A generic worklist analysis algorithm

Maintain a mapping from each program point to info at that point
« optimistically initialize all pp'sto T
Set other pp’s (e.g. entry/exit point) to other values, if desired

Maintain a worklist of nodes whose flow functions needs to be
evaluated

« initialize with all nodes in graph

While worklist nonempty do
Pop node off worklist

Evaluate node’s flow function,
given current info on predecessor/successor pp’s,
allowing it to change info on predecessor/successor pp’'s

If any pp’s changed, then put adjacent nodes on worklist
(if not already there)

For faster analysis, want to follow topological order
« number nodes in topological order

« pop nodes off worklist in increasing topological order

It Just Works!
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Advanced program representations

Goal:
» more effective analysis
« faster analysis
* easier transformations

Approach:
more directly capture important program properties

* e.g. data flow, independence
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Examples

CFG:
+ simple to build
+ complete
+ no derived info to keep up to date during transformations

— computing info is slow and/or ineffective
« |ots of propagation of big sets/maps
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Def/use chains

Def/use chains directly linking defs to uses & vice versa
+ directly captures data flow for analysis
¢ e.g. constant propagation, live variables easy

- ignores control flow

¢ misses some optimization opportunities,
since it assumes all paths taken

« not executable by itself,
since it doesn’t include control dependence links

« not appropriate for some optimizations,
such as CSE and code motion

- must update after transformations
« but just thin out chains

- space-consuming, in worst case: O(E2V)

- can have multiple defs of same variable in program,
multiple defs can reach a use

« complicates analysis
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Example
X:=X+Yy X = ..
y=y+1
L X WX
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Example
X=X+y X =
y=y+1
WX X
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Static Single Assignment (SSA) form

[Alpern, Rosen, Wegman, & Zadeck, two POPL 88 papers]
Invariant: at most one definition reaches each use

Constructing equivalent SSA form of program:
1. Create new target names for all definitions

2. Insert pseudo-assignments at merge points
reached by multiple definitions of same source variable:
Xp= @ Xgew  Xp)

3. Adjust uses to refer to appropriate new names
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Comparison

+ lower worst-case space cost than def/use chains: O(EV)

+ algorithms simplified by exploiting
single assignment property:
« variable has a unique meaning independent of program point
< can treat variable & value synonymously

+ transformations not limited by reuse of variable names

< can reorder assignments to same source variable, without
affecting dependences of SSA version

- still not executable by itself
- still must update/reconstruct after transformations

- inverse property (static single use) not provided

« dependence flow graphs [Pingali et al.] and
value dependence graphs [Weise et al] fix this,
with single-entry, single-exit (SESE) region analysis

Very popular in research compilers, analysis descriptions
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Common subexpression elimination

At each program point, compute set of available expressions
map from expression to variable holding that expression

cegfath -x,c -y -7}

CSE transformation using AE analysis results:
if atb - x available before y := a+b , transformtoy := x
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Constraints

AEx=y opz:

AEx =y

Initial conditions at program points?
What direction to do analysis?

Can use bit vectors?
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Specification

All possible available expressions:
AvailableExprs = {expr- var | Oexpr O Expr, Ovar O Var}

» Var = set of all variables in procedure

» Expr = set of all right-hand-side expressions in procedure
[is this a function from Exprs to Vars, or just a relation?]
Domain AV = < Pow(AvailableExprs), <ay >
aeq SAV ae, -

* top:

* bottom:

* meet:

* lattice height:
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Example

i=a+b
X:=i*4

ji=i y:=i*4

i=c i=i+1

z:=j*4 /
m:=b+a
w:=4*m
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Exploiting SSA form

Problem: previous available expressions overly sensitive to
name choices, operand orderings, renamings, assignments,

A solution:

Step 1: convert to SSA form

« distinct values have distinct names
O can simplify flow functions to ignore assignments

SSA .
AE>y o y opz-

Step 2: do copy propagation

« same values (usually) have same names
0 avoid missed opportunities

Step 3: adopt canonical ordering for commutative operators
0 avoid missed opportunities

Craig Chambers 85 CSE 501

.

After SSA conversion, copy propagation, &
operand order canonicalization:

'

i1:=a1+b1

X1 :=il*4
ji=iog ig:= @l 1.0 3)
iz::C 1 yl::i 4*4
Zq = i1*4 is::i 4+1

m:= a;+b g

Wy = n’!|_*4
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Example
i=a+b
X:=i*4
j=i
i:=c y:=i*4
z:=j*4 =i+l
m:=b+a
w:=4*m
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Loop-invariant code motion
Two steps: analysis & transformation
Step 1: find invariant computations in loop
* invariant: computes same result each time evaluated
Step 2: move them outside loop
* to top: code hoisting
« if used within loop
* to bottom: code sinking
« if only used after loop
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Example

p=w+y
X:=x+1
qg:=q+1
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Detecting loop-invariant expressions

An expression is invariant w.r.t. a loop L iff:

base cases:
* it's a constant
* it's a variable use, all of whose defs are outside

inductive cases:
* it's an idempotent computation
all of whose args are loop-invariant
* it's a variable use with only one reaching def
and the rhs of that def is loop-invariant

.

