Register Allocation

The problem:

assign machine resources (registers, stack locations)
to hold run-time data

Constraint:
simultaneously live data allocated to different locations

Goal:

minimize overhead of stack loads & stores
and register moves

Craig Chambers 181 CSE 501
N\
4
Units of allocation
What are the units of allocation?
* variables?
« separate def/use chains (live ranges )?
« values?
* i.e., variables, in SSA form after copy propagation
yi=X e X
X:=y+1 x:=3
Craig Chambers 183 CSE 501
N\

-

Interference graph

Represent notion of “simultaneously live” using
interference graph

* nodes are “units of allocation”

* n;islinked by an edge to n,if n; and n, are simultaneously
live at some program point

* symmetric, not reflexive, not transitive

Two adjacent nodes must be allocated to distinct locations

Craig Chambers 182 CSE 501

-

A bigger example

» o i

@
1

o 0o o

Craig Chambers 184 CSE 501




.

Computing interference graph

Construct as side-effect of live variables analysis
¢ backwards iterative dfa algorithm

Flow function: identify defs & last uses

LVy = Y

LV ..

Craig Chambers 185 CSE 501

.

Spilling

If can't find k-coloring of interference graph,
must spill some variables to stack,
until the resulting interference graph is k-colorable

Which to spill?
« least frequently accessed variables
« most conflicting variables (nodes with highest out-degree)

Weighted interference graph
weight(n) =
sum over all references (uses and defs) r of n:
execution frequency of r

Try to spill nodes with lowest weight and highest out-degree,
if forced to spill

Craig Chambers 187 CSE 501

-

Allocating registers using interference graph

Allocating variables to k registers is equivalent to
finding a k-coloring of the interference graph

k-coloring: color nodes of graph using up to k colors,
adjacent nodes have different colors

« optimal graph coloring: NP-complete

Craig Chambers 186 CSE 501

-

Static frequency estimates

Initial node: weight = 1
Nodes after branch: 1/2 weight of branch
Nodes in loop: 10x nodes outside loop

Dynamic profiles could give better frequency estimates

Just need heuristic ranking of variables

Craig Chambers 188 CSE 501




.

Simple greedy allocation algorithm

For all nodes, in decreasing order of weight:
« try to allocate node to a register, if possible
« if not, allocate to a stack location

Reserve 2-3 scratch registers to use when manipulating nodes
allocated to stack locations

Craig Chambers 189 CSE 501

Example
a a Weight Order:
c
d
e b a,
b
a;
d c e
Assume 3 registers available
Craig Chambers 190 CSE 501

Improvement #1: add simplification phase
[Chaitin 82]

Key idea:
nodes with < k neighbors can be allocated
after all their neighbors, but still guaranteed a register

So remove them from the graph first
« reduces the degree of the remaining nodes

Must resort to spilling only when all remaining nodes have
degree =k

Craig Chambers 191 CSE 501

The algorithm

while interference graph not empty:

while there exists a node with < k neighbors:
remove it from the graph
push it on a stack
if all remaining nodes have k neighbors, then blocked :
pick a node to spill
(choose node with lowest (spill cost/degree))
remove node from graph
add to spill set

if any nodes in spill set:
insert spill code for all spilled nodes
(insert stores after defs, loads before uses)
reconstruct interference graph, start over

while stack not empty:
pop node from stack
allocate to register

Craig Chambers 192 CSE 501




.

Example
a; az Weight Order:
c
d
e b
az
b
a;
d c e
Assume 3 registers available
Craig Chambers 193 CSE 501
A\
4
“Subsumption”
Twist in Chaitin’s algorithm:
if see x :=y , where x & y not simultaneously live,
then merge live ranges & eliminate all such copies
+ avoids generating code for simple copies
- can introduce extra spilling
If allocate values instead of variables or live ranges,
then subsumption happens implicitly
Craig Chambers 195 CSE 501

Example

ajs ap Weight Order:

Assume 2 registers available

-

\ Craig Chambers 194 CSE 501

An annoying case

A

cC

If only 2 registers available O blocked immediately, must spill

Craig Chambers 196 CSE 501




.

