
AR Cooking Assistant
A Framework and Methods for Automatic Recipe Step Detection

PAUL HAN and ALVIN LE, University of Washington

Fig. 1. Screenshot of the AR Recipe Assistant application in action. The system detects food objects in the cooking environment, generates a recipe based
on them, and provides real-time step-by-step guidance. In this example, the assistant recognizes a bowl, apple, and banana, and automatically updates the
interface to indicate that the user is on Step 6: "Combine all the fruit in a bowl." The AR interface overlays detected objects with bounding boxes and labels
while allowing users to navigate through recipe steps interactively.

In this work, we introduce two methods for the task of automatic recipe step
detection (ARSD), a fundamental component of augmented reality cooking
applications. Despite the increasing interest in AR for assisting users in real-
world tasks, there has been limited research into a generalizable, finetuning-
free framework for ARSD that is both robust and scalable. We propose a
framework that leverages large-scale self-supervised models (LLMs and
VLMs) and demonstrate that both methods may be effective in solving the
ARSD problem, with distinct trade-offs in accuracy, latency, and cost.

1 INTRODUCTION
Augmented reality (AR), in which virtual content is integrated with
real-world environments, is a growing area for industry and re-
search [1]. With advancements in AR hardware such as Meta’s
Orion, Microsoft’s HoloLens, and Apple’s Vision Pro, the potential
applications of AR have expanded significantly [2][3][4]. A key area
of interest is AR-based assistant applications for everyday tasks.

1.1 AR Recipe Assistance
In this paper, we examine a specific category of AR-assistance appli-
cations: AR-based cooking and recipe assistance. Given the central

Authors’ address: Paul Han, paulh27@cs.washington.edu; Alvin Le, lealv000@cs.
washington.edu, University of Washington.

role of food in daily life, developing intelligent and interactive cook-
ing support systems has substantial practical implications.
The premise of an AR recipe assistance system is simple. The

assistant analyzes visual input—typically a photo—to identify ingre-
dients and tools, then generates a suitable recipe. After, it augments
the cooking process by setting timers, providing step-by-step guid-
ance, detecting errors, and adapting the instructions in real time.
All of this is done in an AR interface, so users can engage with the
application in real-time without disrupting their cooking workflow.

1.2 Automatic Recipe Step Detection
To further narrow the scope, we focus on a key task in AR recipe
assistance: automatic recipe step detection (ARSD). The task is de-
fined as follows. Given an enumerable recipe and visual input from
a camera positioned over the cooking area, can we identify the exact
step that is currently executing?
We believe ARSD is important for several reasons. First, during

cooking, users often have both hands occupied, making manual
step transitions inconvenient. Second, it serves as a foundation for
other AR-based features, such as setting timers at appropriate steps
or detecting mistakes in real time. This paper primarily examines



2 • Paul Han and Alvin Le

ARSD and explores methods to implement it within a generalizable
framework.

1.3 Contributions
Our contributions are as follows:

(1) We introduce a general framework for automated recipe step
detection (ARSD) and propose two distinct methods with
different trade-offs.

(2) We define the ARSD task and establish a framework for its
evaluation, although we do not provide a comprehensive
dataset.

(3) We develop a prototype application implementing our frame-
work and qualitatively demonstrate its effectiveness in recipe
generation and ARSD.

2 RELATED WORK
Although not extensive, there has been some prior research on
automated recipe step sensing.

Decades ago, older methods used sensors and probabilistic models
to infer activities from sensor data. One notable system, PROACT,
tracks object movement by tagging items with radio-frequency
identification (RFID) tags [5]. A Bayesian network then estimates
the probability of specific actions, such as making tea with a kettle,
by monitoring object movements. However, these approaches are
brittle and heavily dependent on human insight and annotations.
PROACT, for example, requires all objects to be tagged and each
action to be labeled with the probability of object involvement.
More recently, supervised learning-based methods are gaining

traction in recipe step detection. Datasets like YouCook2, which
contains more than 2,000 cooking videos segmented into discrete
annotated steps, enable training and fine-tuning of models for this
task [6]. In particular, the authors of YouCook2 trained an LSTM-
based model to segment and describe cooking videos into steps,
which works relatively well on new recipe videos. However, super-
vised methods have limitations. They require high cost and time for
annotation, training, and fine-tuning.

