounded by a constant, the cost is proportional to the 
sum over each edge in the call graph of the number of 
parameters passed along that edge. 

The tricky part of this method is the construction 
of the jump functions J,. The next section describes 
three methods for implementing them. 

4. Jump Functions 

In developing algorithms for the construction of 
jump functions, we should keep the following principles 
in mind. 

. For any parameter z at a call site s that can be 
determined to be constant by inspection of the 
source of the procedure containing s, set JJ=c 
where c is the known constant value. This implies 
that support( Jf) = 0. 

. For any parameter z at call site s that cannot be 
determined as a function of input parameters to 
the procedure containing s, set J: to be 1. For 
example, z might be passed a value that is read in 
from an external medium. Again, this implies that 

SUPPO~ Jbl) = ia 
. For any parameter z at call site s that is deter- 

minable at compile time but not a constant. J: is 
a function of parameters to the calling procedure 
and local constants of the calling procedure. In 
this case, support( Jf) is non-empty. 

Taken together, these principles gives rise to a range of 
strategies for constant propagation. The boundary 
between these three classes of values depends on the 
sophistication of the techniques used in the source editor 
to determine jump functions. If the complexity of com- 
puting a particular jump function exceeds the capabili- 
ties of the editor, it can simply give up and assign 
J,’ = 1. Torczon discusses three strategies of different 
complexity for developing jump functions [Tort 851 - 
one that only finds jump functions that are constant or 
bottom, one that also discovers jump functions that pass 
a parameter through to a call site without change, and a 
third that employs a sophisticated symbolic interpreta- 
tion algorithm such as the one proposed by Reif and 
Lewis [ReLe 821. We describe each of these in the follow- 
ing sections. 

4.1. All or Nothing 

A particularly easy to implement technique would 
have the source editor employ a single-procedure con- 
stant propagation technique, such as the Wegman- 

procedure main; 

0: call j0~10,100,1000); 
end; 

procedure joe(i, j, k); 

192ooo; 
m- 1000; 

B: call ralph(l, m, k); 
o-m*2; 
q-2; 

7: C811 talph(0, q, k); 
write q, m, 0, 1; 

end; 

procedure ralph(a, b, c); 
b=a#c/2000; 

end; 

Figure 5. After all-or-nothing analysis. 
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Zadeck algorithm to determine which variables are con- 
stant at each call site, under the assumption that none 
of the parameters to the routine containing the cali site 
are constant. Then each jump function J,” is set to a con- 
stant value if the analysis determines that z must be 
constant at 8 and to 1 otherwise. This approach would 
find constants that can be propagated over a single call. 
It would miss all constants that must be propagated 
completely through an intermediate procedure. 

In the example of Figure 1,this method would dis- 
cover that i, j and k are constant on entry to joe and 
that b is constant at call site 7 although not at call site 
p. Because procedure joe is analyzed to produce Jb 
before the interprocedural propagation takes place, it 
cannot discover that k is constant at call site ,8, even 
though it is directly passed from the entry to j3. The 
overall effect of the propagated information after optimi- 
zation is shown in Figure 5. 

4.2. Pass Through 

One way to enhance the all-or-nothing technique 
is to recognize those situations when a variable is 
directly passed through a procedure to a call site. This 
case arises in our example because k is passed by joe to 
call site j3. In other words, we would determine that 

Jj = k. 

This is an easy extension to implement because the 
determination can be based on DEF-USE chains [AhUI 77, 
Kenn 781, which are required by the single-procedure 
constant propagation methods. If we trace back from a 
call site 8 to all definition points for variable y, passed 
to x at s, and find that the only such point is the pro- 
cedure entry, we may safely set J+y. 

This enhancement is only slightly more difficult to 
implement than the all-or-nothing method, yet it finds 
constants that are passed through several procedures, a 
common practice in code based upon libraries like LIN- 

PACK. In our example, this method would discover that 
k was constant at call site p but would set k to 1 at call 
site 7 because the single-procedure analysis must assume 
that ralph could change k as a side effect at call site 8. 
We will discuss this problem shortly. 

4.3. Symbolic Interpretation 

Suppose we take a much more aggressive approach 
and build jump functions by symbolic interpretation. A 
simple way to view the construction of a symbolic J: is 
as follows. 

