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Fig. 1. Our Project implements physical sound simulation in realtime on the Meta Quest 3. Above is an image of our real-time testing environment: A room in
Virtual Reality with an assortment of metal, glass, and plastic cubes. These cubes contain precomputed modal frequencies based on their material and shape,
and dynamically create sounds based on these modal frequencies upon collision.

Pre-recorded audio is commonly used in interactive applications to provide
sound effects. We propose an implementation of physically-based sound
simulation that produces realistic acoustic simulation within an interactive
environment. Using a Meta Quest 3 and the Unity Engine, we can record
both the displacement and speed of our hands interacting with digital objects.
Using an algorithm resolving the sound radiation, we used the pre-recorded
data to simulate the sound of an interaction between two objects. For exam-
ple, when a metal object hits the ground, a sound is produced based on the
speed of the hit, the material of the object, and the shape of the object. Our
implementation is capable of producing physically accurate sounds with
regard to object material and listener position — in real-time.

1 INTRODUCTION
Pre-recorded audio is commonly used in most interactive applica-
tions to provide sound effects. However, this approach lacks scala-
bility. Specifically, given a scene with complex geometries that are
actively changing, reconstructing physically accurate sound with
manual recording is nearly impossible. Therefore, we propose to
implement a physics-based sound simulation prototype.

The process of sound simulation generally consists of three com-
ponents: sound synthesis, sound propagation, and sound spatial-
ization. Sound synthesis involves generating sound waves from
fundamental physical principles, such as simulating vibrations of
objects based on their material properties and shape. Sound propa-
gation determines how these vibrations become audible sounds by
modeling how waves propagate from the source into the surround-
ing medium, accounting for phenomena such as attenuation and
refraction. Finally, sound spatialization focuses on how the listener
perceives the sound.
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Our project will focus on the first two component. Rather than
relying on the pre-recorded samples, we aim to construct an efficient
physics-based sound model that dynamically responds to changes
in the virtual environment. One major challenge in real-time sound
simulation is the computational cost of solving wave propagation
equations for complex scenes. Directly computing acoustic wave
interactions with obstacles and materials at runtime is infeasible
due to the high dimensionality of the problem. To address this, we
leverage precomputed acoustic transfer (PAT) techniques [Doug
L. James and Pai 2006], which allow us to preprocess sound propa-
gation behavior offline and efficiently retrieve the results at runtime.
Precomputed acoustic transfer involves sampling the environ-
ment, calculating impulse responses at various listener positions,
and storing key acoustic parameters such as early reflections,
late reverberation, and diffraction effects. These precomputed
datasets are then compressed and stored in a format suitable for real-
time retrieval. As a result, our implementation achieves real-time
performance with physically accurate sound.

1.1 Contributions
In this project, we made the following contributions:

• Full Implementation of global sound radiation precompu-
tation pipeline [Doug L. James and Pai 2006] for realtime
audio synthesis.

• Real-time sound simulation in VR using precomputed data.
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2 RELATED WORK
Pre-recorded audio is commonly used in most interactive applica-
tions to provide sound effects. However, this approach lacks scala-
bility. Specifically, given a scene with complex geometries that are
actively changing, reconstructing physically accurate sound with
manual recording is nearly impossible. As a result, a few papers in
the last two decades have proposed to implement a physics-based
sound simulation system.
Frequency Domain Wavesolver There are plenty of studies

on sound synthesis and sound propagation. The prior work [Doug
L. James and Pai 2006] proposed a real-time sound simulation para-
digm. It suggests a pre-computation scheme that preprocesses the
global sound radiation effect before runtime. At runtime, it only
computes the weighted contribution from sound sources at the
listener’s location, hiding the cost before interaction. Most sound
studies approach the problem with the numerical method at the fre-
quency domain. This is the principal paper that our implementation
follows.
Time Domain Wavesolver [Wang et al. 2018] suggest a time-

domain wavesolver that presents the better-simulated results. How-
ever, this method is not feasible on the fly, and uses extensive cloud
computation resources.

