
Craig Chambers 73 CSE 501

A generic worklist analysis algorithm

Maintain a mapping from each program point to info at that point

• optimistically initialize all pp’s to T

Set other pp’s (e.g. entry/exit point) to other values, if desired

Maintain a worklist of nodes whose flow functions needs to be
evaluated

• initialize with all nodes in graph

While worklist nonempty do

Pop node off worklist

Evaluate node’s flow function,
given current info on predecessor/successor pp’s,
allowing it to change info on predecessor/successor pp’s

If any pp’s changed, then put adjacent nodes on worklist
(if not already there)

For faster analysis, want to follow topological order

• number nodes in topological order

• pop nodes off worklist in increasing topological order

It Just Works!

Craig Chambers 74 CSE 501

Advanced program representations

Goal:

• more effective analysis

• faster analysis

• easier transformations

Approach:
more directly capture important program properties

• e.g. data flow, independence

Craig Chambers 75 CSE 501

Examples

CFG:

+ simple to build

+ complete

+ no derived info to keep up to date during transformations

− computing info is slow and/or ineffective

• lots of propagation of big sets/maps

Craig Chambers 76 CSE 501

Def/use chains

Def/use chains directly linking defs to uses & vice versa

+ directly captures data flow for analysis

• e.g. constant propagation, live variables easy

− ignores control flow

• misses some optimization opportunities,
since it assumes all paths taken

• not executable by itself,
since it doesn’t include control dependence links

• not appropriate for some optimizations,
such as CSE and code motion

− must update after transformations

• but just thin out chains

− space-consuming, in worst case: O(E2V)

− can have multiple defs of same variable in program,
multiple defs can reach a use

• complicates analysis

Craig Chambers 77 CSE 501

Example

x := x + y

... x ...

... y ...

x := ...

y := ...

... x ...

... y ...

... y ...

... y ...

x := ...

y := y + 1

... x ...

Craig Chambers 78 CSE 501

Static Single Assignment (SSA) form

[Alpern, Rosen, Wegman, & Zadeck, two POPL 88 papers]

Invariant: at most one definition reaches each use

Constructing equivalent SSA form of program:

1. Create new target names for all definitions

2. Insert pseudo-assignments at merge points
reached by multiple definitions of same source variable:
xn := φ(x1,..., xn)

3. Adjust uses to refer to appropriate new names

Craig Chambers 79 CSE 501

Example

x := x + y

... x ...

... y ...

x := ...

y := ...

... x ...

... y ...

... y ...

... y ...

x := ...

y := y + 1

... x ...

Craig Chambers 80 CSE 501

Comparison

+ lower worst-case space cost than def/use chains: O(EV)

+ algorithms simplified by exploiting
single assignment property:

• variable has a unique meaning independent of program point

• can treat variable & value synonymously

+ transformations not limited by reuse of variable names

• can reorder assignments to same source variable, without
affecting dependences of SSA version

− still not executable by itself

− still must update/reconstruct after transformations

− inverse property (static single use) not provided

• dependence flow graphs [Pingali et al.] and
value dependence graphs [Weise et al.] fix this,
with single-entry, single-exit (SESE) region analysis

Very popular in research compilers, analysis descriptions

Craig Chambers 81 CSE 501

Common subexpression elimination

At each program point, compute set of available expressions :
map from expression to variable holding that expression

• e.g. {a+b → x, -c → y, *p → z}

CSE transformation using AE analysis results:
if a+b→x available before y := a+b , transform to y := x

Craig Chambers 82 CSE 501

Specification

All possible available expressions:
AvailableExprs = {expr→var | ∀expr ∈ Expr, ∀var ∈ Var}

• Var = set of all variables in procedure

• Expr = set of all right-hand-side expressions in procedure

[is this a function from Exprs to Vars, or just a relation?]

Domain AV = < Pow(AvailableExprs), ≤AV >

ae1 ≤AV ae2 ⇔

• top:

• bottom:

• meet:

• lattice height:

Craig Chambers 83 CSE 501

Constraints

AEx := y op z :

AEx := y :

Initial conditions at program points?

What direction to do analysis?

Can use bit vectors?

Craig Chambers 84 CSE 501

Example

j := i

i := c

z := j * 4

y := i * 4

i := i + 1

m := b + a

w := 4 * m

i := a + b

x := i * 4

Craig Chambers 85 CSE 501

Exploiting SSA form

Problem: previous available expressions overly sensitive to
name choices, operand orderings, renamings, assignments,
...

