
Craig Chambers 181 CSE 501

Register Allocation

The problem:

assign machine resources (registers, stack locations)
to hold run-time data

Constraint:

simultaneously live data allocated to different locations

Goal:

minimize overhead of stack loads & stores
and register moves

Craig Chambers 182 CSE 501

Interference graph

Represent notion of “simultaneously live” using
interference graph

• nodes are “units of allocation”

• n1 is linked by an edge to n2 if n1 and n2 are simultaneously
live at some program point

• symmetric, not reflexive, not transitive

Two adjacent nodes must be allocated to distinct locations

Craig Chambers 183 CSE 501

Units of allocation

What are the units of allocation?

• variables?

• separate def/use chains (live ranges)?

• values?

• i.e., variables, in SSA form after copy propagation

x := 5

y := x

x := y + 1

... x ...

x := 3

... x ...

Craig Chambers 184 CSE 501

A bigger example

a := ...

b := ...

c := ...

... b ...

... a ...

d := ...

... d ...

a := ...

... c ...

a := ...

... d ...

... d ...

e := ...

... a ...

... e ...

... b ...

c := ...

Craig Chambers 185 CSE 501

Computing interference graph

Construct as side-effect of live variables analysis

• backwards iterative dfa algorithm

Flow function: identify defs & last uses

LVx := ...y... :

LVif ... :

Craig Chambers 186 CSE 501

Allocating registers using interference graph

Allocating variables to k registers is equivalent to
finding a k-coloring of the interference graph

k-coloring: color nodes of graph using up to k colors,
adjacent nodes have different colors

• optimal graph coloring: NP-complete

Craig Chambers 187 CSE 501

Spilling

If can’t find k-coloring of interference graph,
must spill some variables to stack,
until the resulting interference graph is k-colorable

Which to spill?

• least frequently accessed variables

• most conflicting variables (nodes with highest out-degree)

Weighted interference graph :

weight(n) =
sum over all references (uses and defs) r of n:

execution frequency of r

Try to spill nodes with lowest weight and highest out-degree,
if forced to spill

Craig Chambers 188 CSE 501

Static frequency estimates

Initial node: weight = 1

Nodes after branch: 1/2 weight of branch

Nodes in loop: 10x nodes outside loop

Dynamic profiles could give better frequency estimates

Just need heuristic ranking of variables

Craig Chambers 189 CSE 501

Simple greedy allocation algorithm

For all nodes, in decreasing order of weight:

• try to allocate node to a register, if possible

• if not, allocate to a stack location

Reserve 2-3 scratch registers to use when manipulating nodes
allocated to stack locations

Craig Chambers 190 CSE 501

Example

Assume 3 registers available

a1

e b

d c

a2 Weight Order:

c
d
a2
b
a1
e

Craig Chambers 191 CSE 501

Improvement #1: add simplification phase

[Chaitin 82]

Key idea:

nodes with < k neighbors can be allocated
after all their neighbors, but still guaranteed a register

So remove them from the graph first

• reduces the degree of the remaining nodes

Must resort to spilling only when all remaining nodes have
degree ≥k

Craig Chambers 192 CSE 501

The algorithm

while interference graph not empty:

while there exists a node with < k neighbors:
remove it from the graph
push it on a stack

if all remaining nodes have³k neighbors, then blocked :
pick a node to spill

(choose node with lowest (spill cost/degree))
remove node from graph
add to spill set

if any nodes in spill set:
insert spill code for all spilled nodes

(insert stores after defs, loads before uses)
reconstruct interference graph, start over

while stack not empty:
pop node from stack
allocate to register

Craig Chambers 193 CSE 501

Example

Assume 3 registers available

a1

e b

d c

a2 Weight Order:

c
d
a2
b
a1
e

Craig Chambers 194 CSE 501

Example

Assume 2 registers available

a1

e b

d c

a2 Weight Order:

c
d
a2
b
a1
e

Craig Chambers 195 CSE 501

“Subsumption”

Twist in Chaitin’s algorithm:
if see x := y , where x & y not simultaneously live,
then merge live ranges & eliminate all such copies

+ avoids generating code for simple copies

− can introduce extra spilling

If allocate values instead of variables or live ranges,
then subsumption happens implicitly