1) 
‘4 

Make a fresh copy of the procedure containing s. 

Replace all input statements by an assignment of 
1 to each of the variables read. 

3) Replace each call site other than s by an assign- 
ment of 1 to each of the actual parameters. 

4 Eliminate all statements that cannot affect the 
value of the actual parameter passed to z at s 
using a traditional dead code eliminator based on 
DEF-USE chains such as the one described by Ken- 
nedy [Kenn 811. 

In practice, we would use a much more efficient tech- 
nique for constructing these jump functions, such an an 
adaptation of the Reif and Lewis symbolic interpretation 
algorithm [ReLe 821. 

Using this technique on the example in Figure 1, 
we would get the following jump functions. 

Jj - 2 *k 

Jb - if j-100 then 1000 else i fi 
Jb - k 

J; =I 

J; = 2 

Jr, -1 

When the algorithm is applied with these jump function, 
it will discover that a is passed the constant 2000 and c 
is passed the constant 1000 at call site B. Unfortunately, 
the information at 7 is not as good. Both J$ and J; are 
unknown because of the possible side effects at call site 
8. The problem is that we know nothing about the com- 
putations performed by ralph . The next section 
discusses the possibility of using information from the 
solution of other interprocedural data flow problems to 
sharpen our analysis. 

4.4. Side Effect Information 

A particularly interesting aspect of the computa- 
tion of jump functions is their dependence on the solu- 
tion of other interprocedural data flow problems. Sup- 
pose the procedure p contains a call to another pro- 
cedure q on every path through p to call site s. How 
does this affect the jump function for s? In the absence 
of better information, we must assume that every formal 
parameter to q and every global variable is changed 
upon return from q. Hence, any jump function that 
depends upon one of those variables must be set to 1. 

However, we can use the results of interprocedural 
side effect analysis to obtain better information. Sup- 
pose we can formulate jump functions to conditionally 
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depend on whether certain variables may be modified by 
some procedure invocation. For example, suppose the 
value passed to a parameter at call site s depends on 
whether or not another variable is modified at call site t. 

Jl=if CZEMOD(~) then 1 else a+b fi 

where MOD(t) is the set of variables that may be 
modified as a side effect of invoking the procedure called 
at t. In the IRn environment, the program compiler 
develops a complete collection of MOD sets for the pro- 
gram based on information gathered by the source editor 
and the program composition editor [CoKe 84, CoKT 85, 
CoKT 861. This information could be very useful for 
interprocedural constant propagation. In our example, 
the jump functions for a and 6 at 7 become: 

J; - if mEMOD@) then 1 
else if j-100 then 2ooO else 2*i fi 

J; - if ~EMoD(~) then 1 else k fi 

This would lead to the discovery that c was constant at 
7 and hence c-1060 on entry to ralph In Figure 6, we 

show the code resulting from these improvements. The 
assignment in ralph has been simplified and, since we 
know that parameters a and c to ralph are not modified, 
it is safe to propagate constant values into the 
corresponding actual parameter positions at call sites p 
and 7. Notice also that we can eliminate all references 
to 1 in joe by propagating its constant value into the 
write statement. 

procedure main; 
a: call j0e(10,100,1000); 

end; 

procedure joefi, j, k); 

m- 1000; 
8: call raIph(2000, m, 1000); 

o-m*2; 
q- 2; 

7: call ralph(0, q, 1000); 
write q, m, 0, 2000; 

end; 

procedure ralph(a, b, c); 
b - a/2; 

end; 

Figure 8. Using symbolic jump functions. 

It is important to note that the MOD sets for the 
context program are likely to change between the time 
the source editor creates the jump function and the time 
the constant propagation problem is solved. Care must 
be taken to ensure that the constant propagation phase 
uses the current value of MOD rather than the old value. 
If the compiling system performs side effect analysis 
before constant propagation, up-to-date information 
about side effects will be available when the jump func- 
tions are evaluated. Without the ability to build jump 
functions that are conditional on MOD information in this 
way, the editor would be forced to make J+J~d. 

