Sentient Sandbox: Modifying Worlds with Language Models

Experience immersive VR creation with spoken language, the most natural form of communication.
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Fig. 1. A diagram of the Sentient Sandbox interface. The user can specify a modification via natural language, and a language agent will translate the command
into instructions for modifying the scene. The change in the scene will be reflected in real time in the 3D scene.

Existing methods for 3D scene manipulation in virtual reality often rely on
complex and technical interfaces, posing accessibility barriers. The rise of
Large Language Models (LLMs) has opened possibilities for using natural
language as an interface for technical instructions, which would be more
natural and accessible. However, while Large Language Models (LLMs) have
shown promise in 2D image editing and static 3D generation, extending
this functionality to dynamic, interactive 3D environments remains chal-
lenging. Prior work has explored text-based scene generation and object
manipulation, but existing approaches often lack fine-grained control and
practical features like collision detection and complex object transforma-
tions. Furthermore, the inherent ambiguity of natural language makes direct
translation into precise 3D instructions difficult. To address these limitations,
we propose Sentient Sandbox, a system that enables real-time 3D scene mod-
ification through intuitive natural language commands. Sentient Sandbox
uses a structured pipeline to translate spoken instructions into tangible 3D
environment modifications. We address the challenge of linguistic ambi-
guity through robust prompt engineering, as well as pre-processing and
post-processing steps which serve to ensure consistency. We evaluate the
performance of Sentient Sandbox on three separate scenes, and justify the
significance of each step in our processing pipeline.

1 INTRODUCTION

As virtual reality (VR) technologies become increasingly main-
stream, there is rising demand for more intuitive and accessible
methods of content creation and interaction. Traditional interfaces
for 3D scene modification often demand technical expertise, creating
significant accessibility barriers for many users. The advent of Large
Language Models (LLMs) offers a paradigm shift, presenting natural
language as an intuitive bridge between human intent and tangible
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environment modifications across a variety of domains [Ahn et al.
2022; Bubeck et al. 2023; Wan et al. 2024]. This technology holds
the potential to democratize 3D design, enabling users of all skill
levels to build and iterate on environments with unprecedented ease.
From architectural planning to game development, the potential ap-
plications are vast and cut across numerous billion-dollar industries.
As we move towards more sophisticated virtual environments, the
development of robust and intuitive 3D scene manipulation tools
becomes indispensable.

While LLMs have demonstrated success in 2D image editing and
static 3D generation [Shriram et al. 2025; Zhang et al. 2023], the dy-
namic and interactive nature of real-time VR scenes poses a unique
set of challenges. Existing methods for 3D scene manipulation often
fall short in providing the necessary fine-grained control and prac-
tical features, such as collision detection, essential for immersive
and realistic experiences. Furthermore, overcoming the inherent
ambiguity of natural language to achieve precise 3D instruction
translation is a critical step towards unlocking the full potential of
VR for a wider audience.

Sentient Sandbox is a system which allows modification of 3D
virtual worlds in real time via the use of natural language commands.
The user will first use spoken language to specify modifications to
a 3D virtual world. These prompts are then translated into scene
update instructions, through the use of language agents. Our key
insight is to build a graph representing objects in the scene and their
relationships with each other, which provides useful information
that allows LLMs to more accurately interpret user intent.

We evaluate Sentient Sandbox on three separate 3D scenes, and
believe it shows promise for future avenues of work on generalized
and precise manipulation of 3D scenes.
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Fig. 2. User interaction in Sentient Sandbox begins with spoken input, which is converted to text via Whisper. The natural language command is then
transformed into technical commands using GPT-40 mini, with object relationships informed by a pre-computed graph. This command is checked for possible
collisions, ensuring realistic and coherent modifications. Lastly, the command is executed within the 3D Unity scene.

1.1 Contributions

Project members primarily contributed as follows.

e Joshua Jung integrated the major components of the project,
including speech recording, speech to text translation, text
to scene update translation, and real-time feedback in the
VR headset. Joshua also engineered the initial versions of
our LLM prompts.

e Michael Li designed the inference pipeline, including the
overall structure and ordering of LLM prompts. Michael was
also responsible for designing and constructing the relation-
ship graph. Michael also provided background research and
mostly wrote the project report.

o Eric Bae integrated Unity scenes with the VR headset and
provided examples of the API for real-time scene updates.
Eric also tuned the LLM prompts to optimize results.

