A generic worklist analysis algorithm

Maintain a mapping from each program point to info at that point
« optimistically initialize all pp'sto T
Set other pp’s (e.g. entry/exit point) to other values, if desired

Maintain a worklist of nodes whose flow functions needs to be
evaluated

« initialize with all nodes in graph

While worklist nonempty do
Pop node off worklist

Evaluate node’s flow function,
given current info on predecessor/successor pp’s,
allowing it to change info on predecessor/successor pp’'s

If any pp’s changed, then put adjacent nodes on worklist
(if not already there)

For faster analysis, want to follow topological order
« number nodes in topological order

« pop nodes off worklist in increasing topological order

It Just Works!

Craig Chambers 73 CSE 501

Advanced program representations

Goal:
» more effective analysis
« faster analysis
* easier transformations

Approach:
more directly capture important program properties

* e.g. data flow, independence

Craig Chambers 74 CSE 501

.

Examples

CFG:
+ simple to build
+ complete
+ no derived info to keep up to date during transformations

— computing info is slow and/or ineffective
« |ots of propagation of big sets/maps

Craig Chambers 75 CSE 501

Def/use chains

Def/use chains directly linking defs to uses & vice versa
+ directly captures data flow for analysis
¢ e.g. constant propagation, live variables easy

- ignores control flow

¢ misses some optimization opportunities,
since it assumes all paths taken

« not executable by itself,
since it doesn’t include control dependence links

« not appropriate for some optimizations,
such as CSE and code motion

- must update after transformations
« but just thin out chains

- space-consuming, in worst case: O(E2V)

- can have multiple defs of same variable in program,
multiple defs can reach a use

« complicates analysis

Craig Chambers 76 CSE 501

Example
X:=X+Yy X = ..
y=y+1
L X WX

Craig Chambers

77 CSE 501
.
4
Example
X=X+y X =
y=y+1
WX X
Craig Chambers 79 CSE 501
.

-

Static Single Assignment (SSA) form

[Alpern, Rosen, Wegman, & Zadeck, two POPL 88 papers]
Invariant: at most one definition reaches each use

Constructing equivalent SSA form of program:
1. Create new target names for all definitions

2. Insert pseudo-assignments at merge points
reached by multiple definitions of same source variable:
Xp= @ Xgew Xp)

3. Adjust uses to refer to appropriate new names

Craig Chambers 78 CSE 501

-

Comparison

+ lower worst-case space cost than def/use chains: O(EV)

+ algorithms simplified by exploiting
single assignment property:
« variable has a unique meaning independent of program point
< can treat variable & value synonymously

+ transformations not limited by reuse of variable names

< can reorder assignments to same source variable, without
affecting dependences of SSA version

- still not executable by itself
- still must update/reconstruct after transformations

- inverse property (static single use) not provided

« dependence flow graphs [Pingali et al.] and
value dependence graphs [Weise et al] fix this,
with single-entry, single-exit (SESE) region analysis

Very popular in research compilers, analysis descriptions

Craig Chambers 80 CSE 501

Common subexpression elimination

At each program point, compute set of available expressions
map from expression to variable holding that expression

cegfath -x,c -y -7}

CSE transformation using AE analysis results:
if atb - x available before y := a+b , transformtoy := x

Craig Chambers 81 CSE 501

Constraints

AEx=y opz:

AEx =y

Initial conditions at program points?
What direction to do analysis?

Can use bit vectors?

Craig Chambers 83 CSE 501

Specification

All possible available expressions:
AvailableExprs = {expr- var | Oexpr O Expr, Ovar O Var}

» Var = set of all variables in procedure

» Expr = set of all right-hand-side expressions in procedure
[is this a function from Exprs to Vars, or just a relation?]
Domain AV = < Pow(AvailableExprs), <ay >
aeq SAV ae, -

* top:

* bottom:

* meet:

* lattice height:

Craig Chambers 82 CSE 501

-

Example

i=a+b
X:=i*4

ji=i y:=i*4

i=c i=i+1

z:=j*4 /
m:=b+a
w:=4*m

Craig Chambers 84 CSE 501

.