4.5. Returned Constants 

The inability of the constant propagation algo- 
rithm to determine the value of the parameter returned 
by Ralph through formal parameter 6 illustrates a 
further problem. This situation could be improved by 
creating the analogue of jump functions for values 
returned by a procedure call. Let R; be a function, 
defined over the same lattice as the jump functions, that 
provides a value for the output parameter z of procedure 
p in terms of the input parameters to p. We shall call 
this a return jump function. A method based on symbolic 
interpretation would discover that 

R,b,,,* - a * c/2000. 

If we then permitted J: for example 1 to be redefined as 

J; = if mEMoD th en R!~,A(JB,J$,J$)X~ 
else if j-100 then 2000 else 2 *i fi 

the technique would discover that a is passed the con- 
stant value 2000 at 7 as well as ,B. Hence a-2000 on 

procedure main; 
cv: call joe(lO,lOO,lOOO); 

end; 

procedure joe(i, j, k); 
write 1000, 1000,2000,2000; 

end; 

procedure ralph(a, b, c); 
b-1000; 

end; 

Figure 7. Using return jump functions. 
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entry to talph and it always sets b-1000 on exit. Figure 
7 depicts the example program after each individual rou- 
tine has been optimized in the light of interprocedural 
constants and return jump functions. Since the values of 
q,wa,o and 1 have been substituted in the write state- 
ment, all other statements in joe can be eliminated. 
This result is pleasingly close to the one for inline substi- 
tution. 

It may occur to the reader that return jump func- 
tions might be defined in terms of other return jump 
functions. There is no reason that this should not per- 
mitted as long as the system is careful to insure against 
infinite invocation loops. In the implementation dis- 
cussed in the next section, we permit an arbitrary use of 
return jump functions, relying on the acyclic call graph 
to limit the number of invocations. 

Clearly the return jump functions can also be very 
useful in optimizing code for a single module. They pro- 
vide a clean representation of the effect of executing a 

procedure in the presence of values specific to the call 
site. Because of this, they can be used to provide some 
of the benefits of inline expansion. We plan to evaluate 
their usefulness in the optimizing module compiler for 
the IR” environment. 

5. Implementation 

We have implemented essentially the full symbolic 
constant propagation system using both side effect and 
returned constant information in the Rice vectorizing 
compiler system, called PFC [AlKe 841. In this section 
we describe some of the details of that implementation. 

PFC is a monolithic system which accepts all the 
modules of a program and analyzes them in two passes. 
The first pass builds the call graph and records the local 
information needed to support side effect analysis, alias 
analysis and constant propagation. The next pass com- 
putes interprocedural information by solving data flow 
problems on the program’s call graph. Finally, each pro- 
cedure is individually vectorized using the computed 
interprocedural information, 

In propagating constants, the jump functions are 
represented by expression trees, in which interior nodes 
are labelled with arithmetic operators and leaves are 
labelled with constants and variables. The variables are 
either scalar forma1 parameters or scalar COMMON vari- 
ables. These expressions are initially built after parsing 
but before interprocedural side effect analysis informa- 
tion or aliasing information is available. 

The expressions also contain two types of 
“dummy” operator nodes. The first type represents a 
point where the “value” computed by the subtree of the 
dummy node was passed to a subroutine call. It consists 
of the index of an edge in the call graph representing 
that call site and an integer indicating which parameter 
position it held. The presence of such an operator indi- 
cates that the interprocedural MOD information must be 
interrogated to determine whether that value is modified 
as a side effect of the call. 

The second type of dummy operator indicates that 
a parameter or COMMON variable was used in construct- 
ing the expression tree. Expressions containing this 
operator can be “invalidated” (or made nonconstant) if 
later passes reveal that the variable is aliased. Even 
though the jump functions are constructed as a part of a 
monolithic process that examines the whole program at 
once, it is useful to arrange the evaluation of the jump 
function to interrogate the interprocedural MOD and alias 
information because it avoids an extra pass over the 
source of the individual modules. If this were not done, 
PFC would need to reread the source after computing 
MOD and alias information to construct the jump func- 
tions. Hence, the method designed for use in a program- 
ming environment is also suitable for a more traditional 
compiling framework. 