3 METHOD
Modal Analysis: When the object surface oscillates, the sound
wave will propagates through the air, and our ear membrane in turn
mirrors the displacement that occurred on the sound source. As this
process recurs in certain frequency, we can hear the sound. The
wave phenomenon is periodic, so it can be decomposed into linear
combination of trigonometric functions, or modes shapes 𝑢𝑘 . More
specifically, any complex sound can be represented as a combination
of sinusoidal waves. The displacement of time can be described as

𝑢 (𝑡) = ⟨𝑈 ,𝑞(𝑡)⟩

where 𝑈 denotes the vector of modes and 𝑞(𝑡) represents the corre-
sponding amplitude coefficients. This constructs the basis of sound
generation and will help us differentiate the objects by its sound in
virtual environment. For example, we can perceive the difference
between the plastic, metallic, or glassy objects as the materials pro-
duce different modes when vibrating. The modal analysis mature in
engineering, as multiple pde solver exist. We are more interested
about how the sound radiates and reaches the listener’s ear after
generation.
Sound Transfer:Wave equation addresses the problem of how

the sound progress to the microphone through space and time.

𝜕2𝑝

𝜕𝑡2 = 𝑘2Δ𝑝

Δ is the Laplace operator based on position, 𝑘 is wavenumber given
by 2𝜋 𝑓

𝑐 , and 𝑝 (𝑥, 𝑡) describes the sound pressure given position 𝑥

and time 𝑡 . However, in our implementation, we will simplify the
simulation model by approximating the change in time with damp-
ing factor. Thus, our model of the pressure result become 𝑝 (𝑥)𝑒𝑖𝜔𝑡 ,
where 𝜔 is the frequency of the mode. In this case, Helmholtz equa-
tion, temporal Fourier transform of wave equation, is preferred in

acoustics.
Δ𝑝 (𝑥) + 𝑘2𝑝 (𝑥) = 0, 𝑥 ∈ Ω

The evaluations of sound will based on the 𝑝 (𝑥) at each mode, and
the solution of 𝑝 (𝑥) will depend on the boundary condition. Two
type of boundary conditions exist. Dirichlet boundary condition
indicates that the value of solutions is on the boundary, while the
Neumann boundary condition specifies the normal derivative of
solution resides on the boundary. Neumann boundary condition is
favorable here because it models the sound-hard surfaces and rigid
boundaries as it indicates that sound has constant normal velocity
at the boundary. The condition is given by

𝜕𝑝

𝜕𝑛
= −𝑖𝜔𝜌𝑣

𝜌 is the fluid density (in this case, 𝜌𝑎𝑖𝑟 = 1.21). 𝑣 is the normal
velocity on the surface given by 𝑣 = 𝑖𝜔 ⟨𝑛,𝑢⟩, where ⟨𝑛,𝑢⟩ is the
normal displacement. Thus, we may simplify the condition to

𝜕𝑝

𝜕𝑛
= −𝑖𝜔𝜌 (𝑖𝜔 ⟨𝑛,𝑢⟩) = 𝜌𝜔2⟨𝑛,𝑢⟩

Solving the radiation equation is usually done by Boundary Element
Method, or BEM. As for each mode, we need to evaluate the sound
pressure 𝑝 (𝑥) for each vertex. Given N boundary elements and M
modes, this operation will incur 𝑂 (𝑁𝑀) cost. This cost make real-
time computation infeasible, which become the main challenge of
real-time sound computation.

Approximating Acoustic Transfer: The simple intuition is
that we do not need to evaluate the sound pressure on all vertices.
If two vertices are closed enough, it is likely that they has similar
contribution to the result sound. Therefore, we may achieve realistic
sound simulation by picking𝑚 sound sources representing the N
vertices while𝑚 << 𝑁 . In this sense, we will off-load the computa-
tion before the runtime. The pre-computation consist of following
steps.

(1) Compute modes (by FEM package)
(2) Compute pressure at vertices (by BEM package)
(3) Pick multipoles from candidates
(4) Compute Pressure Coefficient based on multipoles
(5) Export the coefficient for real-time computation
Our final sound is linear combination of spherical multipoles

𝜓𝑙𝑚 (𝑥 − 𝑥), where 𝑥 denotes the position of sound sources.