2 RELATED WORK
2.1 Text-Conditional 3D Generation

Large Language Models (LLMs) are emerging as powerful tools for
intuitive and dynamic 3D scene modification within virtual reality
(VR) environments. LLMs can accurately infer human intent from
natural language, and have shown success in image editing and
generation in 2D [Fu et al. 2024; Wang et al. 2024; Zhang et al. 2023].
The natural next step would be extrapolating this functionality into
the third dimension: by allowing LLMs to facilitate tasks ranging
from object placement and manipulation to stylistic adjustments

and even content generation in 3D, all by interpreting natural lan-
guage commands. This technology would allow users to interact
with VR scenes in a more natural and accessible way, eliminating
the need for complex and technical interfaces, which often pose an
accessibility barrier. There is prior work on generating 3D environ-
ments conditioned on text, but the resulting environments are often
hard to dynamically modify [Shriram et al. 2025].

A major challenge to realizing 3D modification via natural lan-
guage commands is linguistic ambiguity. Oftentimes, LLMs fail to
interpret the intent of natural language commands [Liu et al. 2023;
Ortega-Martin et al. 2023]. Sometimes, meaning is simply lost in
translation and there is no plausible recovery. However, there are
also many cases where when given enough context, it is possible
to infer intent with reasonable accuracy. In our work, we seek to
mitigate this problem for the latter mentioned case.

Additionally, current LLMs are not very good at reasoning in
embodied or otherwise 3D environments. Current approaches for
improving 3D reasoning often require special engineering or train-
ing, which make the resulting models less generalized [Hong et al.
2023; Zhen et al. 2024]. In practice, many developers do not have
sufficient resources for training their own 3D reasoning models,
and would prefer to handle 3D reasoning with API calls to general
commercial LLMs such as ChatGPT, Claude, or Gemini.

2.2 Natural Language for 3D Manipulation

Prior work has touched on generating, modifying, and removing
scenes and objects purely via textual descriptions. Chang et al. [2017]



propose SceneSeer, an interactive text to 3D scene generation sys-
tem that allows a user to design 3D scenes using natural language.
Kouzelis and Spantidi [2023] take scene generation into the realm of
VR, being able to synthesize detailed, VR-ready 3D scenes from nat-
ural language. Their work utilizes a scalable database of 3D objects
with minimal prior configuration. Bartrum et al. [2024] propose
RAM3D, a novel method for 3D object replacement in 3D scenes
based on text descriptions of the object to replace and the new ob-
ject. Wang et al. [2025] propose VR Mover, which utilizes LLMs to
interpret user vocal instruction for object manipulation. However,
the manipulation supported is still relatively coarse grained, and do
not support important practical features such as collision checking,
concave insertions, or mid-air manipulation.

3 METHOD

Sentient Sandbox is an end-to-end system which takes spoken natu-
ral language commands as input, and then uses those commands to
modify a 3D scene in real time. The pipeline initiates with the user
speaking a command while viewing a 3D scene from a VR headset,
powered by the Unity game engine. This audio input is first tran-
scribed into text using the Whisper speech-to-text model. Next, the
raw text is fed into the GPT-40 mini language model, which extracts
structured instructions from the textual commands. Our system
then maps these instructions to concrete actions supported by the
Unity API Currently, Sentient Sandbox supports object translation,
scaling, and rotation. Before execution, we run a collision detection
check to ensure that the intended action will not cause inconsis-
tency within the scene. Finally, the validated command is executed
within the Unity game engine, dynamically updating the 3D scene
in real-time. Sentient Sandbox’s architecture strives to provide a
seamless interface between natural language input to precise 3D
manipulation, enhancing accessibility and user experience.

The major algorithmic challenge that Sentient Sandbox tries to
address is that of linguistic ambiguity: naively using large language
models (LLMs) to directly extract technical instructions could result
in inconsistent and ambiguous behavior. We use collision detection
as a post-processing step to prevent inconsistencies in the resulting
scene. However, this does not ensure that the edit actually aligns
with the user’s intent. Our key insight is to construct a relationship
graph for the scene as a pre-processing step, and then provide this
graph as context when interpreting the user prompt. The relation-
ship graph explicitly encodes various properties of objects in the
scene, as well as the relationships between different objects. Several
of these properties are computed values, and not directly provided
by Unity. Intuitively, the information provided by this graph sim-
plifies the inference task for the language model, which results in
greatly improved performance, especially in few-shot and zero-shot
situations like our use case.

The architecture of Sentient Sandbox is depicted in Figure 2.