Improvement #2: blocked doesn’t mean spill
[Briggs et al. 89]

Key idea:
just because a node has k neighbors
doesn’t mean it will need to be spilled
(neighbors may get overlapping colors)

Algorithm:
Like Chaitin, except:
« when removing blocked node, just push onto stack
(“optimistic spilling”)
« when done removing nodes:
« pop nodes off stack and see if they can be allocated
« really spill only if it can’t be allocated at this stage

Other miscellaneous enhancements

Craig Chambers 197 CSE 501

.

Example

Weight Order:

\ b
dz

La.. a
Cy = gz

1
..C 2 s d;

Assume 2 registers available

Craig Chambers 199 CSE 501

-

Improvement #3: live range splitting
Priority-Based Coloring [Chow & Hennessy 84]

Key idea: if a variable can't be allocated to a register,
try to split it into multiple subranges that can be allocated
separately
* move instructions inserted at split points
» some live range pieces in registers, some in memory
O selective spilling

Craig Chambers 198 CSE 501

Improvement #4: rematerialization

Idea: instead of reloading value from memory,
recompute it instead,
if recomputation is cheaper than reloading

Simple strategy: choose rematerialization over spilling, if
» can recompute a value in a single instruction, and
« all operands will always be available

Examples:
 constants
» address of global var
 address of var in stack frame

Craig Chambers 200 CSE 501




Performance results
[Briggs et al. 94]

E.g.

For some procedure:

XXX spill instructions before
YYY spill instructions after

YYY is Z% smaller than XXX

* Zranges between -2% and 48% for “optimistic spilling”
« Zranges between -26% and 33% for rematerialization

Optimistic spilling a good heuristic
Mixed results for rematerialization

Craig Chambers 201 CSE 501

Register allocation and calls

Simple approach: calling conventions

More sophisticated: interprocedural register allocation

Calling conventions

Goals:
« fast calls
« pass k arguments in registers, result in register
¢ language-independent
« support debugger, profiler, etc.

Problematic language features:
* varargs
« passing/returning aggregates
 returning multiple values
« exceptions, setjimp /longjmp

Craig Chambers 203 CSE 501

Craig Chambers 202 CSE 501

-

Callee-save vs. caller-save registers

Need a convention at calls for which registers managed by caller
(caller-save ) and which managed by callee (callee-save )

* SPARC has hardware-save registers, too

Caller-save:

« caller must save/restore any caller-save registers
live across calls

« callee is free to use these registers w/o any overhead
Callee-save:

« callee must save/restore any callee-save registers it uses
« caller is free to use these registers, even across calls

Hardware-save:
« caller and callee can use freely

Craig Chambers 204 CSE 501

-




.

A problem with callee-save registers

Run-time utilities (e.g. longjmp ) and
programming environment tools (e.g. debugger)
need to be able to find contents of registers relative to a
particular stack frame

Caller-save registers are on stack in stack frame at known place
Callee-save registers?

Craig Chambers 205 CSE 501

Impact on register allocator

How should register allocator deal w/ calling conventions?

Simple: calling-convention-oblivious register allocation
« spill all live caller-save registers before call, restore after call
 save all callee-save registers at entry, restore at return

Better: calling-convention-aware register allocation
* incorporate preferred registers for formals, actuals
« call kills caller-save registers

« allocator knows to avoid these registers,
save/restore code turns into normal spills

« live-range splitting particularly useful to split var into
before call/during call/after call segments

 entry is def of all callee-save registers, exit is use
« allocator knows must spill these registers if used in proc

.