A solution:

Step 1: convert to SSA form

• distinct values have distinct names
⇒ can simplify flow functions to ignore assignments

AESSA
x := y op z :

Step 2: do copy propagation

• same values (usually) have same names
⇒ avoid missed opportunities

Step 3: adopt canonical ordering for commutative operators
⇒ avoid missed opportunities

Craig Chambers 86 CSE 501

Example

j := i

i := c

z := j * 4

y := i * 4

i := i + 1

m := b + a

w := 4 * m

i := a + b

x := i * 4

Craig Chambers 87 CSE 501

After SSA conversion, copy propagation, &
operand order canonicalization:

j 1 := i 1

i 2 := c 1

z1 := i 1 * 4

i 4 := φ(i 1,i 3)

y1 := i 4 * 4

i 3 := i 4 + 1

m1 := a1 + b 1

w1 := m1 * 4

i 1 := a 1 + b1

x1 := i 1 * 4

Craig Chambers 88 CSE 501

Loop-invariant code motion

Two steps: analysis & transformation

Step 1: find invariant computations in loop

• invariant: computes same result each time evaluated

Step 2: move them outside loop

• to top: code hoisting
• if used within loop

• to bottom: code sinking
• if only used after loop

Craig Chambers 89 CSE 501

Example

p := w + y

x := x + 1

q := q + 1

w := w + 5

z := x * y

q := y * y

w := y + 2

y := 4

x := 3

y := 5

Craig Chambers 90 CSE 501

Detecting loop-invariant expressions

An expression is invariant w.r.t. a loop L iff:

base cases:

• it’s a constant

• it’s a variable use, all of whose defs are outside L

inductive cases:

• it’s an idempotent computation
all of whose args are loop-invariant

• it’s a variable use with only one reaching def ,
and the rhs of that def is loop-invariant

Craig Chambers 91 CSE 501

Computing loop-invariant expressions

Option 1:

• repeat iterative dfa
until no more invariant expressions found

• to start, optimistically assume all expressions loop-invariant

Option 2:

• build def/use chains,
follow chains to identify & propagate
invariant expressions

Option 3:

• convert to SSA form,
then similar to def/use form

Craig Chambers 92 CSE 501

Example using def/use chains

p := w + y

x := x + 1

q := q + 1

w := w + 5

z := x * y

q := y * y

w := y + 2

y := 4

x := 3

y := 5

Craig Chambers 93 CSE 501

Loop-invariant expression detection for SSA form

SSA form simplifies detection of loop invariants,
since each use has only one reaching definition

An expression is invariant w.r.t. a loop L iff:

base cases:

• it’s a constant

• it’s a variable use whose single def is outside L

inductive cases:

• it’s an idempotent computation
all of whose args are loop-invariant

• it’s a variable use
whose single def’s rhs is loop-invariant

φ functions are not idempotent

Craig Chambers 94 CSE 501

Example using SSA form

w3 = φ(w 1, w 2)

p1 := w 3 + y 3

x3 := x 2 + 1

q2 := q 1 + 1

w2 := w 1 + 5

x2 = φ(x 1, x 3)

y3 = φ(y 1, y 2, y 3)

z1 := x 2 * y 3

q1 := y 3 * y 3

w1 := y 3 + 2

y1 := 4

x1 := 3

y2 := 5

Craig Chambers 95 CSE 501

Example using SSA form & preheader

w3 = φ(w 1, w 2)

p1 := w 3 + y 3

x3 := x 2 + 1

q2 := q 1 + 1

w2 := w 1 + 5

x2 = φ(x 1, x 3)

z1 := x 2 * y 3

q1 := y 3 * y 3

w1 := y 3 + 2

y1 := 4

x1 := 3

y2 := 5

y3 = φ(y 1, y 2)

Craig Chambers 96 CSE 501

Code motion

When find invariant computation S: z := x op y ,
want to move it out of loop (to loop preheader)

When is this legal?

Sufficient conditions:

• S dominates all loop exits
[A dominates B when

all paths to B must first pass through A]

• otherwise may execute S when never executed otherwise

• can relax this condition, if S has no side-effects or traps,
at cost of possibly slowing down program

• S is only assignment to z in loop, &
no use of z in loop is reached by any def other than S

• otherwise may reorder defs/uses and change outcome

• unnecessary in SSA form!