In contrast, we propose a framework based on generative machine
learning. Unlike prior task-specific supervised models, our approach
uses self-supervised models like LLMs and VLMs. It does not require
any sensors, instead relying purely on vision. This has several key
advantages: (1) it works out of the box without need for fine-tuning
or new hardware, (2) it is still robust, avoiding the brittleness of
sensor-based probabilistic methods, and (3) it is more cost-effective.
While we use some supervised models (e.g., YOLO) for the first
method, we also have an alternative method that relies only on a
self-supervised VLM.

3 METHODS
Below, we outline the high-level design of our framework and
present two specific methods for implementing ARSD.

3.1 High Level Design
Figure 2a illustrates the prototype design at a high level. The AR
Recipe Assistant runs on a device (phone, headset, etc.) and requires
only a readable camera feed. It uses multiple machine learning

models, such as YOLO and GPT-4o, which can run on-device or in
the cloud. The application passes images from the camera stream
to the models to retrieve detected objects, recipes, and recipe steps.
These are then packaged into the AR UI for the user.

3.2 Recipe Generation
Before enabling recipe step detection, we first need away to generate
a recipe from visual input. Since this is not our focus, we use a simple
approach: capturing a camera frame on demand and querying the
VLM to generate a recipe. Figure 2b illustrates this process, including
the exact prompt template used. This method reliably produces well-
formatted, enumerable recipes suitable for ARSD. Given the VLM’s
strong performance, we do not further analyze the recipe generation
task in this paper.

3.3 Method 1: Object Detection w/ Language Models
Our first method for automatic recipe step detection consists of
three phases: (1) object detection, (2) conversion into text-based
world state trajectories, and (3) querying an LLM to determine the
current step.
The intuition behind this method is that LLMs, despite being

text-only, have strong spatial and temporal reasoning abilities. Re-
search suggests that they develop an internal "world model" during
pretraining, enabling them to learn rich spatio-temporal represen-
tations of the real world [7]. This allows LLMs to take spatial and
temporal coordinates encoded in text and analyze them. For the
purposes of ARSD, we use this capability to detect the current recipe
step using only textual input. The key idea is to convert visual infor-
mation into textual world state information. Our approach extracts
object positions from camera frames, then provides this data—along
with the recipe—to an LLM to infer the most likely step.

In the first phase, we use an object detection model like YOLO
to identify all objects in a camera frame, filtering for food and
kitchen-related items. As shown in Figure 3, YOLO is a convolutional
neural network (CNN) model that detects objects in an image with
bounding boxes, class labels, and estimated confidence scores [8].
In the second phase, we extract spatial information about the

detected objects. For many recipes, cooking actions can be inferred
from the movement of key objects like hands, utensils, and food
items. By tracking these movements over time, we create spatio-
temporal context for LLM analysis. Our transformation scheme
is simple: we record object positions in camera space over time
and present this as a textual list. Given a specific bounding box
𝐵 = {(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛), (𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 )} we compute the object’s position
in camera space as:

𝑥𝑐 =
𝑥𝑚𝑖𝑛 + 𝑥𝑚𝑎𝑥

2
, 𝑦𝑐 =

𝑦𝑚𝑖𝑛 + 𝑦𝑚𝑎𝑥

2

We continuously sample frames at a fixed rate, building a history of
detected objects and their camera space positions.

In the final phase, we provide the LLM with the recorded spatio-
temporal data and the recipe text, then ask it to infer the most likely
step. Figure 4 illustrates this process: initially, YOLO detects a whole
banana and its camera coordinates are recorded. Later, the banana is
sliced into pieces with a knife. Based on these coordinate transitions



AR Cooking Assistant • 3

(a) High Level Design (b) Recipe Generation

Fig. 2. Figure (a) illustrates the high-level design of the AR Recipe Assistant prototype. The main application runs on-device and can communicate with
pluggable machine learning models, either locally or in the cloud. Figure (b) depicts the recipe generation process: when the user clicks a button, the current
camera frame is sent to a VLM, which generates a structured, step-by-step recipe.

Fig. 3. Example of YOLO object detection in action. The model processes an
image in real time, identifying objects such as a dog by drawing bounding
boxes around them. Each detected object is assigned a class label (e.g., "dog")
and a confidence score (not shown) indicating the model’s certainty.

in text form, the LLM infers that the user is on Step 3: slicing and
peeling the banana.

