
Craig Chambers CSE 501 Homework Sample Solutions

7

Homework Assignment #2 Sample Solutions

Due Wednesday 2/7, at the start of lecture

1. Put the following program in SSA form (you may draw a control flow graph to illustrate your
solution):

x := 0;
do {

x := x + 1;
z := x;
y := 0;
if (...) {

y := 1;
}
w := y + z;

} while (...);
print(x, y, z, w);

2. Give an algorithm for constant propagation that exploits def/use chains to work faster than the
propagation-based algorithm presented in class. What is the time complexity of your
algorithm, assuming def/use chains are already constructed? How, if at all, would converting
the program to SSA form before constructing def/use chains help your analysis?

One can use the generic worklist algorithm, operating over the def/use chain graph. Initialize
all edges toT (top). Put all nodes on the worklist. When removing a node from the worklist, try
to constant-fold it based on the info on its incoming def/use edges (each use can have multiple
incoming edges, and so the info on each of these edges must be merged, using the lattice meet

x1 := 0

x3 := φ(x 1, x 2)
x2 := x 3 + 1
z1 := x 2
y1 := 0

y2 := 1

y3 := φ(y 1, y 2)
w1 := y 3 + z 1

print(x 2,y 3,z 1,w 1)

Craig Chambers CSE 501 Homework Sample Solutions

8

operator). Then set the outgoing edge(s) to the info representing the result of the node:T if
any argument isT, a constant if the r.h.s. (after folding) is a constant, and⊥ otherwise. Put the
downstream node onto the worklist if the result edge’s value was changed. A classic optimistic
iterative algorithm, with the effect of the resulting transformation (constant folding &
propagation) included within the analysis.

Overall time complexity is O(N+U), where N is the number of nodes and U is the number of
def/use edges (visit each node and edge at least once, and revisit each node and edge at most
twice (the height of the constant-propagation lattice (3) - 1). [There’s some disagreement
about the worst-case number of def/use edges; Craig can only imagine O(N2V) such edges,
while Tarjan claims that there are up to O(E2V) such edges. Who would you believe?]

Converting the program to SSA form would eliminate the need to merge multiple edge info’s
for each use, since each use would have a single incoming def/use edge. Theφ functions would
use the meet operator as their regular flow function. SSA form would also reduce the worst-
case time complexity by reducing the worst-case number of def/use edges (O(EV) according to
both Craig and Tarjan). [While E is O(N2), it may be less, so O(N2) is a worse bound than
O(E).]

3. Give an algorithm for dead assignment elimination that exploits def/use chains to work faster
than the propagation-based algorithm that used live variables analysis presented in class. Your
algorithm should not miss any optimization opportunities found by the best live variables-
based algorithm presented in class. What is the time complexity of your algorithm, assuming
def/use chains are already constructed? How, if at all, would converting the program to SSA
form before constructing def/use chains help your analysis?

One can use pretty much the same approach as above, except that 1) the def/use chain graph is
traversed in reverse order, 2) the information on each edge is simply a bit saying whether the
downstream use is live (initialized to dead), and 3) the flow function for a node sets the info on
its uses’ edges to live if either the node has side-effects (e.g. a call, a pointer store, a write to a
global variable, a return statement, or an instruction that might trap) or if any of the node’s
def’s outgoing edges is marked live. This algorithm will not consider any statement live until
some intrinsically live statement requires its result; the example in class of the loop containing
x := x + 1 will be handled correctly by this algorithm, never setting the instruction to live.
Another classic optimistic iterative algorithm, with the effect of the resulting transformation
(dead assignment elimination) included within the analysis.

Overall time complexity is again O(N+U).

Converting the program to SSA form would reduce the worst-case number of edges, but do
nothing else.

4. These questions are about the control dependence graph.

a. Construct the control dependence graph for the following program. Each assignment
statement should have a separate node in the CDG. Also show the data dependence edges
(all of flow, anti-, and output dependences) between nodes of the CDG (you need not
convert to SSA form or create phi nodes).

Craig Chambers CSE 501 Homework Sample Solutions

9

i := 0;
while (...) {

x := i * 5 * cos(i);
if (...) {

w := x;
} else {

w := 0;
}
r := w * w * w;
i := i + 1;

}
print(r);

Technically, there are anti- and output dependencies from statements in the loop to statements
in the loop for the next loop iteration (e.g. an anti dependence from w := x to x := ..., and an
output dependence from x := ... to itself). The above diagram omits these dependences.

b. Using the CDG + DFG, identify all opportunities for code motion, including reordering
statements, moving loop-invariant computations out of loops, and moving partially unused
computations into conditional branches.

The top three statements cannot be reordered, since data dependences constrain them.

The increment of i can move anywhere after the x assignment. No other reorderings of the
statements at the top of the while loop can be reordered.

i := 0

ENTRY

x := i*5*cos(i)

while (...)

if (...)

w := x w := 0

r := w*w*w i := i+1

print(r)

R1

R2 R3

T

T F

Craig Chambers CSE 501 Homework Sample Solutions

10

The x assignment is only used in one part of the if, so it can be moved there.