In addition to jump functions that map from con- 
stants available upon procedure entry to values avail- 
able at call sites, return jump functions are also con- 
structed. In addition to the advantages already stated, 
this permits a natural treatment of BLOCK DATA subrou- 
tines in Fortran. If special dummy calls to the BLOCK 
DATA routines are inserted at the beginning of each pro- 
cedure that uses the COMMON blocks they initialize, 
return jump functions provide a rich source of constants 
to be propagated throughout the program. Since BLOCK 
DATA subroutines are the only way to initialize common 
blocks in Fortran, this is a particularly useful technique 
for that language. 

Once MOD information is available, all of the 
expression trees are traversed and if the first type of 
dummy node is encountered, then the call site and 
parameter position are checked to see if the actual 
parameter could be modified by the call site. If so, that 
subtree is replaced by the output expression of the rou- 
tine with the variables in the output expression replaced 
with appropriate input values at the call site. A side 
benefit of this approach is that if a subroutine initializes 
some constants, those constant values will be detected 
and propagated to other routines. 
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In this implementation, strongly-connected regions 
in the call graph are identified to support the algorithm 
for computing interprocedural side effects. For most 
Fortran 77 programs, the call graph will be acyclic, per- 
mitting the procedures to be processed in reverse topo- 
logical order, sometimes called reuerse invocation order 
[Alle 741, to derive a solution to the side effect problem 
in linear time. The use of reverse invocation order also 
benefits constant propagation because jump functions 
need not be checked any further when a dummy node is 
replaced with the output expression corresponding to a 
procedure invocation. Parameters modified inside a 
recursive region are assumed to be variant. Any vari- 
able involved in an alias with a variable which is 
modified is assumed to be nonconstant. 

Once the effects of aliasing and the side effects of 
external procedure calls have been incorporated into the 
expression trees representing the jump functions, the 
actual propagation is straightforward. The strongly con- 
nected regions are visited in topological order and each 
procedure in each region is processed. If every incoming 
edge assigns a variable the same constant value, then 
that variable is deemed constant with that value at pro- 
cedure invocation. Otherwise the variable is assigned 
the special value 1. Finally, each edge in the procedure 
is visited and the expression trees evaluated to yield 
values for the associated parameters. 

This implementation differs from the general algo- 
rithm of Section 3 in that it will not identify constants 
that are passed into a recursive region then passed 
around a set of recursive calls. This is because the imple- 
mentation was undertaken before we discovered the 
“optimistic” algorithm of Figure 4. A straightforward 
revision of the implementation to use the optimistic 
algorithm is underway. In any case, this deficiency is 
less important for Fortran, because the current standard 
precludes dynamic recursion. 

We have not yet tried the system on a large 
variety of programs, so it would be premature to report 
any empirical evidence about the value of interpro- 
cedural constant propagation. We plan to report these 
results as a part of a general study of interprocedural 
data flow analysis in PFC. 

6. Conclusions 

We have presented an efficient procedure for com- 
puting interprocedural constants in a programming 
environment. The method is based on an algorithm 
adapted from the single-procedure methods of Reif and 
Lewis [ReLe 821 and Wegman and Zadeck [WeZa 851. 

The approach is linear in the size of the call graph if we 
assume that the number of input parameters to each 
procedure is bounded, that the jump functions all have 
bounded support, and that the evaluation time for each 
jump function is bounded by a constant. 

An experimental implementation in the Rice vec- 
torization system PFC has established the practicality of 

the approach. We are currently implementing the algo- 
rithm in the program compiler of the lRn programming 
environment. We believe that the technique presented 
here will approach the method of inline substitution for 
effectiveness. We expect to evaluate this algorithm in 
two ways: directly in our own compiler and by using lRn 
as a preprocessor to generate modified source for compi- 
lation by existing optimizing compilers like IBM’s VS 
Fortran and DEC’s VMS Fortran. 

There is one important extension to the technique 
presented here. The constant propagation lattice can be 
replaced by any lattice of bounded depth, yielding an 
algorithm that might be used for other purposes such as 
propagating inequalities. Such information could be 
used to improve the performance of vectorization sys- 
tems like PFC, in which the knowledge that a parameter 
is greater than “0” or greater than “1” might make an 
otherwise unsafe transformation possible [AlKe 841. 
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