3.4 Method 2: Vision-Language Model Approach
Our second method for ARSD is simpler and relies directly on a
unified vision-language model (VLM). Unlike LLMs, VLMs are pre-
trained on image-text pairs from the Internet using contrastive
learning, allowing them to learn rich vision-language correlations
[9]. They can natively tokenize and process images alongside text
prompts.
Our approach is straightforward: to determine the current step,

we capture the current frame and prompt the VLM to infer the most
likely step. Figure 5 illustrates an example where the VLM correctly
identifies sliced bananas and determines that the user is on Step 3.
Similar to Method 1, we can provide a historical sequence of

images, starting with the initial image used to generate the recipe.
This sequence can be passed to the VLM to give additional context
about the user’s actions. However, in practice, we do not use the
full image history and instead provide only the current image (and
optionally the first image from recipe generation). There are two
main reasons for this choice. First, images are significantly more
expensive to tokenize than text. Moderate to high quality images
can require anywhere from a few hundred to a thousand tokens per

Fig. 4. Example of automatic recipe step detection using object state tran-
sitions. The initial state (left) shows a whole banana, while the current
state (right) includes a knife and sliced banana pieces. The system tracks
object state changes and spatial positions, transforming visual data into a
structured text prompt for an LLM. The model then infers the most likely
recipe step based on the detected state transitions.

image, compared to just a few dozen for text-based coordinates. This
can quickly fill the VLM’s context window, increasing the risk of
hallucination. Second, for the simple recipes we evaluate, the current
camera image by itself is sufficient for accurate step inference. A
full visual history of kitchen states is usually unnecessary.

4 IMPLEMENTATION DETAILS
In this section, we go over specific implementation details for each
part of the high level design, as shown in Figure 2a.



4 • Paul Han and Alvin Le

Fig. 5. Example of recipe step detection using a vision-language model
(VLM). Given an image of sliced bananas and the corresponding recipe, the
VLM is prompted to infer the current step.

4.1 AR Recipe Assistant
The core application is built for iOS using Apple’s UIKit for the
user interface. As a prototype, it features a simple layout, as shown
in Figure 6. The interface includes a text label displaying recipe
steps and a Generate Recipe button. When pressed, the app captures
a camera frame, sends it to a VLM (GPT-4o), parses the returned
recipe, and updates the text label accordingly. For camera stream
access, the app uses Apple’s ARKit API.
By default, YOLO runs in the background, displaying bounding

boxes for detected objects, though this feature can be disabled. Users
can select between Method 1 (object detection with an LLM) and
Method 2 (direct VLM inference) for processing. Once a recipe is
generated, the app continuously captures and processes camera
frames at fixed intervals (we use every 3 seconds), querying for the
current step based on the chosen method. The UI updates automati-
cally as new steps are detected, and a manual navigation button is
available for corrections if needed.

4.2 YOLO (Object Detection)
4.2.1 Hosting the Model. A key consideration in our system design
is where to run the YOLO model. Initially, we experimented with
hosting YOLO on a Google Cloud VM with an A100 40GB GPU,
implementing a basic server that received an image, processed it,
and returned detected objects with labels and bounding boxes. How-
ever, we found that the network latency was too high for real-time
bounding box rendering.

To address this, we run YOLO on-device with a CPU instead. We
use YOLOv8 from Ultralytics, which offers five model sizes [10].
We found that YOLOv8n, the smallest model with 3.2M parameters,

Fig. 6. UI of the AR Recipe Assistant app. The interface displays detected
objects with bounding boxes (e.g., "banana") using YOLO. Users can generate
a recipe by capturing a camera frame (Generate Recipe button) and navigate
through detected steps (Next button). The settings panel (bottom image)
allows users to toggle between YOLO and VLM-based processing methods
and enable or disable bounding box visualization.

achieves acceptable latency even on a CPU (80.4 ms). Additionally,
we observed no significant qualitative difference between YOLOv8n
and larger models (up to 68.2M parameters), suggesting minimal
performance degradation. As a result, we opted to run the model
locally on devices such as phones or headsets.