Computing loop-invariant expressions

Option 1:
* repeat iterative dfa
until no more invariant expressions found
« to start, optimistically assume all expressions loop-invariant

Option 2:
* build def/use chains,
follow chains to identify & propagate
invariant expressions

Option 3:
« convert to SSA form,
then similar to def/use form
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Example using def/use chains
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Loop-invariant expression detection for SSA form

SSA form simplifies detection of loop invariants,
since each use has only one reaching definition

An expression is invariant w.r.t. a loop L iff:

base cases:
¢ it's a constant
« it's a variable use whose single def is outside L

inductive cases:

 jt's an idempotent computation
all of whose args are loop-invariant

* it's a variable use
whose single def’s rhs is loop-invariant

@ functions are not idempotent
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Example using SSA form

Y3 = @Y 1. Y2 Ya)
Z3EX 2%y 3
1=y 3"y 3
W=y g+2

We = Qwg, W o)
Pr=w 3+Yy 3
X3 =X o+1

q2:=q ;+1

'

.

Example using SSA form & preheader

|y1:=4| |y2:=5|
a
|y3= QY 1,y 2)|

Y
X2= QX 1,X 3)
Z;:=X 2"y 3
ai:=y 3"y 3
W=y 3+2

W= @wg, W )
p1=w 3+y 3
X3 =X
d2:=q
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Code motion

When find invariant computation S:z :=xopy ,
want to move it out of loop (to loop preheader)

When is this legal?

Sufficient conditions:

* Sdominates all loop exits
[A dominates B when
all paths to B must first pass through A]

« otherwise may execute S when never executed otherwise

« can relax this condition, if S has no side-effects or traps,
at cost of possibly slowing down program

» Sisonly assignment to z in loop, &
no use of z in loop is reached by any def other than S

« otherwise may reorder defs/uses and change outcome
¢ unnecessary in SSA form!

If met, then can move S to loop preheader

 but preserve relative order of invariant computations,
to preserve data flow among moved statements
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Example of need for domination requirement

1
= O

< X
TR
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Avoiding domination restriction

Requirement that invariant computation dominates exit is strict
* nothing in conditional branch can be moved
* nothing after loop exit test can be moved

Can be circumvented through other transformations
such as loop normalization

* move loop exit test to bottom of loop

Before

Example of data dependence restrictions

“Sis only assignment to z in loop, &
no use of z in loop is reached by any def other than S’
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Example in SSA form

Restrictions unnecessary if in SSA form

« if reorder defs/uses, generate code along merging arcs
to implement ¢ functions
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Loop-invariant code copying

Alternative to code motion:
copy instruction to loop header, assigning to new temp,
then do CSE & copy propagation to simplify in-loop version

« more modular design, leverage off of existing optimizations

Can always copy, unless instruction has side-effects

CSE & copy propagation will eliminate in-loop instruction
exactly when (non-SSA) loop-invariant code motion would
have, PLUS can replace invariant but unmovable
instructions with copies

SSA-based code motion gets same effect
« copies correspond to reified @ functions
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Control dependence

Must ensure side-effects occur in proper order
Must ensure side-effects occur only under right conditions

CFG represents control dependence explicitly
- but overspecifies control dependence requirements
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Example
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Control dependence graph

Program dependence graph (PDG):
data dependence graph + control dependence graph (CDG)
[Ferrante, Ottenstein, & Warren, TOPLAS 87]

Idea: represent controlling conditions directly
» complements data dependence representation

A node (basic block) N; is control-dependent on another N, iff
N, determines whether N; executes, i.e.

* there exists a path from N; to N, s.t. every node in the path
other than Ny is post-dominated by N,

* N, does not post-dominate N;

Control dependence graph:
N; proper descendant of N, iff N; control-dependent on N,

« label each child edge with required branch condition
« group all children with same condition under region node

Two sibling nodes execute under same control conditions [
can be reordered or parallelized, as data dependences allow

Challenging to “sequentialize” back into CFG form
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Example
v
y:=p+q
O x> NULL?
pd
|D a=x*y | |D a=y-2 |
N
O w:=ylq
O x>NULL?
pd
|D b:=1<<w |
|I] r=a%b |
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Value dependence graphs

[Weise, Crew, Ernst, & Steensgaard, POPL 94]

Idea: represent all dependences,
including control dependences, as data dependences

+ simple, direct dataflow-based representation
of all “interesting” relationships

« analyses become easier to describe & reason about
- harder to sequentialize into CFG

Control dependences as data dependences:

« control dependence on order of side-effects
O data dependence on reading & writing to global Store

« optimizations to break up accesses to single Store into separate
independent chunks
(e.g. a single variable, a single data structure)

« control dependence on outcome of branch
0 a select node, taking test, then, and else inputs

Loops implemented as tail-recursive calls to local procedures

Apply CSE, folding, etc. as nodes are built/updated
Like DAG representation of BB, but for whole procedure
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An example with a loop
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VDG for example, after store splitting

y=p+q

if x>NULLthena:=x*yelsea:=y-2
w:=y/q

if x> NULL thenb :=1<<w

r-=a%b
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