
CSE 501: Implementation of Programming Languages

Goals:

• Understand how languages get implemented efficiently
• Understand what can and can’t be done, with how much effort
• Understand state of current research in efficient language implementation

Prerequisites:

• CSE 401 or equivalent
• CSE 505 or equivalent

Readings:

• main text: Modern Compiler Implementation, by Appel
• for reference: Compilers: Principles, Techniques, and Tools, by Aho, Sethi, and Ullman
• plus important papers from the literature

Grading:

• Midterm: 25%
• Final: 30%
• Homework: 20%
• Project: 25%

Course web page:
http://www.cs.washington.edu/education/courses/cse501/CurrentQtr

• office hours, office locations
• course mailing list signup instructions
• on-line copies of all lecture slides, handouts, assignments, etc.
• course project information and instructions



Craig Chambers CSE 501 Handouts

2

Rough Course Outline

Week Topic

1/3 Intro; structure of compilers; standard optimizations
Standard intermediate representations; control flow, data flow; dependence
Dataflow analysis; reaching constants, constant propagation

1/8 Lattice-theoretic data flow analysis framework; integer range analysis
Data flow analyzer generators, frameworks

1/15 Holiday
Advanced intermediate representations: def/use chains, control dependence

tree, SSA form, VDG
CSE; loop-invariant code motion

1/22 Inlining
Interprocedural analysis;

analysis with first-class functions, dynamically dispatched messages
1/29 Procedure specialization, partial evaluation

Alias and pointer analysis
2/5 Dependence analysis; automatic parallelization

2/12 Global register allocation
Calling conventions; callee-save vs. caller-save
Link-time register allocation

2/19 Holiday
Instruction scheduling

2/26 Garbage collection
3/5 Implementing functional and object-oriented languages



Craig Chambers CSE 501 Handouts

3

The Project

Description

For the class project, you will implement a Java bytecode-to-Java bytecode optimizer, as part of a
team of ~3 people. This will provide you with concrete experience in engineering the techniques
described in the lectures and readings.

We will use the SOOT Java compiler infrastructure from Laurie Hendren’s group at McGill. This
infrastructure includes routines to read Java .class files, construct a reasonable internal
representation of the contents of the .class file, build a simple control flow graph over 3-address
code instructions, and write these representations back into a .class file.

The first task is to design and implement a more advanced intermediate representation, such as
def/use chains, SSA form, the PDG, or the VDG,

The second task is to design and implement a general framework for doing arbitrary forward or
backward dataflow analyses over your intermediate representation. The framework should allow
dataflow analyses to be defined in lattice-theoretic terms, and it should automatically handle the
process of applying flow functions and meet operators, manage iteration, and report analysis
results back to clients. It must handle irreducible control flow graphs. It need not support
automatically composing analyses or transformations (like Vortex’s framework), but it should
support writing a single analysis with little trouble. It should be at least as efficient as a worklist
algorithm that (re)analyzes a node only when some information it depends on changes.

The third task is to write several analyses and optimizations. Intraprocedural optimizations at least
will benefit from using your framework.

Requirements

All projects should perform the following optimizations:

• peephole optimizations:

• constant folding (including branch conditions and eliminating unreachable code)
• arithmetic simplifications: multiplies to shifts

• intraprocedural optimizations:

• constant propagation
• common subexpression elimination or pointer analysis
• loop-invariant code motion or induction variable elimination
• dead assignment elimination

• interprocedural optimizations:

• MOD analysis
• inlining



Craig Chambers CSE 501 Handouts

4

Written Reports

Each project team should write a report describing the overall organization, the intermediate
representation, the interface and algorithms in the dataflow analysis framework, lattice-theoretic
specifications of the intraprocedural analyses, and a brief description of the implementation
strategy of the other optimizations. This design document should be written incrementally as the
compiler is implemented, and will be reviewed as part of the checkpoint dates. The completed
report should be no longer than 15 pages.

Time Schedule and “Deliverables”

Several dates are important for completing the project:

1/12: Project Teams Formed - turn in list of members of each team.

2/5: Intermediate Representation - the compiler should build and generate code from an
appropriate intermediate representation; no optimizations necessary. A 2-3 page draft of
the project report describing the IR should be turned in, too.

2/21: Data Flow Analysis Framework - the compiler should support a general data flow analysis
framework, with constant propagation & folding and dead assignment elimination
working using the framework. An extended 5-6 page draft of the project report also
describing the analysis framework should be turned in, too.

3/5: Completed Optimizer - the compiler should be augmented with all remaining
optimizations.

3/9: Final Project Reports Due - the final version of the report should be completed.

No late projects will be accepted. Projects and reports are due at the beginning of class.