𝜓𝑙𝑚 (𝑥 − 𝑥) = ℎ
(2)
𝑙

(𝑘𝑟 )𝑌𝑙𝑚 (𝜃, 𝜙)

𝑟, 𝜃, 𝜙 are the spherical coordinates of 𝑥 − 𝑥 . The spherical harmon-
ics 𝑌𝑙𝑚 (𝜃, 𝜙) is widely used in the graphics with regarding to the
variation of visual effects based on the angular position. It describe
the angular relation between the listener and object in this case.
Hankel Function represents the wave propagation,

ℎ
(2)
𝑙

(𝑘𝑟 ) = 𝑗𝑙 (𝑘𝑟 ) − 𝑖𝑦𝑙 (𝑘𝑟 )
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where 𝑗𝑙 and𝑦𝑙 are spherical Bessel’s function of the first and second
kind.
Given m multipoles of order n in spherical harmonics, we will

have

𝑝 (𝑥) =
𝑚∑︁
𝑞=1

𝑛−1∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑐𝑞𝑙𝑚𝜓𝑙𝑚 (𝑥 − 𝑥𝑞)

Plus, for each multipoles, we will have 𝑛2. This gives us that 𝑝 (𝑥) =∑𝑚𝑛2

𝑗=1 𝑐 𝑗𝜓 𝑗 (𝑥), where 𝑗 is generalized index for (𝑞, 𝑙,𝑚). At this stage,
we could two problems in the formulation. First, we can not evaluate
the sound pressure when 𝑥 − 𝑥 = 0 due to the computation of
spherical coordinates. Second problem is how to find the coefficient.

Offset Surface: It is straightforward to consider the option that
we place the fictitious sound sources inside the object. However,
if the object consist of thin shell such as a bell, the source points
are likely to collide with its vertices, which cause the spherical
harmonics broken. To avoid the singular value at the computation,
we will create a shell that enclosed the original object. The offset
surface will define clearly what is inside region. The other factor
to consider is the offset distance 𝛿 . If 𝛿 is too small, it will cause
overfitting issue, so we will choose 𝛿 to be multiple of the largest
mesh’s edge. In our prototype, as we experiment on a cube object,
typical 𝛿 is around 10cm. The original work applied the marching
cube and signed distance field method to construct the offset surface.
After construction of the offset surface, we will use BEM to sample
the ground truth pressure 𝑝 (𝑥) on the offset surface at N vertex
sample position.

Weighted Least Square Now we need to handle the coefficients
in the linear combination. After we set up the offset surface, if we
place sources inside the volume inside the offset surface, as the
Dirichlet BC is satisfied on surface, Helmholz Radiation problem
is satisfied everything exterior to the surface. The approximation
error is determined by how well we satisfy the boundary condition,
𝑝 (𝑥) = 𝑝 (𝑥). Suppose we have 𝑚 unique sound sources, we can
compute the expansion coefficients 𝑐 𝑗 by finding the minimizer of
weighted least square as following.

𝑊𝑉𝑐 =𝑊𝑝

𝑊 is the weight matrix that has shape N-by-N. It scales the pressure
by the area for each vertices, where𝑊𝑖𝑖 =

√
𝑎𝑖 and 𝑎𝑖 is given by

the 1/3 of the adjacent triangle areas the vertex 𝑖 . V is the multipole
basis matrix with with 𝑉𝑖 𝑗 = 𝑝𝑠𝑖 (𝑠𝑖 ) is the 𝑗𝑡ℎ multipole function
evaluated at the 𝑖𝑡ℎ sample position, 𝑠𝑖 . 𝑝𝑖 = 𝑝 (𝑠𝑖 ) is the BEM
pressure evaluated at the 𝑠𝑖 . To solve this problem, we will have
𝐴 =𝑊𝑉 and 𝑏 =𝑊𝑝 . The system equation is in our familiar format.

𝐴𝑐 = 𝑏

However, A is not always in good condition. To address poorly con-
dition A matrix, we will solve the least square problem by truncated
singular value decomposition with a singular value threshold 10−6.
More specifically, we will take the singular value decomposition
of the matrix A. In the resulting singular value matrix, we will
only use the singular value that is greater than the threshold. Then,
the product is easy to invert the help us solve the system of linear
equations.

Multipole Placement Algorithm Nowwe come to the most im-
portant part. How could we determine the multipole that minimize
the difference between the ground truth sound pressure and approx-
imation? The original paper first introduce the greedy algorithm
of finding the multipole and another algorithm that accelerates the
finding process with a more complicated strategy. In this place, we
will focus on the first strategy.

