
Craig Chambers 133 CSE 501

Pointer and Alias Analysis

Aliases :
two expressions that denote same mutable memory location

Introduced through

• pointers

• call-by-reference

• array indexing

• C unions, Fortran common, equivalence

Applications of alias analysis:

• improved side-effect analysis:
if assign to one expression,
what other expressions are modified?

• if certain modified or not modified, not a problem

• if uncertain, things can get ugly

• eliminate redundant loads/stores & dead stores
(CSE & dead assign elim, for pointer ops)

• automatic parallelization of code
manipulating data structures

• ...

Craig Chambers 134 CSE 501

Kinds of alias info

Points-to analysis

• at each program point, calculate set of p→x bindings,
if p points to x

• two related problems:

• may points-to: p may point to x

• must points-to: p must point to x

Storage shape analysis

• at each program point, calculate an abstract description of
the structure of pointers etc.

Alias-pair analysis

• at each program point, calculate set of (expr 1,expr 2)
pairs, if expr 1 and expr 2 reference the same memory

• may and must alias-pair versions

Points-to analysis is simple

Storage shape analysis more abstract

Alias-pairs analysis more general than points-to analysis,
but more complicated

Craig Chambers 135 CSE 501

An intraprocedural points-to analysis

At each program point, calculate set of p→x bindings,
if p points to x

Outline:

• define may version first, then consider must version

• develop algorithm in increasing stages of complexity

• pointers only to scalars

• add pointers to pointers

• add pointers to dynamically-allocated storage

• add pointers to array elements

Craig Chambers 136 CSE 501

May-point-to scalars

Domain: Pow(Var × Var)

Flow functions:

p := &x

MAY-PTsucc = MAY-PT pred - {p →*} ∪ {p →x}

p := q

MAY-PTsucc = MAY-PT pred - {p →*} ∪
{p →t | q →t ∈ MAY-PTpred }

Meet function: union

Craig Chambers 137 CSE 501

Must-point-to

How to define must-point-to analysis?

Option 1: analogous to may-point-to, but as must problem

• e.g. intersection is meet operation

Option 2: interpretation of may-point-to results

• if p may point to only x , then p must point to x :

MUST-PT = { p →x | p →x ∈ MAY-PT and
p→y ∈ MAY-PT ⇒ y=x}

• what if p points to nil ? p assigned an integer?

Craig Chambers 138 CSE 501

Using alias info

E.g. reaching definitions

At each program point, calculate set of s:x bindings,
if x might get its definition from stmt s

Simple flow functions:

s: *p := x

RDsucc = RD pred - {*: z | p →z ∈ MUST-PTpred }

∪ {s: z | p →z ∈ MAY-PTpred }

s: x := *p

RDsucc = RD pred - {*:x}

∪ {s:x}

Craig Chambers 139 CSE 501

Reaching “right hand sides”

A variation on reaching definitions
that passes definitions through copies

s:x in set if x might get its definition from rhs of stmt s ,
skipping through uninteresting copies and pointer loads
where possible

Can use reaching right-hand sides to construct def/use chains
that skip through copies, e.g. for better constant propagation

Flow functions:

s: x := y

RDsucc = RD pred - {*:x}

∪ { s’ :x | s’ : y ∈ RDpred }

s: x := *p

RDsucc = RD pred - {*:x}

∪ { s’ :x | p →z ∈ MAY-PTpred ∧
s’ : z ∈ RDpred }

Craig Chambers 140 CSE 501

Example

➅ *p := 7

➆ z := *q

➇ *q := 4

➈ w := *p

➀ x := 3

➁ p := &x

➂ y := 5

➃ q := &y ➄ q := &x

Craig Chambers 141 CSE 501

Adding pointers to pointers

Flow functions:

p := *q

MAY-PTsucc = MAY-PT pred - {p →*} ∪
{p →t | q →r ∈ MAY-PTpred ∧

r →t ∈ MAY-PTpred }

*p := q

MAY-PTsucc = MAY-PT pred

- { r →* | p →r ∈ MUST-PTpred }

∪ { r →t | p →r ∈ MAY-PTpred ∧
q→t ∈ MAY-PTpred }

Craig Chambers 142 CSE 501

Example

p := *R

*q := 9

z := *p

x := 5

y := 6

p := &x

q := &y

R := &p

*R := q

q := p

*q := 7

x := 8

int x, y, z;

int *p, *q;

int **R;

Craig Chambers 143 CSE 501

Adding pointers to dynamically-allocated memory

p := new T

Issue: each execution creates a new location

Idea: generate new var to stand for new location

• make Var domain unbounded

• newvar: return next unused element of Var

Flow function:

s: p := new T

MAY-PTsucc = MAY-PTpred - {p →*} ∪ {p →newvar}

Craig Chambers 144 CSE 501

Example

➂ t := new Cons

➃ *p := t

➄ p := t

➀ lst := new Cons

➁ p := lst

Craig Chambers 145 CSE 501

A monotonic, finite approximation

Can’t create a new variable each time analyze statement

• lattice is infinitely tall if Var domain is infinite!

• not a monotonic flow function!

One solution:
create a special summary node for each new stmt

Domain = Pow((Var+Stmt) × (Var+Stmt))

s: p := new T

MAY-PTsucc = MAY-PT pred - {p →*} ∪ {p →locs}

Alternatives:

• summary node for each type T

• k-limited summary

• maintain distinct nodes up to k links removed from root vars,
then merge together

• ...

Craig Chambers 146 CSE 501

Adding pointers to array elements

Array index expressions can generate aliases

a[i] aliases b[j] if:

• a aliases b and i equals j

• a and b overlap, and ...

Can have pointers to array elements:
p := &a[i]

Can have pointer arithmetic, for array addressing:
p := &a[0]; ...; p++

How to model arrays?

• could treat whole array as big monolithic location

• could try to reason about array index expressions
⇒ array dependence analysis (later)

