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Fig. 1. This is a sample gaussian splat of Derek’s bedroom. The structure from motion (SFM) metadata including camera field of views and image clips. This
represents the software side of our pipeline, which will be explored more later in the paper.

This project explores a system for efficient and immersive 3D environment
capture, reconstruction, and rendering, emphasizing collaborative data shar-
ing and point cloud reuse for Gaussian Splatting, alongside immersive spatial
audio reconstruction. Our approach introduces a novel chunking technique
that divides environments into manageable blocks, enabling selective pro-
cessing, storage, and retrieval of point cloud data. This facilitates the reuse of
previously processed data and supports collaborative reconstruction, where
users can contribute to a shared 3D representation by capturing and up-
loading data for specific chunks. We also investigate a hardware wearable
device for capturing visual and multi-channel audio data, and implement
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spatial audio processing techniques to enhance the immersive experience.
Our results demonstrate the potential of chunking to improve the scalability
and efficiency of Gaussian Splatting for large-scale environments, and the
importance of integrated audio for creating more compelling and realis-
tic immersive experiences, paving the way for collaborative 3D scene and
spatial audio reconstruction.

1 INTRODUCTION
Our motivation for the project was to build both hardware wearable
and a software platform for users to interact with their "memories"
both efficiently and immersively. In order to "capture" memories,
we would need the wearable such that it would record a user’s
surroundings (visuals and audio). With the memory "recorded" we
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Fig. 2. This is a constructed wearable consisting of 3 cameras and 6 micro-
phones.While bulky, inefficient, and difficult to power, it is able to somewhat
capture 3 images per second and 6 channels worth of audio* (* issues being
expanded upon in the paper). This represents the hardware side of our
pipeline, which will also be explored more later in this paper.

could then use 3D Gaussian Splatting and Spatial Audio Re-
construction to effectively rebuild an immersive environment to
be explored in VR. The use cases for such a project is varied, from
uses cases for individuals suffering from Alzheimer’s or dementia
to uses in architecture or engineering. Most of all it would just be a
super cool form of entertainment, to be able to relive some of your
favorite memories.

While not many products or companies have looked deeply into
commercializing thewhole pipeline that we undertook, we definitely
utilized existing research in [3D Gaussian Splatting (ref the paper)]
and spatial audio [ref the paper]. For the task of reconstruction,
we decided to use existing tooling like Jawset Postshot, Unreal
RealityCapture and Colmap to produce intermediary artifacts
like point clouds (both sparse and dense) and camera registry files.
Though we did not write a renderer ourselves, we used these tools
to perform experiments on how to optimize and refine the recon-
struction pipeline. As for the hardware, we were limited both in
time and in finances, so though in a perfect world we could have ob-
tained multiple 360 degree cameras, stereo cameras, and/or the Meta
Orion lenses, unfortunately we had to make do with 3 AverMedia
webcams. Though this posed a challenge, it was a good challenge
and forced us to be more creative when thinking of solutions.
Specifically, for our project, we not only wanted to explore the

pipeline for capture, reconstruction, and rendering, but also wanted
to improve immersiveness through the use of multiple set spatial
reconstruction and splat efficiency through point cloudmerging,
chunking, and semantic segmentation with varying levels of
results for each of these. Though with more time, our results and
explorations may be more in depth and detailed, we were forced to
cut our time short and selectively choose what to spend our time
on.

Overall we discovered a method for splatting with a cached point
cloud [1], a systematic design for chunking and stitching of an envi-
ronment for future splatting [2], and a method to do 3D spatial au-
dio reconstruction [3]. Though our findings may not be completely

novel and are built off of existing tooling, our results indicate that
there are routes to explore in the path of caching for reconstruction.

1.1 Contributions
• We introduce a method for splatting a new scene (t+1) where

t is the time of the environment, utilizing the point cloud of
scene (t) and images from (t+1)

• We introduce a method for systematically chunking a cap-
ture into "blocks" and programatically determining all cam-
era views associated with that block in order to cache and
piece by piece later.

• We introduce a method to produce spatial audio captured
from the environment

• We introduce a demo of a wearable piece of hardware that
captures images and audio of the environment of the user
wearing it.

2 RELATED WORK
Significant amounts of prior work were referenced to get an idea of
the state-of-the-art technology in this area.