Exploiting SSA form

Problem: previous available expressions overly sensitive to
name choices, operand orderings, renamings, assignments,

A solution:

Step 1: convert to SSA form

« distinct values have distinct names
O can simplify flow functions to ignore assignments

SSA .
AE>y o y opz-

Step 2: do copy propagation

« same values (usually) have same names
0 avoid missed opportunities

Step 3: adopt canonical ordering for commutative operators
0 avoid missed opportunities

Craig Chambers 85 CSE 501

.

After SSA conversion, copy propagation, &
operand order canonicalization:

'

i1:=a1+b1

X1 :=il*4
ji=iog ig:= @l 1.0 3)
iz::C 1 yl::i 4*4
Zq = i1*4 is::i 4+1

m:= a;+b g

Wy = n’!|_*4

Craig Chambers 87 CSE 501

Example
i=a+b
X:=i*4
j=i
i:=c y:=i*4
z:=j*4 =i+l
m:=b+a
w:=4*m
Craig Chambers 86 CSE 501
-
/
Loop-invariant code motion
Two steps: analysis & transformation
Step 1: find invariant computations in loop
* invariant: computes same result each time evaluated
Step 2: move them outside loop
* to top: code hoisting
« if used within loop
* to bottom: code sinking
« if only used after loop
Craig Chambers 88 CSE 501
-

.

Example

p=w+y
X:=x+1
qg:=q+1

Craig Chambers 89 CSE 501

Detecting loop-invariant expressions

An expression is invariant w.r.t. a loop L iff:

base cases:
* it's a constant
* it's a variable use, all of whose defs are outside

inductive cases:
* it's an idempotent computation
all of whose args are loop-invariant
* it's a variable use with only one reaching def
and the rhs of that def is loop-invariant

.

Computing loop-invariant expressions

Option 1:
* repeat iterative dfa
until no more invariant expressions found
« to start, optimistically assume all expressions loop-invariant

Option 2:
* build def/use chains,
follow chains to identify & propagate
invariant expressions

Option 3:
« convert to SSA form,
then similar to def/use form

Craig Chambers 91 CSE 501

L

Craig Chambers 90 CSE 501
-
/
Example using def/use chains
Craig Chambers 92 CSE 501
-

.

Loop-invariant expression detection for SSA form

SSA form simplifies detection of loop invariants,
since each use has only one reaching definition

An expression is invariant w.r.t. a loop L iff:

base cases:
¢ it's a constant
« it's a variable use whose single def is outside L

inductive cases:

 jt's an idempotent computation
all of whose args are loop-invariant

* it's a variable use
whose single def’s rhs is loop-invariant

@ functions are not idempotent

Craig Chambers 93

CSE 501

Example using SSA form

Y3 = @Y 1. Y2 Ya)
Z3EX 2%y 3
1=y 3"y 3
W=y g+2

We = Qwg, W o)
Pr=w 3+Yy 3
X3 =X o+1

q2:=q ;+1

'

.

Example using SSA form & preheader

|y1:=4| |y2:=5|
a
|y3= QY 1,y 2)|

Y
X2= QX 1,X 3)
Z;:=X 2"y 3
ai:=y 3"y 3
W=y 3+2

W= @wg, W)
p1=w 3+y 3
X3 =X
d2:=q

Craig Chambers 95

CSE 501

Craig Chambers 94 CSE 501

-

Code motion

When find invariant computation S:z :=xopy ,
want to move it out of loop (to loop preheader)

When is this legal?

Sufficient conditions:

* Sdominates all loop exits
[A dominates B when
all paths to B must first pass through A]

« otherwise may execute S when never executed otherwise

« can relax this condition, if S has no side-effects or traps,
at cost of possibly slowing down program

» Sisonly assignment to z in loop, &
no use of z in loop is reached by any def other than S

« otherwise may reorder defs/uses and change outcome
¢ unnecessary in SSA form!