4 IMPLEMENTATION DETAILS
4.1 Relationship Graph

Upon scene initialization, we construct a relationship graph which
encodes the properties of objects and their relationships with each
other. The purpose of this graph is to explicitly provide important
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Name: Tree
Description: On left of screen.
Position: (10,0,20)

Size: 17.223
Relationship: Tree is behind tent.
Distance: 19.209
Object 1: Tree
Object 2: Tent
Name: Tent

Description: On left of screen.
Position: (—2,0,5)
Size: 21.394

Fig. 3. Visualization of an example relationship graph. The relationship
graph provides important context which improves the performance of LLM
agents in extracting commands from user intent.

information about the scene as context to the language model, which
simplifies the inference task and results in responses that better align
with user intent. The relationship graph is undirected and contains
no duplicate edges.

All objects in the scene are represented as nodes in the graph. The
relationship graph cannot be fully connected because that would
clutter our prompt with too much unnecessary information. We
introduce an edge between two nodes if and only if they are within
some distance d from each other. d is a hyperparameter which we
manually set for different scenes. Both nodes and edges contain
data, which is passed as context into the LLM prompt.

Nodes contain the following data fields:

e Name. The name is a manual label provided during scene
design.

e Description. This field is currently used to specify the po-
sition of the object relative to the global frame.

o Position. This field is the (x, y, z) coordinates of the object,
in camera coordinates.

o Size. Given a bounding box with dimensions (I, w, h), size is
set to VI2 + w2 + h2. This field is meant to provide a rough
notion of size.

Edges contain the following data fields:

o Relationship. This field specifies the positional relationship
between the two objects in natural language.
e Distance. Given object positions p; and py, this field is set
to [|p1 — p2l|, the Euclidean distance between those points.
e Obj 1 name. This is the name of the first object that this
edge connects to.
e Obj 2 name. This is the name of the second object that this
edge connects to.
It is worth noting that object properties and relationships may

change after scene modifications. Thus, after every scene modifica-
tion, the affected data fields in the graph are recomputed.
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Fig. 4. Visualizations of the three scenes that we evaluate Sentient Sandbox on. These scenes vary in the shapes, sizes, and density of objects, and serve to test

the robustness of our method in identifying and modifying precise objects.

It is also worth noting that several of these fields, most notably
the size, distance, and relationship fields, are computed values. By
providing this information in the context of our prompt, the LLM
agent is able to more effectively reason about spatial relationships
and provide an accurate interpretation of user intent.

Visualization of the components of an example relationship graph
is provided in Figure 3.

4.2  Prompt Engineering

We engineer our prompt for GPT-40 mini with the objective of
maximizing alignment with human intentions. The prompt that
we use for extracting technical commands from user text has the
following main components. The full prompt is rather long and is
not included in this report for sake of brevity.

(1) Define the task. We start our prompt with the following
command, to establish the role of the LLM.

“You are an Al designed to process user commands
for a VR scene using a scene graph. Your job is to
analyze the scene graph, interpret the user’s natural
language instruction, and return a structured JSON
response that includes the ID of the object being
modified and the action to perform”

(2) Define rules. We specify the following rules for the LLM to
follow when providing its response.

e Always respond with a JSON object that follows the exact
format below.

e Do not add extra text, explanations, or comments. Only
output the JSON.

e Ensure all values are properly formatted for execution in
the® Unity engine.

o Use the scene graph to determine object relationships and
select the correct object based on spatial context.

o If multiple objects match the description, choose the most
relevant one based on distance and logical placement.

o If the request is ambiguous, make a reasonable assumption.

e If the action is “undo”, simply return the action with an
empty object ID.

(3) Define output format. We provide the JSON schema of the
output that we expect.

(4) Provide examples. We provide an example relationship
graph, as well as a few example commands to execute on it. We
find that this improves performance. Intuitively, this makes sense
because few-shot inference is almost always more robust than zero-
shot inference.

(5) Provide context. We provide a string representation of the
precomputed relationship graph. Note that in the prompt we refer
to the relationship graph as the “scene graph”.

4.3 Collision Detection

Collision detection is conducted by checking for overlaps between
oriented bounding boxes (OBB). We choose to use OBB over axis-
aligned bounding boxes (AABB) for improved performance, espe-
cially during rotations.

We use the Collider and Physics APIs from Unity to compute the
bounding boxes and check for possible object collisions.

4.4 Technology Stack

We use the OpenAI Whisper API for speech to text conversion, and
the OpenAI GPT-40 mini API for extracting commands from text.

Our 3D scenes are rendered with the Unity game engine, which
exposes APIs for connecting to a VR headset and making real-time
scene edits. Our demo scenes and their assets are retrieved from the
Unity asset store.

We use a Meta Quest 3 as our VR headset. We primarily run our
experiments on a Windows desktop with 32GB memory. However,
we expect results to be reproducible on Windows machines with
less memory, as well as on other operating systems.