The core of our project involves Gaussian splatting, a technique
with significant prior research. The key paper in the area is the
seminal paper 3D Gaussian Splatting for Real-Time Radiance Field
Rendering [Kerbl et al. 2023] that first introduced the technique.

There is notable prior work on point clouds and their properties
as well as alternative 3-dimensional representations. We referenced
a significant amount of prior work in areas regarding 3D repre-
sentations. This is shown through the research of papers such as
Real-time moving object detection and removal from 3D pointcloud
data for humanoid navigation in dense GPS-denied environments
[Rath et al. 2020] and OctoMap: an efficient probabilistic 3D mapping
framework based on octrees [Hornung et al. 2013].

Considerable prior work exists on understanding room acoustics
and spatial room audio. For this, the paper Past, Present, and Future
of Spatial Audio and Room Acoustics [Koyama et al. 2025] was a
significant reference, highlighting the important developments in
understanding how audio propagates within a room.

We also looked into spatial audio capture methods and ambison-
ics, especially with such prior work as Binaural Reproduction of
Higher Order Ambisonics A Real-Time Implementation and Perceptual
Improvements [Vennerød 2014], Ambisonics Capture using Micro-
phones on Head-worn Device of Arbitrary Geometry [Bastine et al.
2022], and DIFFBAS: An Advanced Binaural Audio Synthesis Model
Focusing on Binaural Differences Recovery [Li et al. 2024] to find
effective methods to handle directional audio data.
There is significant prior work in machine learning for spatial

data, as summarized in the 2022 paper An overview of machine learn-
ing and other data-based methods for spatial audio capture, processing,
and reproduction [Cobos et al. 2022]. We referenced algorithms re-
garding signal capture and processing from this review.

3 METHOD
As our research andmethodology spanned across both hardware and
software spaces, we will be sure to detail both promising results we
found and the failures we encountered in the process of refining our
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application. Even though many of the rabbit holes we went down
were not super promising, we believe that they may serve as "trail-
heads" for future work down the line. Specifically our methodology
will cover: the hardware wearable, our splat chunking process, the
ideas that went into our audio reconstructor, and finally our other
attempts at improving the splatting pipeline (including semantic-
segmentation and point cloud reuse).

3.1 Hardware Wearable
Its well known that to produce a good Gaussian splat, we need many
images of the surrounding environment. Although it is feasible to
constantly record with a phone for example, due to the one-way
nature of recording and the lack of perspectives, it is very hard to
produce a holistic reconstruction (in fact oftentimes using a station-
ary recording will result in a splat that is effectively just a frame).
The idea is that we would like to develop some sort of wearable
similar to the Orion glasses that can record our surroundings but
from multiple views. Unfortunately, we are not Meta, nor do we
have the resources to compete against them, but what we realized
is that we can still get fairly far with 3 webcams and a Raspberry Pi.
The wearable itself is shockingly uncomplicated. 3 AverMedia

webcams are plugged into a RPI4 in the position of an equilateral
triangle (where each side is one camera). Althoughugh not com-
pletely 360 degrees, for our MVP run, we simply had the wearer
strap it on their head and turn a little more when doing captures. As
the user moves, we capture their surroundings, both from the web-
cam cameras but also with the microphones built into the webcam.
These information would be saved and used later in our pipelline
for splatting and audio reconstruction.

3.2 Chunking
A significant challenge lies in the effective reuse of point clouds
or splats from prior environments. This engenders a non-trivial
problem, namely the registration of arbitrary point clouds with po-
tentially limited overlap, a problem that remains largely unresolved.
Existing literature offers limited direct solutions, as most point

cloud registration algorithms presuppose substantial overlap be-
tween the datasets. While certain works, such as the hierarchical
Gaussian splatting approach [Kerbl et al. 2024], explore merging
splats across training segments, these methods typically rely on
simple concatenation and assume minimal scene change. Related
methodologies in robotics, for instance, those exemplified by [Yugay
et al. 2024], similarly leverage the high degree of overlap inherent in
point clouds acquired from sensors within close temporal proximity,
often employing voxelization and Iterative Closest Point (ICP) for
registration.
Our initial investigations involved a brute-force approach. This