Craig Chambers 196 CSE 501

An annoying case

If only 2 registers available ⇒ blocked immediately, must spill

A

D B

C

Craig Chambers 197 CSE 501

Improvement #2: blocked doesn’t mean spill

[Briggs et al. 89]

Key idea:
just because a node has k neighbors
doesn’t mean it will need to be spilled
(neighbors may get overlapping colors)

Algorithm:

Like Chaitin, except:

• when removing blocked node, just push onto stack
(“optimistic spilling”)

• when done removing nodes:

• pop nodes off stack and see if they can be allocated

• really spill only if it can’t be allocated at this stage

Other miscellaneous enhancements

Craig Chambers 198 CSE 501

Improvement #3: live range splitting

Priority-Based Coloring [Chow & Hennessy 84]

Key idea: if a variable can’t be allocated to a register,
try to split it into multiple subranges that can be allocated
separately

• move instructions inserted at split points

• some live range pieces in registers, some in memory
⇒ selective spilling

Craig Chambers 199 CSE 501

Example

Assume 2 registers available

... a ...

c2 := ...

... c 2 ...

a := ...

... a ...

c1 := ...

... c 1 ...

b := ...

... c 1 ...

d1 := ...

... d 1 ...

d2 := ...

... b ...

... d 2 ...

Weight Order:
b
d2
a
c2
c1
d1

Craig Chambers 200 CSE 501

Improvement #4: rematerialization

Idea: instead of reloading value from memory,
recompute it instead,
if recomputation is cheaper than reloading

Simple strategy: choose rematerialization over spilling, if

• can recompute a value in a single instruction, and

• all operands will always be available

Examples:

• constants

• address of global var

• address of var in stack frame

Craig Chambers 201 CSE 501

Performance results

[Briggs et al. 94]

E.g.

For some procedure:

XXX spill instructions before

YYY spill instructions after

YYY is Z% smaller than XXX

• Z ranges between -2% and 48% for “optimistic spilling”

• Z ranges between -26% and 33% for rematerialization

Optimistic spilling a good heuristic

Mixed results for rematerialization

Craig Chambers 202 CSE 501

Register allocation and calls

Simple approach: calling conventions

More sophisticated: interprocedural register allocation

Craig Chambers 203 CSE 501

Calling conventions

Goals:

• fast calls

• pass k arguments in registers, result in register

• language-independent

• support debugger, profiler, etc.

Problematic language features:

• varargs

• passing/returning aggregates

• returning multiple values

• exceptions, setjmp /longjmp

Craig Chambers 204 CSE 501

Callee-save vs. caller-save registers

Need a convention at calls for which registers managed by caller
(caller-save) and which managed by callee (callee-save)

• SPARC has hardware-save registers, too

Caller-save:

• caller must save/restore any caller-save registers
live across calls

• callee is free to use these registers w/o any overhead

Callee-save:

• callee must save/restore any callee-save registers it uses

• caller is free to use these registers, even across calls

Hardware-save:

• caller and callee can use freely

Craig Chambers 205 CSE 501

A problem with callee-save registers

Run-time utilities (e.g. longjmp) and
programming environment tools (e.g. debugger)
need to be able to find contents of registers relative to a
particular stack frame

Caller-save registers are on stack in stack frame at known place

Callee-save registers?

Craig Chambers 206 CSE 501

Impact on register allocator

How should register allocator deal w/ calling conventions?

Simple: calling-convention-oblivious register allocation

• spill all live caller-save registers before call, restore after call

• save all callee-save registers at entry, restore at return

Better: calling-convention-aware register allocation

• incorporate preferred registers for formals, actuals

• call kills caller-save registers

• allocator knows to avoid these registers,
save/restore code turns into normal spills

• live-range splitting particularly useful to split var into
before call/during call/after call segments

• entry is def of all callee-save registers, exit is use

• allocator knows must spill these registers if used in proc

Craig Chambers 207 CSE 501

Exploiting calling convention

Calling-convention-aware register allocator
can customize its usage to use “cheaper” registers

• leaf routines (try to) use only caller-save registers

• routines with calls use callee-save registers for
variables live across calls

Poor man’s interprocedural register allocation

Craig Chambers 208 CSE 501

Rich man’s interprocedural register allocation

Allocate registers across calls to minimize overlap between
caller and callee subgraph