Exploiting calling convention

Calling-convention-aware register allocator
can customize its usage to use “cheaper” registers

« leaf routines (try to) use only caller-save registers

« routines with calls use callee-save registers for
variables live across calls

Poor man'’s interprocedural register allocation

Craig Chambers 207 CSE 501

Craig Chambers 206 CSE 501

-

Rich man'’s interprocedural register allocation

Allocate registers across calls to minimize overlap between
caller and callee subgraph

Allocate global variables to registers over entire program

Could do compile-time interprocedural register allocation
+ gains most benefit
— might be expensive

- might require lots of recompilation after programming
change

Or, could do link-time re-allocation
+ low compile-time cost
+ little impact on separate compilation
— cost at link time
- probably less effective

Craig Chambers 208 CSE 501

-




Wall's link-time register allocator
[Wall 86]

Compiler does local allocation + planning for linker
« generates call graph info
* generates variable usage info for each proc

« generates register actions
executed by linker if variable allocated to register

Linker does interprocedural allocation & patches compiled code
« determines interference graph among variables
« picks best additional variables to allocate to registers

* executes register actions for those vars to patch compiled
code

Craig Chambers 209 CSE 501

Example

Source code:
w=(X+y)*z

register actions
original code
X y z w
rl :=load x REMOVE
r2 :=loady REMOVE
r3:=rl +1r2 OP1 OoP2
r4 :=load z REMOVE
5 =13 *r4 OoP2 RESULT
store w = r5 REMOVE
Craig Chambers 211 CSE 501

Register actions

Describe changes to code if given var allocated to a register
OPx(var ): replace operand x with reg allocated to var
RESULT (var ): replace result with reg allocated to var
REMOVE(var ): delete instruction if var allocated to a reg

Use: for each variable var
e r:=load var : REMOVE(var )
e rk:=rioprj:
OP1(var) if var loaded into ri,
OP2(var) if var loaded into rj,
RESULT(var ) if var stored from rk,

e store var :=r :REMOVE(var)

Craig Chambers 210 CSE 501

A problem

What if loaded value is still live after an overwriting store?

Example: w = y++ * z;

register actions
original code
y z w

rl:=loady REMOVE
r2:=rl+1 OP1,

RESULT
store y = r2 REMOVE
r2 :=load z REMOVE
rl:=rl *r2 OP1 OoP2 RESULT
store w = rl REMOVE

These register actions are broken, if y in a register!

ry:=ry+1
r2 :=load z
rl:= ry *r2 /l'ry reads updated y value, not original
storew :=rl
Craig Chambers 212 CSE 501

-




Solution

Need two more actions:
LOAD(var ): replace load with move from reg holding var
STORE(var ): replace store with move to reg holding var

Use LOAD(var ) instead of REMOVE(var ) if
var is stored into while result of load is still live

Use STORE(var ) instead of REMOVE(var ) if
rhs is stored into more than one variable

Example: w = x = y++ * z;

o register actions
original code

X y z w

rl:=loady LOAD

r2:=rl+1 RESULT

store y = r2 REMOVE

r2 :=load z REMOVE

ri:=rl *r2 OoP2 RESULT

store x = rl STORE OP1

store w = rl REMOVE

Craig Chambers 213 CSE 501

Link-time operations

Construct weighted call graph from compiler tables
» weights can come from static estimates or profile info
» each proc annotated with list of used local vars

Traverse call graph bottom-up, assigning locals to groups
(a kind of interference graph)

* no simultaneously-live locals in same group
 each global in its own group

» group weighted by sum of members’ weights
* recursion & indirect calls pose complications

Allocate groups to registers in decreasing order of weight

Run register actions during code relocation to improve code

Example

Call graph:

(v5,01) (v9, v10)

<v3,v4,gl,gz> <v6, V7, v8>

Groups:

Craig Chambers 215 CSE 501

.

Craig Chambers 214 CSE 501

-

Possible improvements

Use real profile data to construct weights
Do intraprocedural register allocation at compile-time

Track liveness info for vars at each call site
Track intraprocedural interference graph

Use real interference graph to run link-time allocation

Craig Chambers 216 CSE 501

-




Results

DECWRL Titan RISC processor: 64 registers

Basic experiment:
« local compile-time allocation uses 8 registers
« interprocedural link-time allocator uses 52 registers
« simple static frequency estimates
« smallish benchmark programs
0 10-25% speed-up over local allocation alone

Small improvements (0-6%) with real profile data
Small improvements (0-5%) if use intraprocedural allocation too

« more pronounced for larger, real benchmarks

Less benefit if fewer registers available for global allocation
e.g. 5-20% for 8 global registers

Link-time + local better than intraprocedural register allocation

Craig Chambers 217 CSE 501