entailed determining the center of the dense point cloud (splat),
iteratively zooming out, and capturing images at 360/𝑘 angular in-
tervals to estimate rotation. Following this, a rudimentary rotation
alignment was attempted, and the scene was projected onto 3-axis
coordinates 𝑛 times (corresponding to 𝑛 angles) to explore the use of
SIFT features for translation calculation. This methodology proved

to be exceptionally inefficient and was constrained by a fixed bound-
ing volume (due to the 2D plane projection), rendering it unsuitable
for our purposes.
We also evaluated the global registration algorithm provided by

the Open3D package, which is predicated on the RANSAC algorithm
[Nousias et al. 2023]. Although we increased point cloud overlap
through voxelization, this approach still yielded unsatisfactory re-
sults. The core issue stems from the algorithm’s reliance on match-
ing distributions of neighboring points. Consequently, point clouds
with similar distributions but spatial adjacency tend to merge into
a single dense cloud, rather than remaining as distinct, neighboring
entities.

Fig. 3. Results of merging two corners of a room using Open3D’s global
registration. The bottom images show the original point clouds, while the
top images illustrate the voxelized point clouds after merging.

Our refined strategy adopts a different perspective. Instead of
attempting to computationally derive rotation, translation, and scale,
we propose to leverage information gathered directly from the user.
Rotation data is obtained from the wearable’s IMU sensor, while
scale and translation are inferred from GPS data and user-provided
height. Given the wearable’s fixed position on the user’s head, we
can reasonably approximate the camera position as coinciding with
the user’s head position. This, in conjunction with GPS data, enables
the computation of an approximate location and orientation for the
reconstructed scene. This facilitates the construction of a global real-
world representation, serving as a cache for our splatting pipeline,
bypassing the point cloud reconstruction phase (for a majority of
users), and enabling the creation of rich scenes with significantly
reduced data acquisition, as users can share data. For example, if
colleagues have already generated a point cloud and camera pose
estimation for a classroom, a user would only need to capture data
for their specific area of interest.
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It is important to note that we do not cache the splat itself, as we
rely on third-party software for training, and our limited exploration
within the project timeframe did not identify open-source software
that permits post-training modification of image data.

3.3 Multiset Spatial Audio
Each AverMedia webcam on our wearable has 2 microphones, a
left and a right one. With 3 webcams, we have 6 channels of audio
to essentially record from, and with sound being represented as a
wave, we could effectively capture sound coming from any direction.

Fig. 4. A crude depiction of the wearable’s microphones. Each microphone
pair is denoted with𝑚𝑥 with specific left and right microphones labeled as
𝑚𝑥𝑙 and𝑚𝑥𝑟 respectively

Essentially with these 6 stereo microphones we want to capture
sound spatially, determine sound source position based on the mi-
crophone array’s geometry, interpolate and combine the audio data
in order to reconstruct a 3D sound field, and finally to render the
ambisonic audio for immersive experience in the virtual environ-
ment.

Fig. 5. A very simplified example of how we would use the microphones to
"detect" where sound is coming from.

A significant challenge included in this reconstruction is the issue
of time-of-arrival differences (ToA) between microphones when
determining sound direction. Furthermore, in the diagram I make
the assumption that only 2 microphones would receive the highest
intensity sound waves in order to determine the origin of the sound.
However very noisy environments or environments a multitude of
audio sources will heavily impact the reliability of this assumption.
Effectively what we are trying to do here is SLAM but only with
audio cues.
The research for this took more time than I would have liked,

but in the end we were able to lock down a very simple and hacky
method of processing the audio:

3.3.1 Acoustic Signal Processing. So even before we collect or pro-
cess any audio, we must synchronize all microphones to record at
the same sample rate. As the webcams automatically have software
to apply high-pass filtering for noise reduction, we don’t have to
worry about that. Once this is complete we started collecting audio.