If met, then can move S to loop preheader

• but preserve relative order of invariant computations,
to preserve data flow among moved statements

Craig Chambers 97 CSE 501

Example of need for domination requirement

x := a * b

y := x / z

q := x + y

x := 0

y := 1

z != 0?

Craig Chambers 98 CSE 501

Avoiding domination restriction

Requirement that invariant computation dominates exit is strict

• nothing in conditional branch can be moved

• nothing after loop exit test can be moved

Can be circumvented through other transformations
such as loop normalization

• move loop exit test to bottom of loop

x := a / b

i := i + 1

i := 0

i < N?

Before

x := a / b

i := i + 1

i := 0

i < N?

After

i < N?

Craig Chambers 99 CSE 501

Example of data dependence restrictions

“S is only assignment to z in loop, &
no use of z in loop is reached by any def other than S”

z := z + 1

z := 0

... z ...

z := 5

S:

Craig Chambers 100 CSE 501

Example in SSA form

Restrictions unnecessary if in SSA form

• if reorder defs/uses, generate code along merging arcs
to implement φ functions

z2 := φ(z 1,z 4)

z3 := z 2 + 1

z4 := 0

... z 4 ...

z1 := 5

S:

Craig Chambers 101 CSE 501

Loop-invariant code copying

Alternative to code motion:
copy instruction to loop header, assigning to new temp,
then do CSE & copy propagation to simplify in-loop version

• more modular design, leverage off of existing optimizations

Can always copy, unless instruction has side-effects

CSE & copy propagation will eliminate in-loop instruction
exactly when (non-SSA) loop-invariant code motion would
have, PLUS can replace invariant but unmovable
instructions with copies

SSA-based code motion gets same effect

• copies correspond to reified φ functions

Craig Chambers 102 CSE 501

Example

x := a * b

y := q * x

q := z * w

q := 0

y := 1

... y ...

... q ...

Craig Chambers 103 CSE 501

Control dependence

Must ensure side-effects occur in proper order

Must ensure side-effects occur only under right conditions

CFG represents control dependence explicitly

− but overspecifies control dependence requirements

Craig Chambers 104 CSE 501

Control dependence graph

Program dependence graph (PDG):
data dependence graph + control dependence graph (CDG)
[Ferrante, Ottenstein, & Warren, TOPLAS 87]

Idea: represent controlling conditions directly

• complements data dependence representation

A node (basic block) N1 is control-dependent on another N2 iff
N2 determines whether N1 executes, i.e.

• there exists a path from N1 to N2 s.t. every node in the path
other than N1 is post-dominated by N2

• N2 does not post-dominate N1

Control dependence graph:
N1 proper descendant of N2 iff N1 control-dependent on N2

• label each child edge with required branch condition

• group all children with same condition under region node

Two sibling nodes execute under same control conditions ⇒
can be reordered or parallelized, as data dependences allow

Challenging to “sequentialize” back into CFG form

Craig Chambers 105 CSE 501

Example

➀ y := p + q
➁ x > NULL?

➂ a := x * y ➃ a := y - 2

➄ w := y / q
➅ x > NULL?

➆ b := 1 << w

➇ r := a % b

Craig Chambers 106 CSE 501

An example with a loop

B1

B2 B3

B4

B5 B6

B7

T F

T F

Craig Chambers 107 CSE 501

Value dependence graphs

[Weise, Crew, Ernst, & Steensgaard, POPL 94]

Idea: represent all dependences,
including control dependences, as data dependences

+ simple, direct dataflow-based representation
of all “interesting” relationships

• analyses become easier to describe & reason about

− harder to sequentialize into CFG

Control dependences as data dependences:

• control dependence on order of side-effects
⇒ data dependence on reading & writing to global Store

• optimizations to break up accesses to single Store into separate
independent chunks
(e.g. a single variable, a single data structure)

• control dependence on outcome of branch
⇒ a select node, taking test, then, and else inputs

Loops implemented as tail-recursive calls to local procedures

Apply CSE, folding, etc. as nodes are built/updated

Like DAG representation of BB, but for whole procedure

Craig Chambers 108 CSE 501

VDG for example, after store splitting

y := p + q
if x > NULL then a := x * y else a := y - 2
w := y / q
if x > NULL then b := 1 << w
r := a % b

x p q b

+

* - /

γ> <<

γ

%

r

1

2

0

y

a1 a2

a

b

w