4.2.2 Confidence Threshold. YOLO assigns a confidence score to
each detected object, indicating the model’s certainty in the classi-
fication. We apply a static confidence threshold of 0.5 to filter out
low-confidence detections, reducing transient errors. This thresh-
old ensures that detected objects remain stable, as high-confidence
items persist regardless of variations in lighting or viewing angles.
As a result, we did not need to implement additional smoothing
techniques like Kalman filtering, as qualitative testing showed that
the bounding boxes remained highly stable.

4.2.3 Occlusions. One challenge is occlusion—instances where the
user unintentionally obstructs objects, such as covering the lens
with their hand or pointing it in an unintended direction. In most
cases, however, the model detects these disruptions and responds
appropriately by returning an <unknown> token, staying robust in
uncertain conditions.

4.2.4 Food Category Filter. YOLO is trained on the COCO dataset,
which includes 80 object categories, many of which are unrelated
to food or kitchen environments. To ensure relevance, we manually
filter out non-food items from the detected results.
As an aside, this approach limits the recognized food categories

to primarily fruits and vegetables, restricting the types of recipes
the system can generate. Although not discussed further in this
paper, we believe that YOLO could be fine-tuned on food-specific



AR Cooking Assistant • 5

Fig. 7. Evaluation task for ARSD, illustrating a step-by-step fruit salad recipe. Each step is represented by multiple images under varying conditions. The
starting recipe image (bottom left) is used to generate the structured recipe (bottom right). The unknown category includes occluded or misleading images
that should not correspond to any valid step.

datasets to recognize more ingredients. This would allow it to detect
a broader range of recipe steps.

4.3 GPT-4o (LLM/VLM)
For both the LLM and VLM components, we use OpenAI’s GPT-4o
via the OpenAI API [11]. GPT-4o is a multimodal model capable of
processing text, images, and audio. Since OpenAI has deprecated its
pure text-based LLMmodels, we use GPT-4o for both functionalities.
To simulate an LLM-only setup, we restrict inputs to text prompts,
while for VLM functionality, we include images as input.

5 EVALUATION
Our evaluation focuses on two key questions:

(1) What are the accuracy, cost, and latency tradeoffs between
Method 1 and Method 2?

(2) What are the main qualitative observations that can be made
about both in terms of ARSD?

5.1 Experimental Setup
5.1.1 Hardware. All experiments are run on an iPhone 12, using
on-device YOLO and server API calls for GPT-4o. The camera frame
rate is 60 fps.

5.1.2 Parameters. For both Method 1 and Method 2, the application
samples a camera frame every 3 seconds for ARSD detection. YOLO

uses a confidence threshold of 0.5, and GPT-4o is queried once per
sample.

5.1.3 Evaluation. To quantitatively compare Method 1 and Method
2 on ARSD, we construct an evaluation task for detecting recipe
steps. Figure 7 provides an overview of the exact recipe steps and
corresponding images used for evaluation.
Given the limited food categories in YOLO’s COCO dataset, we

use a simple fruit salad recipe to ensure fair detection across both
methods. For each recipe step, we capture multiple images that vi-
sually indicate the step in progress. These images vary in angles,
lighting conditions, and environmental factors to test model robust-
ness. Additionally, we include a starting anchor image, which is
required for Method 1 to establish the initial world state. We also in-
clude several auxiliary images containing occlusions or misleading
objects, which should be classified as <unknown>.
We assess latency, cost, and accuracy for both methods, defined

as follows:
Accuracy: Formulated as a classification task, where eachmethod

must correctly identify the current recipe step given an input im-
age. Accuracy is measured as the percentage of correctly classified
images out of a total of 24 test images.

Latency: Measured as the end-to-end processing time, fromwhen
an image starts processing to when GPT-4o returns the predicted
step token.



6 • Paul Han and Alvin Le

Method Avg. Latency (s) Accuracy (%) Cost per Request ($)
Method 1 (YOLO + LLM) 3.34 88% 0.0007875

Method 2 (VLM) 6.91 100% 0.0028575
Table 1. Performance comparison between Method 1 and Method 2 for ARSD.

Cost: Calculated as the average request cost per sample when
querying GPT-4o. Since GPT-4o is the primary cost factor, we do
not include additional computational expenses.