We will incrementally add the source points. We will based on
the residual 𝑟 = 𝑏 −𝐴𝑐 to rank the candidates in the queue. From
the perspective of mathematical formulation, we will use the basis

𝑈𝑥 = basis(𝑊𝑉𝑥 )

The fitness can be determine by the norm of the projection from
residual to the basis | | (𝑈𝑥 )𝐻 𝑟 | |22, where H is the matrix Hermitian
conjugate. Thus, our best candidates is

𝑥∗ = argmax𝑥∈𝑋 | | (𝑈𝑥 )𝐻 𝑟 | |22
To obtain the candidates, we use the rejection sampling. We first

construct a bounding box that enclosed the offset surface. Then,
we would randomly sample the points inside the bounding box.
The candidates will be the random points that fall inside the offset
surface.

With the new the multipole position, we then need to update our
residual and unitary basis𝑄 spanned by all the multipole selected. In
the first place, wewill apply themodified GramSchmidt to [𝑄 |𝑊𝑉𝑋 ],
which gives us [𝑄 |𝑄𝑥 ]. The resulting Q is orthogonal to the residual.
Then we will update the residual with 𝑄𝑥 with 𝑟 = 𝑟 −𝑄𝑥𝑄

𝐻
𝑥 𝑟 .

Now we have all the tools we need for the multipole placement
algorithm. We will first initialize the residual 𝑟 = 𝑊𝑝 . While the
residual is greater than the tolerance, in our case 10−4, we will filling
the sound sources from the candidates for each round. Finally, we
will return all the multipole positions.

Based on the multiple positions, we will be able the compute
the coefficient c we mentioned before. The last step in the pre-
computation is exporting them for the real-time computation.

Real-Time:Wewill parse the binary file from the pre-computation,
computing the sound by iterating on each frequency. We then apply
a damping factor that will make sound diminish over the time.

4 IMPLEMENTATION DETAILS
Precomputation
We first create the mesh inside Blender. While the author from

original paper chose to use marching cube and signed distance field
to obtain the offset surface of the object, Blender provides solidify
modifier, which is a handy approach to construct the offset surface.

The first step in our pre-computation is acquiring the modes and
frequency of the object. Autodesk Fusion provides a convenient tool
for conducting the modal synthesis. We first need to convert the
mesh to solids and assign the physical material. The simulation tool
in the Autodesk Fusion will solve the pde and output the modes and
frequency. We will only take the mode that make sense in reality.
For example, s-shape distortion of glass objects is not taken into
account.

Themajority of our codewas in python andC#. Bempp is pythonic
library that provides BEM solver. With the modes and frequency
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as the input to the BEM package. We will obtain the pressure eval-
uated at each vertices. Then we will find the multipoles through
aforementioned multipole placement algorithm.

As the result, we have the coefficient c andmultipole positions.We
will then encoded these parameter into binary file code respectively.
For instance, we have K file saving the wavenumber k and SOURCE
file saving the multipole positions and spherical coefficients.

On-Device Implementation Differences We implemented the
real-time computation step of this algorithm on a Meta Quest 3
headset using Unity. When implementing real-time sound produc-
tion on device, many optimizations had to be made. The pressure
for each modal frequency was computed in parallel, and the individ-
ual waves for each frequency were stored in memory for efficient
computation. Each object loaded its calculated source and k files in
memory, and audio synthesis was done in a collision handler. We
took advantage of the Unity game engine for physics and collision
detection.

5 EVALUATION OF RESULTS
Due to the nature of sound-focused project, it is more favorable to
examine the quality by ear. We have achieved real-time performance
of computing sound. Given different material such bronze, glass, or
plastic, our project could produce realistic sound while showing the
clear difference between the objects with different material. We will
still put the data we have for the operation.

Table 1. Computing Time for Different Materials

Material time

Bronze 33.6235
Glass 10.9968
Plastic 11.3111

The table above shows the computation time including the BEM
solver andmultipole placement algorithm. The FEMwill take around
3 minutes to each material with simple cube mesh. We did not di-
rectly test on object with more complex geometry because the Au-
todesk fusion does not directly support non-watertight meshes. We
may need to find other tools with modal analysis. The bronze takes
longer time because Bempp file take long time to set up the solver.
The extra 20 seconds are the overheads of initialization. Beyond
this, we were trying to obtain the latency of sound simulation in
the real-time process and the error between our predicted sound
and actual sound, but due to the time limitation, we could only give
qualitative results. In terms of the former latency measurement, the
computation is fast enough that we can not perceive any latency by
our ear. The simulation result for bronze material and glass material
is realistic based on our experience, while the plastic object does
not fit our expectation. The potential issue is that we don’t have
enough familiarity to the FEM and BEM tools such that we may get
flawed data from the pde solvers.

