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Register Allocation

The problem:

assign machine resources (registers, stack locations)
to hold run-time data

Constraint:

simultaneously live  data allocated to different locations

Goal:

minimize overhead of stack loads & stores
and register moves
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Interference graph

Represent notion of “simultaneously live” using
interference graph

• nodes are “units of allocation”

• n1 is linked by an edge to n2 if n1 and n2 are simultaneously
live at some program point

• symmetric, not reflexive, not transitive

Two adjacent nodes must be allocated to distinct locations
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Units of allocation

What are the units of allocation?

• variables?

• separate def/use chains (live ranges )?

• values?

• i.e., variables, in SSA form after copy propagation

x := 5

y := x

x := y + 1

... x ...

x := 3

... x ...
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A bigger example

a := ...

b := ...

c := ...

... b ...

... a ...

d := ...

... d ...

a := ...

... c ...

a := ...

... d ...

... d ...

e := ...

... a ...

... e ...

... b ...

c := ...
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Computing interference graph

Construct as side-effect of live variables analysis

• backwards iterative dfa algorithm

Flow function: identify defs & last uses

LVx := ...y... :

LVif ... :
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Allocating registers using interference graph

Allocating variables to k registers is equivalent to
finding a k-coloring of the interference graph

k-coloring: color nodes of graph using up to k colors,
adjacent nodes have different colors

• optimal graph coloring: NP-complete
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Spilling

If can’t find k-coloring of interference graph,
must spill  some variables to stack,
until the resulting interference graph is k-colorable

Which to spill?

• least frequently accessed variables

• most conflicting variables (nodes with highest out-degree)

Weighted interference graph :

weight(n) =
sum over all references (uses and defs) r of n:

execution frequency of r

Try to spill nodes with lowest weight and highest out-degree,
if forced to spill
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Static frequency estimates

Initial node: weight = 1

Nodes after branch: 1/2 weight of branch

Nodes in loop: 10x nodes outside loop

Dynamic profiles could give better frequency estimates

Just need heuristic ranking of variables
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Simple greedy allocation algorithm

For all nodes, in decreasing order of weight:

• try to allocate node to a register, if possible

• if not, allocate to a stack location

Reserve 2-3 scratch registers to use when manipulating nodes
allocated to stack locations

Craig Chambers 190 CSE 501

Example

Assume 3 registers available

a1

e b

d c

a2 Weight Order:

c
d
a2
b
a1
e
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Improvement #1: add simplification phase

[Chaitin 82]

Key idea:

nodes with < k neighbors can be allocated
after all their neighbors, but still guaranteed a register

So remove them from the graph first

• reduces the degree of the remaining nodes

Must resort to spilling only when all remaining nodes have
degree ≥k
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The algorithm

while interference graph not empty:

while there exists a node with < k neighbors:
remove it from the graph
push it on a stack

if all remaining nodes have³k neighbors, then blocked :
pick a node to spill

(choose node with lowest (spill cost/degree))
remove node from graph
add to spill set

if any nodes in spill set:
insert spill code for all spilled nodes

(insert stores after defs, loads before uses)
reconstruct interference graph, start over

while stack not empty:
pop node from stack
allocate to register



Craig Chambers 193 CSE 501

Example

Assume 3 registers available

a1

e b

d c

a2 Weight Order:

c
d
a2
b
a1
e
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Example

Assume 2 registers available

a1

e b

d c

a2 Weight Order:

c
d
a2
b
a1
e
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“Subsumption”

Twist in Chaitin’s algorithm:
if see x := y , where x  & y  not simultaneously live,
then merge live ranges & eliminate all such copies

+ avoids generating code for simple copies

− can introduce extra spilling

If allocate values instead of variables or live ranges,
then subsumption happens implicitly
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An annoying case

If only 2 registers available ⇒ blocked immediately, must spill

A

D B

C
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Improvement #2: blocked doesn’t mean spill

[Briggs et al. 89]

Key idea:
just because a node has k neighbors
doesn’t mean it will need to be spilled
(neighbors may get overlapping colors)

Algorithm:

Like Chaitin, except:

• when removing blocked node, just push onto stack
(“optimistic spilling”)

• when done removing nodes:

• pop nodes off stack and see if they can be allocated

• really spill only if it can’t be allocated at this stage

Other miscellaneous enhancements
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Improvement #3: live range splitting

Priority-Based Coloring [Chow & Hennessy 84]

Key idea: if a variable can’t be allocated to a register,
try to split it into multiple subranges that can be allocated
separately

• move instructions inserted at split points

• some live range pieces in registers, some in memory
⇒ selective spilling
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Example

Assume 2 registers available

... a ...

c2 := ...

... c 2 ...

a := ...

... a ...

c1 := ...

... c 1 ...

b := ...

... c 1 ...

d1 := ...

... d 1 ...

d2 := ...

... b ...

... d 2 ...

Weight Order:
b
d2
a
c2
c1
d1
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Improvement #4: rematerialization

Idea: instead of reloading value from memory,
recompute it instead,
if recomputation is cheaper than reloading

Simple strategy: choose rematerialization over spilling, if

• can recompute a value in a single instruction, and

• all operands will always be available

Examples:

• constants

• address of global var

• address of var in stack frame
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Performance results

[Briggs et al. 94]

E.g.

For some procedure:

XXX spill instructions before

YYY spill instructions after

YYY is Z% smaller than XXX

• Z ranges between -2% and 48% for “optimistic spilling”

• Z ranges between -26% and 33% for rematerialization

Optimistic spilling a good heuristic

Mixed results for rematerialization
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Register allocation and calls

Simple approach: calling conventions

More sophisticated: interprocedural register allocation
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Calling conventions

Goals:

• fast calls

• pass k arguments in registers, result in register

• language-independent

• support debugger, profiler, etc.