The example was intended to have a loop-invariant computation also, but it didn’t! oops....
Well, the w := 0 computation is loop-invariant, but moving it outside the loop will require
leaving behind a copy statement like w := t (which is worse since it takes up a register to hold
t throughout the execution of the loop).

To make the print(r) computation defined, the compiler can infer that the loop must be
executed at least once (or, actually, that the value printed by the print(r) computation can be
arbitrary). This could allow a Sufficiently Smart Compiler (TM) to hoist the r assignment out
of the loop, after the loop but before the print. If the while loop is executed at least once, w will
be defined to the right value (the value on the last iteration), preserving behavior if the loop is
executed, and not crashing if the loop isn’t executed.

c. Show the CDG + DFG that results after code motion.

5. These questions are about the VDG representation.

a. Construct the VDG for the following program fragment, assuming that all variables are
accessed through a single store. The VDG should take an empty store as input and demand
the value ofz at output (the store is not demanded at output). Each assignment to a
variable should be modeled as an update of the store (producing a new store), and each
read of a variable should be modeled as a lookup in the store.

i := 0

ENTRY

x := i*5*cos(i)

while (...)

if (...)

w := x w := 0

r := w*w*w i := i+1

print(r)

R1

R2 R3

T

T F

Craig Chambers CSE 501 Homework Sample Solutions

11

x := 5;
y := 10;
if x > 10 then

z := 2 * (x + y);
else

z := y - x;
endif

b. Store splitting removes unnecessary reads of the store by noting when a read of a store is
preceded by an earlier write of the same variable to the store, separated only by stores to
different (non-aliased) variables. Assuming that no two variables are aliased, describe an
inductive rule for detecting when a lookup operator on a particular input store can be
simplified. For example, the following graph pattern-matching rewrite rule handles the
base case where an assignment to a variable immediately precedes a lookup of the same
variable, but it doesn’t handle cases where the assignment to the variable is farther back in
the store’s history. You should describe (perhaps graphically) such a more general rewrite

lookup “x” lookup “y”

Initial_Store

update “y”

update “x”

510

> +

*

2

update “z”

-

update “z”

γ

lookup “z”

Craig Chambers CSE 501 Homework Sample Solutions

12

rule.

First modify this rule to allow arbitrary update nodes for variables other than “x” between
the update of “x” and the lookup of “x.”

Also extend the rule to distribute lookups overγ nodes, i.e. if given lookup(var,γ(pred, s1, s2)),
replace withγ(pred, lookup(var, s1), lookup(var, s2)). This distribution will move lookups

update “x”

lookup “x”

storevalue

result
store’

update “x”

storevalue

result
store’

update “x”

lookup “y”

storevalue

result
store’

update “x”

storevalue

result

store’

lookup “y”

Craig Chambers CSE 501 Homework Sample Solutions

13

closer to their previous stores.

c. Apply your store splitting transformation to your VDG. Be sure to simplify your
representation, dropping any undemanded nodes, after the transformation.

Remove lookup of y.

γ

lookup “y”

store2store1

result

store1 store2

lookup “y” lookup “y”

γ

result
store’

γ

store’

lookup “x”

Initial_Store

update “y”

update “x”

510

> +

*

2

update “z”

-

update “z”

γ

lookup “z”

Craig Chambers CSE 501 Homework Sample Solutions

14

Remove lookup of x.

Remove lookup of z, after distributing the lookup through theγ node. After the rewrite the final
store is no longer demanded, so all update nodes should be removed as dead.

6. None of the common subexpression optimization algorithms presented in class will be able to
optimize thez calculation of the following simple program, despite its right-hand side having
been calculated already on all possible program executions:

Initial_Store

update “y”

update “x”

510

> +

*

2

update “z”

-

update “z”

γ

lookup “z”

10

> +

*

2 -

γ

5

Craig Chambers CSE 501 Homework Sample Solutions

15

if (...) {
...
x := a*b;
...

} else {
...
y := a*b;
...

}
...
z := a*b;

a. Explain why none of the algorithms identify the available expression.

Because the meet function takes the intersection of the available expressions along merging
branches, and {a*b→ x} ∩ {a*b → y} = {}.

b. Describe precisely an improved analysis and/or transformation that will enable cases of
this general form to be optimized, at least partially. You may rely on a later dead-
assignment elimination pass to clean up, if desired, and you may also assume that there is
an explicit merge node in your representation for which you give an explicit flow function.

The flow function for the merge node should attempt to preserve available expressions that
would have been lost by the previous merge rule. For example, w.l.o.g., consider a merge node
with 2 predecessors, each of which contains a mapping for an expression E, but to different
variables, v1 and v2: predecessor1 = { ..., E→ v1, ... } and predecessor2 = { ..., E → v2, ... }.
In this case we will transform the program by allocating a fresh variable t, adding an
assignment t := v1 along predecessor 1, and t := v2 along predecessor 2. The merge node’s
flow function will simulate the effect of these additional assignments by adding E→ t bindings
to both predecessors’ infos. Then the merge node will take the normal meet and analysis will
proceed. When analyzing the later z := a*b expression, a*b→t will be found in the table, and
enable the z assignment to be optimized. If it turns out that no uses of the available expression
E were generated, i.e., if t has no uses, then dead assignment elimination will clean up by
removing the t assignments.