6 DISCUSSION OF BENEFITS AND LIMITATIONS
Our implementation successfully integrates a frequency-domain al-
gorithm for real-time sound simulation in a sample VR environment.

This demonstrates the feasibility of simulating physically accurate
sound in interactive applications without pre-recorded audio. By
leveraging Unity’s engine, we significantly reduced the latency be-
tween simulated objects and static objects to near zero. Furthermore,
latency between multiple interacting objects remains negligible, en-
abling a seamless user experience where objects produce distinct
sounds based on their material properties and shape. The paral-
lelism API of Unity’s engine played a crucial role in optimizing
computation, allowing for efficient real-time execution.
However, the complexity of the frequency-domain algorithm,

combined with our initial unfamiliarity with Unity, resulted in a
longer-than-expected implementation time. Consequently, we were
unable to explore time-domain-based sound simulation, which could
offer alternative advantages in fidelity and realism. Additionally,
while our implementation supports smooth interactions in most
cases, collisions between more than 20 objects simultaneously lead
to a noticeable reduction in frame rate.

7 FUTURE WORK
Future work could investigate further optimization strategies for
frequency-domain sound simulation, including enhanced paral-
lelism and leveraging Unity shaders for audio synthesis to improve
performance in complex scenes with orders of magnitude more ob-
jects. Optimizing computational efficiency would enable smoother
real-time interactions, particularly in scenarios with high object
collision counts, ensuring scalability for large-scale simulations.

Beyond performance improvements, physically-based sound sim-
ulation has potential applications in interactive environments, par-
ticularly in sandbox games. Unlike traditional pre-recorded audio
systems, dynamically generated soundscapes respond to environ-
mental changes, enhancing immersion by providing real-time audi-
tory feedback based on object interactions and material properties.
Additionally, future research could explore real-time implemen-

tations of time-domain-based sound simulation algorithms [Wang
et al. 2018]. While these approaches traditionally require significant
computational resources, recent advancements in GPU optimization
for large language models (LLMs) may provide new opportunities
for on-device processing. Leveraging modern GPU architectures
could enable real-time execution of time-domain sound simulation,
bridging the gap between physical accuracy and interactive perfor-
mance.

8 CONCLUSION
Our work demonstrates the feasibility of zero-latency real-time
physics-based sound simulation in Virtual Reality using a frequency-
domain approach. This implementation highlights the potential for
more physically accurate and scalable soundscapes in AR/VR en-
vironments, moving beyond pre-recorded audio limitations. While
challenges do remain, particularly in handling large-scale object
interactions, further optimizations and GPU advancements could
enable even more complex simulations. Physical sound simulation
within AR/VR applications could redefine audio-visual immersion.
Accurate audio for interactions between user-created objects could
be produced without thousands of pre-recorded audio samples, al-
lowing for more dynamic experiences. Increased research in this
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Table 2. FEM result for Bronze, Glass, and Plastic

Material Mode Frequency (Hz) X Participation Y Participation Z Participation

Bronze 1 101.171 61.245 0.000 0.000
2 156.719 0.000 63.098 0.000
3 431.000 22.349 0.000 0.0001
4 450.849 0.000 0.000 78.859
5 495.658 0.000 22.491 0.000

Glass 1 165.229 61.181 0.000 0.000
2 259.775 0.000 62.378 0.000
3 721.696 22.132 0.000 0.0001
4 737.924 0.000 0.000 80.261
5 837.943 0.000 22.922 0.000

Plastic 1 43.949 61.180 0.000 0.000
2 67.372 0.000 63.468 0.000
3 183.914 22.520 0.000 0.0002
4 195.117 0.000 0.000 77.584
5 210.158 0.000 22.242 0.000

area could lead to more computationally efficient solutions, paving
the way for physically accurate, interactive audio in next-generation
AR/VR applications.
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