5.2 Quantitative Results
Table 1 presents the quantitative comparison between Method 1
(YOLO + LLM) and Method 2 (VLM-based inference) in terms of
accuracy, latency, and cost per request.
Both methods demonstrate strong performance in detecting the

correct recipe step. Method 2 achieves perfect accuracy (100%),
correctly identifying every step in the evaluation set. In contrast,
Method 1 achieves 88% accuracy, indicating some misclassifications
but still performing well overall. This suggests that direct vision-
language modeling is better overall for ARSD in terms of raw visual
understanding and accuracy.

However, althoughMethod 2 is more accurate, it comes at the cost
of significantly higher latency. Method 1 has a 48% lower average
latency, processing each request in 3.34 seconds, compared to 6.91
seconds for Method 2. This reduction in latency is critical for a real-
time AR cooking assistant, where fast step detection is necessary to
provide users with immediate feedback. In a live cooking scenario,
delays in recognizing and updating steps could result in a frustrating
user experience, making low-latency solutions vital for interactive
AR applications.

Cost is another key factor in assessing the feasibility of deploying
these models at scale. Method 1 is 3.62 times more cost-efficient
than Method 2, with an average request cost of 0.0007875 compared
to 0.0028575 per request for Method 2. This difference is largely due
to the high computational cost of processing images in Method 2,
where each image incurs significant tokenization overhead when
passed to GPT-4o. Method 1, being purely text-based, avoids this
bottleneck.
Overall, the results highlight a trade-off between accuracy and

efficiency. If accuracy is the highest priority, Method 2 is the clear
choice. If real-time responsiveness and cost-efficiency are more im-
portant, Method 1 is preferable, as it provides quicker updates and
significantly lower costs while maintaining decent accuracy. More-
over, Method 1’s performance can likely be improved by adjusting
several architectural parameters, such as: (1) using a larger YOLO
model for more precise object detection, (2) adding more context
to the LLM with world-space state tokens, and (3) fine-tuning the
confidence threshold to reduce false positives. These optimizations
would shift the balance between accuracy and efficiency, allowing
for a more flexible trade-off depending on the specific needs of the
application.

5.3 Qualitative Observations
Beyond the quantitative results, we note several qualitative differ-
ences between Method 1 and Method 2 that highlight their respec-
tive strengths and limitations.
One key observation is that Method 1 is best suited for shorter

recipes with a limited number of steps. This is due to the fact that
Method 1 relies on tracking an unbounded list of objects and their
position histories over time. As a recipe grows longer, the accu-
mulated history increases in size, which can significantly expand
the token count required for the LLM prompt. In extreme cases,
the prompt length for Method 1 could exceed that of Method 2,
potentially making it more expensive to run despite its initial cost
efficiency. In contrast, Method 2 operates with a constant number
of images, typically using one anchor image and one current image.
While Method 2 has a high startup cost per request, this cost remains
stable as the recipe progresses. In scenarios where a recipe involves
dozens of steps over an extended period, Method 2 could become
more scalable and cost-effective than Method 1.

Another important difference is category generalization. Method
1 is inherently constrained by YOLO’s object detection categories,
which are based on the COCO dataset. While COCO contains 80
object classes, only about 20 are related to food and kitchen objects.
This means that Method 1 cannot detect certain ingredients, tools,
or niche cooking items unless YOLO is fine-tuned on additional food
datasets. However, fine-tuning YOLO on custom datasets introduces
additional costs for data annotation and training, making it a non-
trivial improvement. Method 2, on the other hand, is likely trained
on a significant chunk of Internet images, allowing it to generalize
across nearly any recipe image. This flexibility means that Method
2 can handle a far wider variety of ingredients and cooking tools,
whereas Method 1 may fail when encountering objects outside of
its pre-trained detection set.
These observations further reinforce the trade-offs between the

two methods. A practical AR recipe assistant could combine both
approaches, using Method 1 for short, simple recipes to minimize
costs, while switching to Method 2 for longer, more intricate recipes,
where accuracy and generalization are more critical.

6 LIMITATIONS AND FUTURE WORK
A significant limitation of our work is the limited scope of our eval-
uation dataset. Due to time and cost constraints, we were unable
to construct a large-scale, diverse dataset that would better reflect
real-world ARSD scenarios. Ideally, future work should incorporate
a larger, more diverse dataset of annotated recipe images or even
cooking videos, each labeled with ground-truth step annotations.
Such a dataset would provide a more rigorous benchmark for eval-
uating ARSD methods and enable further improvements in model
performance.