Problematic language features:

• varargs

• passing/returning aggregates

• returning multiple values

• exceptions, setjmp /longjmp
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Callee-save vs. caller-save registers

Need a convention at calls for which registers managed by caller
(caller-save ) and which managed by callee (callee-save )

• SPARC has hardware-save  registers, too

Caller-save:

• caller must save/restore any caller-save registers
live across calls

• callee is free to use these registers w/o any overhead

Callee-save:

• callee must save/restore any callee-save registers it uses

• caller is free to use these registers, even across calls

Hardware-save:

• caller and callee can use freely
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A problem with callee-save registers

Run-time utilities (e.g. longjmp ) and
programming environment tools (e.g. debugger)
need to be able to find contents of registers relative to a
particular stack frame

Caller-save registers are on stack in stack frame at known place

Callee-save registers?
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Impact on register allocator

How should register allocator deal w/ calling conventions?

Simple: calling-convention-oblivious register allocation

• spill all live caller-save registers before call, restore after call

• save all callee-save registers at entry, restore at return

Better: calling-convention-aware register allocation

• incorporate preferred registers for formals, actuals

• call kills caller-save registers

• allocator knows to avoid these registers,
save/restore code turns into normal spills

• live-range splitting particularly useful to split var into
before call/during call/after call segments

• entry is def of all callee-save registers, exit is use

• allocator knows must spill these registers if used in proc
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Exploiting calling convention

Calling-convention-aware register allocator
can customize its usage to use “cheaper” registers

• leaf routines (try to) use only caller-save registers

• routines with calls use callee-save registers for
variables live across calls

Poor man’s interprocedural register allocation
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Rich man’s interprocedural register allocation

Allocate registers across calls to minimize overlap between
caller and callee subgraph

Allocate global variables to registers over entire program

Could do compile-time interprocedural register allocation

+ gains most benefit

− might be expensive

− might require lots of recompilation after programming
change

Or, could do link-time re-allocation

+ low compile-time cost

+ little impact on separate compilation

− cost at link time

− probably less effective
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Wall’s link-time register allocator

[Wall 86]

Compiler does local allocation + planning for linker

• generates call graph info

• generates variable usage info for each proc

• generates register actions
executed by linker if variable allocated to register

Linker does interprocedural allocation & patches compiled code

• determines interference graph among variables

• picks best additional variables to allocate to registers

• executes register actions for those vars to patch compiled
code
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Register actions

Describe changes to code if given var allocated to a register

OPx (var ): replace operand x  with reg allocated to var
RESULT(var ): replace result with reg allocated to var
REMOVE(var ): delete instruction if var  allocated to a reg

Use: for each variable var

• r := load var : REMOVE(var )

• rk := ri op rj:
OP1(var ) if var  loaded into ri,
OP2(var ) if var  loaded into rj,
RESULT(var ) if var  stored from rk,

• store var  := r : REMOVE(var )
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Example

Source code:

w = (x + y) * z;

original code
register actions

x y z w

r1 := load x REMOVE

r2 := load y REMOVE

r3 := r1 + r2 OP1 OP2

r4 := load z REMOVE

r5 := r3 * r4 OP2 RESULT

store w := r5 REMOVE
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A problem

What if loaded value is still live after an overwriting store?

Example: w = y++ * z;

These register actions are broken, if y  in a register!

ry := ry + 1

r2 := load z
r1 := ry  * r2 // ry  reads updated y  value, not original
store w := r1

original code
register actions

y z w

r1 := load y REMOVE

r2 := r1 + 1 OP1,
RESULT

store y := r2 REMOVE

r2 := load z REMOVE

r1 := r1 * r2 OP1 OP2 RESULT

store w := r1 REMOVE
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Solution

Need two more actions:
LOAD(var ): replace load with move from reg holding var
STORE(var ): replace store with move to reg holding var

Use LOAD(var ) instead of REMOVE(var ) if
var  is stored into while result of load is still live

Use STORE(var ) instead of REMOVE(var ) if
rhs is stored into more than one variable

Example: w = x = y++ * z;

original code
register actions

x y z w

r1 := load y LOAD

r2 := r1 + 1 RESULT

store y := r2 REMOVE

r2 := load z REMOVE

r1 := r1 * r2 OP2 RESULT

store x := r1 STORE OP1

store w := r1 REMOVE
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Link-time operations

Construct weighted call graph from compiler tables

• weights can come from static estimates or profile info

• each proc annotated with list of used local vars

Traverse call graph bottom-up, assigning locals to groups
(a kind of interference graph)

• no simultaneously-live locals in same group

• each global in its own group

• group weighted by sum of members’ weights

• recursion & indirect calls pose complications

Allocate groups to registers in decreasing order of weight

Run register actions during code relocation to improve code
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Example

Call graph:

Groups:

v11,v12

v5, g1 v9, v10

v3,v4,g1,g2

v1,v2, g1

v6, v7, v8
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Possible improvements

Use real profile data to construct weights

Do intraprocedural register allocation at compile-time

Track liveness info for vars at each call site

Track intraprocedural interference graph

Use real interference graph to run link-time allocation
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Results

DECWRL Titan RISC processor: 64 registers

Basic experiment:

• local compile-time allocation uses 8 registers

• interprocedural link-time allocator uses 52 registers

• simple static frequency estimates

• smallish benchmark programs

⇒ 10-25% speed-up over local allocation alone

Small improvements (0-6%) with real profile data

Small improvements (0-5%) if use intraprocedural allocation too

• more pronounced for larger, real benchmarks

Less benefit if fewer registers available for global allocation
e.g. 5-20% for 8 global registers

Link-time + local better than intraprocedural register allocation