If met, then can move S to loop preheader

 but preserve relative order of invariant computations,
to preserve data flow among moved statements

Craig Chambers 96 CSE 501

-

Example of need for domination requirement

1
= O

< X
TR

Craig Chambers 97 CSE 501

.

Avoiding domination restriction

Requirement that invariant computation dominates exit is strict
* nothing in conditional branch can be moved
* nothing after loop exit test can be moved

Can be circumvented through other transformations
such as loop normalization

* move loop exit test to bottom of loop

Before

Example of data dependence restrictions

“Sis only assignment to z in loop, &
no use of z in loop is reached by any def other than S’

Craig Chambers 99 CSE 501

.

Craig Chambers 98 CSE 501

-

Example in SSA form

Restrictions unnecessary if in SSA form

« if reorder defs/uses, generate code along merging arcs
to implement ¢ functions

Craig Chambers 100 CSE 501

-

Loop-invariant code copying

Alternative to code motion:
copy instruction to loop header, assigning to new temp,
then do CSE & copy propagation to simplify in-loop version

« more modular design, leverage off of existing optimizations

Can always copy, unless instruction has side-effects

CSE & copy propagation will eliminate in-loop instruction
exactly when (non-SSA) loop-invariant code motion would
have, PLUS can replace invariant but unmovable
instructions with copies

SSA-based code motion gets same effect
« copies correspond to reified @ functions

Craig Chambers 101 CSE 501

.

Control dependence

Must ensure side-effects occur in proper order
Must ensure side-effects occur only under right conditions

CFG represents control dependence explicitly
- but overspecifies control dependence requirements

Craig Chambers 103 CSE 501

.

-

Example

Craig Chambers 102 CSE 501

-

Control dependence graph

Program dependence graph (PDG):
data dependence graph + control dependence graph (CDG)
[Ferrante, Ottenstein, & Warren, TOPLAS 87]

Idea: represent controlling conditions directly
» complements data dependence representation

A node (basic block) N; is control-dependent on another N, iff
N, determines whether N; executes, i.e.

* there exists a path from N; to N, s.t. every node in the path
other than Ny is post-dominated by N,

* N, does not post-dominate N;

Control dependence graph:
N; proper descendant of N, iff N; control-dependent on N,

« label each child edge with required branch condition
« group all children with same condition under region node

Two sibling nodes execute under same control conditions [
can be reordered or parallelized, as data dependences allow

Challenging to “sequentialize” back into CFG form

Craig Chambers 104 CSE 501

.

Example
v
y:=p+q
O x> NULL?
pd
|D a=x*y | |D a=y-2 |
N
O w:=ylq
O x>NULL?
pd
|D b:=1<<w |
|I] r=a%b |
Craig Chambers 105 CSE 501

.

Value dependence graphs

[Weise, Crew, Ernst, & Steensgaard, POPL 94]

Idea: represent all dependences,
including control dependences, as data dependences

+ simple, direct dataflow-based representation
of all “interesting” relationships

« analyses become easier to describe & reason about
- harder to sequentialize into CFG

Control dependences as data dependences:

« control dependence on order of side-effects
O data dependence on reading & writing to global Store

« optimizations to break up accesses to single Store into separate
independent chunks
(e.g. a single variable, a single data structure)

« control dependence on outcome of branch
0 a select node, taking test, then, and else inputs

Loops implemented as tail-recursive calls to local procedures

Apply CSE, folding, etc. as nodes are built/updated
Like DAG representation of BB, but for whole procedure

Craig Chambers 107 CSE 501

-

An example with a loop

Craig Chambers 106

CSE 501

-

VDG for example, after store splitting

y=p+q

if x>NULLthena:=x*yelsea:=y-2
w:=y/q

if x> NULL thenb :=1<<w

r-=a%b

Craig Chambers 108

CSE 501