5 EVALUATION OF RESULTS
5.1 Scene Experiments

We evaluate Sentient Sandbox on three different scenes, which vary
in the shapes, sizes, and density of objects. These varied config-
urations serve to test the robustness of our method in accurately
interpreting user intent and making precise modifications to the



scene. The three scenes that we evaluate Sentient Sandbox on are
depicted in Figure 4.

Since Sentient Sandbox is an application, our evaluations are pre-
dominantly qualitative. We try out numerous prompts and find that
our method behaves as expected in a majority of cases. However, we
do experience several common failure cases that are worth noting:

o If there are multiple objects with the same name, such as
multiple trees, our system struggles with identifying the
correct object.

o Relationships between objects far from each other are not
recognized, because graph edges are not created between
objects that are more than d units apart.

o There is sometimes confusion between the “front” and “back”
directions when relating objects.

5.2 Graph Ablation

We implemented our initial version of Sentient Sandbox without
the relationship graph, and simply provided raw coordinates of
objects within the prompt. This version was worse at interpreting
human commands. For the most part, it performed reliably only
when commands were phrased in a very particular way, to the extent
that they sound unnatural.

5.3 Constraint Satisfaction

The only constraint violation we currently check for is object col-
lision. In our experiments, we have not encountered cases where
objects collide or otherwise end up on top of each other following
scene modification. Thus, we are inclined believe that our collision
detection mechanism is working properly with high probability.

5.4 Latency

The latency between finishing a verbal command and seeing the
command get executed is around 4 seconds on average. In some
cases, it can take as long as 6 seconds.

This latency is good enough for many practical applications where
near-instantaneous updates are not required, such as design use
cases. However, in other applications such as simulation use cases,
this latency would be a hindrance and needs to be optimized.

6 DISCUSSION
6.1 Benefits

We engineered an end-to-end system for converting natural lan-
guage commands to real-time 3D scene modifications in VR, which
we are decently proud of, given our timeline. Our code could be
open sourced and serve as a starting point for future works that use
a similar setup.

We also demonstrated that using a relationship graph for prompt
context improves performance, due to better spatial reasoning. This
strategy could be replicated in future works of similar nature.

6.2 Limitations

This project operated under a significantly limiting time constraint,
and many of our ideas on paper were not able to be implemented.
Some immediate avenues for improvement include the following.
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e We currently use a cutoff of d to determine whether an
edge should be formed between two objects. Since d is a
hyperparameter, it is prone to tuning errors, and also causes
long distance relationships to be omitted. To mitigate this
issue, we envision that methods from spectral graph theory
can be used to better extract cluster properties based on
distance relationships between objects.

e The latency we currently have is prohibiting for applica-
tions that require real-time responses. The delay can likely
be optimized by improving prompting strategy for the text
to command component, as well as using more eager evalu-
ation for the speech to text component.

e We currently manually name objects during scene design.
This part can be automated by running image recognition
on the segmentation masks of individual objects. We did not
implement this due to time constraints, and also because
our wallets would be saddened by the number of API calls.

6.3 Future Work

We imagine that one avenue of future work will focus on enhancing
the system’s user interaction capabilities. A key improvement will be
to allow real-time user navigation of the 3D environment, which is
currently not supported. This would invoke engineering challenges,
such as ensuring that spatial relationships and object properties are
consistently accurate, regardless of the user’s viewpoint changes.
This will allow for a more immersive experience where users can
intuitively explore and modify their surroundings, and make the
system more suitable for a number of applications, especially as
related to design.

Beyond immediate enhancements, future research will explore
expanding the system’s functionality and robustness. This includes
developing more sophisticated methods for resolving linguistic am-
biguity, such as incorporating contextual dialogue and user feedback
mechanisms. Investigating the integration of more diverse object
properties and relationship types into the relationship graph will
also be beneficial, allowing for more nuanced modifications. Addi-
tionally, exploring the potential of integrating generative AI models
for dynamic asset creation and style transfer could unlock new
patterns for creative expression. Finally, optimizing the system’s
performance to minimize latency and improve scalability will be
essential for deployment in real-time, high-demand applications.

7 CONCLUSION

In summary, Sentient Sandbox demonstrates a promising approach
to real-time VR scene modification through natural language com-
mands, leveraging a relationship graph to enhance LLM spatial
reasoning. The system’s strengths lie in its intuitive interface, ro-
bust collision detection, and improved interpretation of user intent.
However, limitations in object identification, latency, and reliance on
pre-defined scene elements highlight areas for future improvement.
Addressing these challenges will be crucial for expanding the sys-
tem’s applicability to a wider range of dynamic and interactive VR
experiences. Ultimately, this work contributes to the ongoing effort
to create more accessible and intuitive 3D interaction paradigms.
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