Allocate global variables to registers over entire program

Could do compile-time interprocedural register allocation

+ gains most benefit

− might be expensive

− might require lots of recompilation after programming
change

Or, could do link-time re-allocation

+ low compile-time cost

+ little impact on separate compilation

− cost at link time

− probably less effective

Craig Chambers 209 CSE 501

Wall’s link-time register allocator

[Wall 86]

Compiler does local allocation + planning for linker

• generates call graph info

• generates variable usage info for each proc

• generates register actions
executed by linker if variable allocated to register

Linker does interprocedural allocation & patches compiled code

• determines interference graph among variables

• picks best additional variables to allocate to registers

• executes register actions for those vars to patch compiled
code

Craig Chambers 210 CSE 501

Register actions

Describe changes to code if given var allocated to a register

OPx (var): replace operand x with reg allocated to var
RESULT(var): replace result with reg allocated to var
REMOVE(var): delete instruction if var allocated to a reg

Use: for each variable var

• r := load var : REMOVE(var)

• rk := ri op rj:
OP1(var) if var loaded into ri,
OP2(var) if var loaded into rj,
RESULT(var) if var stored from rk,

• store var := r : REMOVE(var)

Craig Chambers 211 CSE 501

Example

Source code:

w = (x + y) * z;

original code
register actions

x y z w

r1 := load x REMOVE

r2 := load y REMOVE

r3 := r1 + r2 OP1 OP2

r4 := load z REMOVE

r5 := r3 * r4 OP2 RESULT

store w := r5 REMOVE

Craig Chambers 212 CSE 501

A problem

What if loaded value is still live after an overwriting store?

Example: w = y++ * z;

These register actions are broken, if y in a register!

ry := ry + 1

r2 := load z
r1 := ry * r2 // ry reads updated y value, not original
store w := r1

original code
register actions

y z w

r1 := load y REMOVE

r2 := r1 + 1 OP1,
RESULT

store y := r2 REMOVE

r2 := load z REMOVE

r1 := r1 * r2 OP1 OP2 RESULT

store w := r1 REMOVE

Craig Chambers 213 CSE 501

Solution

Need two more actions:
LOAD(var): replace load with move from reg holding var
STORE(var): replace store with move to reg holding var

Use LOAD(var) instead of REMOVE(var) if
var is stored into while result of load is still live

Use STORE(var) instead of REMOVE(var) if
rhs is stored into more than one variable

Example: w = x = y++ * z;

original code
register actions

x y z w

r1 := load y LOAD

r2 := r1 + 1 RESULT

store y := r2 REMOVE

r2 := load z REMOVE

r1 := r1 * r2 OP2 RESULT

store x := r1 STORE OP1

store w := r1 REMOVE

Craig Chambers 214 CSE 501

Link-time operations

Construct weighted call graph from compiler tables

• weights can come from static estimates or profile info

• each proc annotated with list of used local vars

Traverse call graph bottom-up, assigning locals to groups
(a kind of interference graph)

• no simultaneously-live locals in same group

• each global in its own group

• group weighted by sum of members’ weights

• recursion & indirect calls pose complications

Allocate groups to registers in decreasing order of weight

Run register actions during code relocation to improve code

Craig Chambers 215 CSE 501

Example

Call graph:

Groups:

v11,v12

v5, g1 v9, v10

v3,v4,g1,g2

v1,v2, g1

v6, v7, v8

Craig Chambers 216 CSE 501

Possible improvements

Use real profile data to construct weights

Do intraprocedural register allocation at compile-time

Track liveness info for vars at each call site

Track intraprocedural interference graph

Use real interference graph to run link-time allocation

Craig Chambers 217 CSE 501

Results

DECWRL Titan RISC processor: 64 registers

Basic experiment:

• local compile-time allocation uses 8 registers

• interprocedural link-time allocator uses 52 registers

• simple static frequency estimates

• smallish benchmark programs

⇒ 10-25% speed-up over local allocation alone

Small improvements (0-6%) with real profile data

Small improvements (0-5%) if use intraprocedural allocation too

• more pronounced for larger, real benchmarks

Less benefit if fewer registers available for global allocation
e.g. 5-20% for 8 global registers

Link-time + local better than intraprocedural register allocation