AR Cooking Assistant • 7

Looking ahead, there are several promising directions for future
work, spanning both algorithmic improvements and system-level
optimizations. On the algorithmic side, our current methods are
relatively simple compared to what is possible with modern LLMs
and VLMs. Future research could explore more sophisticated tech-
niques, such as prompt engineering strategies, retrieval-augmented
generation (RAG) with structured recipe templates, or multi-step
reasoning approaches that dynamically adjust model queries.

On the systems side, there is considerable room for optimization
in terms of real-time performance. Our current implementations
exhibit latencies measured in seconds, which is suboptimal for real-
time AR applications. A major bottleneck is network overhead, as
we rely on cloud-based inference for model processing. One po-
tential solution is to distill a lightweight, on-device model specifi-
cally optimized for recipe step detection, enabling inference with
low latency while maintaining acceptable accuracy. Additionally,
application-level optimizations could improve performance, such as
batch processing of frames, caching mechanisms, and more efficient
scheduling of API requests.

Beyond ARSD, our framework highlights the broader potential of
LLMs and VLMs for AR-based assistance. These models are highly
generalizable and can be adapted to various AR-guided tasks beyond
cooking. Even within the cooking domain, LLMs could be leveraged
for setting timers, providing cooking tips, suggesting ingredient
substitutions, and offering context-aware recommendations based
on real-time observations. Furthermore, the emergence of AI agents
introduces new possibilities for assistants that actively engage with
users, guiding them through complex real-world tasks. Future re-
search could explore the intersection of AR assistance and AI agent
frameworks, combining vision, language, and real-time interactivity
to create more intelligent, context-aware applications.

7 CONCLUSION
In this paper, we introduced the task of automatic recipe step de-
tection (ARSD) for augmented reality (AR) cooking assistants. We
proposed a general framework for ARSD and presented two dis-
tinct approaches: (1) a method combining object detection with
an LLM-based inference system, and (2) a direct vision-language
model (VLM) approach. Through our evaluation, we demonstrated
that while the VLM-based approach achieves superior accuracy, it
incurs higher latency and cost, whereas the object detection–based
approach offers a more cost-effective and efficient alternative, albeit
with slightly lower accuracy. Our findings highlight the trade-offs
between accuracy, cost, and responsiveness in AR-assisted cooking
applications.

REFERENCES
[1] Mehdi Mekni and André Lemieux. Augmented reality : Applications , challenges

and future trends. 2014.
[2] Microsoft. Hololens documentation, 2025. Accessed: 2025-03-19.
[3] Meta. Meta reality labs - orion, 2025. Accessed: 2025-03-19.
[4] Apple Inc. Apple vision pro, 2025. Accessed: 2025-03-19.
[5] M. Philipose, K.P. Fishkin, M. Perkowitz, D.J. Patterson, D. Fox, H. Kautz, and

D. Hahnel. Inferring activities from interactions with objects. IEEE Pervasive
Computing, 3(4):50–57, 2004.

[6] Luowei Zhou, Chenliang Xu, and Jason J. Corso. Procnets: Learning to segment
procedures in untrimmed and unconstrained videos. CoRR, abs/1703.09788, 2017.

[7] Wes Gurnee and Max Tegmark. Language models represent space and time, 2024.

[8] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection, 2016.

[9] Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models
for vision tasks: A survey, 2024.

[10] Ultralytics. Yolov8 documentation, 2025. Accessed: 2025-03-19.
[11] OpenAI. Hello gpt-4o, 2024. Accessed: 2025-03-19.


	Abstract
	1 Introduction
	1.1 AR Recipe Assistance
	1.2 Automatic Recipe Step Detection
	1.3 Contributions

	2 Related Work
	3 Methods
	3.1 High Level Design
	3.2 Recipe Generation
	3.3 Method 1: Object Detection w/ Language Models
	3.4 Method 2: Vision-Language Model Approach

	4 Implementation Details
	4.1 AR Recipe Assistant
	4.2 YOLO (Object Detection)
	4.3 GPT-4o (LLM/VLM)

	5 Evaluation
	5.1 Experimental Setup
	5.2 Quantitative Results
	5.3 Qualitative Observations

	6 Limitations and Future Work
	7 Conclusion
	References