3.3.2 Direction of Arrival Estimation. A major issue with our ap-
proach is that we want to choose the two microphones getting the
most direct input, but to do this we need to compute the time dif-
ference of arrival between all microphone pairs which is basically
just determining when each microphone started picking up a certain
sound. To do this we chose to use an industry standard: general-
ized cross-correlation with phase transforms defined by this
equation:

𝑅𝑖 𝑗 (𝜏) =
∫ ∞

−∞
𝑋𝑖 (𝑓 )𝑋 ∗

𝑗 (𝑓 )𝑒
𝑗2𝜋 𝑓 𝜏 𝑑 𝑓 (1)

where:
• 𝑅𝑖 𝑗 (𝜏) : Cross-correlation function between signals 𝑋𝑖 and

𝑋 𝑗 ebign left and right respectively.
• 𝑋𝑖 (𝑓 ) : Frequency-domain representation of signal 𝑖 .
• 𝑋 ∗

𝑗
(𝑓 ) : Complex conjugate of the frequency-domain repre-

sentation of signal 𝑗 .
• 𝑒 𝑗2𝜋 𝑓 𝜏 : Complex exponential term that introduces a time

shift 𝜏 .
• 𝜏 : Time shift parameter.
• 𝑓 : Frequency variable.
• 𝑑 𝑓 : Differential element in the integration over all frequen-

cies.
We essentially must use this to solve for the sound source position
by triangulating multiple ToA estimates. We also chose to compute
the interaural level difference and interaural phase difference for
the left-right stereo pairs. The interaural level difference helps to
determine the lateral position of the sound while the interaural
phase difference refines the "distance" of how far away the sound is.
These values are used as weighted constants along with the multiple
ToA estimates in order to solve for the sound source coordinates
(represented as x, y, and z). We use least-square minimization to
solve this.

3.3.3 Reconstruction. In order to do reconstruction (we want to
produce some ambisonic sound field) we convert the microphone
signals to first-order ambisonics using a process known as eigen-
beam beamforming:

The values of 𝐵0, 𝐵𝑥 , 𝐵𝑦 , and 𝐵𝑧 are given by:

𝐵0 =
2
1
(𝑝1 + 𝑝2 + 𝑝3) (2)

𝐵𝑥 =
𝑝1 − 𝑝3

2
(3)

𝐵𝑦 =
𝑝2 − 𝐵0

2
(4)

𝐵𝑧 = 0 (No height microphones in current setup) (5)

where:
• 𝑝1, 𝑝2, 𝑝3 are the pressures measured at different microphone

positions.
• 𝐵0 is a combined pressure term.
• 𝐵𝑥 and 𝐵𝑦 are spatial pressure components.
• 𝐵𝑧 = 0 because no height microphones are used in the

current setup.
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We also choose to use plane-wave decomposition in order to fully
utilize all microphone pairs, though we weight the two main micro-
phone channels at 0.8 and the other ones at 0.2 in order to better
determine the ambisonics of the noise. This models possibly missing
channels as a weighted sum of observed data.

Finally wewould render the spatial audio field into Unreal, though
I was unable to do this in time.

3.4 Other Explorations
To go from a set of images to a gaussian splat is a fast process, and
often with enough compute it seems near instant. However our
secondary mission was to find any possible methods to optimize
the splatting process. The simplified pipeline looks like this: a series
of images are send, some preprocessor uses structure from motion
(SfM) to produce a sparse point cloud. The images are then used
to produce a dense point cloud and finally the dense point cloud
undergoes splatting resulting in a completed gaussian splat after X
amount of training steps.

However let us take the CSE 493V lecture room and splat it with-
out any people inside. This would involve taking a set of images
of the empty classroom (regardless of what device was used for
capture it). We go through the splatting pipeline, producing a sparse
and dense point cloud of the environment before finally training
and obtaining a splat of the empty classroom. We can treat this as a
ground truth representation. But what if now we wanted to splat
the classroom with people inside? We would still need to collect a
set of images (now with people in the classroom). Due to the people
in the classroom, images involved may occlude objects like chairs
and tables that were already existing. Furthermore, would it not be
inefficient to generate a whole new point cloud when the majority
of the environment was already preprocessed when empty?
Thus one of our major experiments was to utilize intermediate

point clouds (for example a sparse point cloud of the empty room)
and use it with images of a non-empty room to reconstruct an envi-
ronment of the non-empty room. This way we effectively "cache" a
sparse cloud to be used for processing down the line, skipping the
possibly expensive reprocessing of the sparse point cloud.

Another route we explored was the use of semantic segmentation
where we use semantic segmentation on new objects introduced
and simply "merge" them into the precomputed dense point cloud
of the original. While much more complex with varying levels of
success, it does prove to hold some value in the idea of "caching"
intermediate steps to be reused in the future.

4 IMPLEMENTATION DETAILS
Put in all the specific implementation details here, including both
hardware and software aspects. Even if you didn’t build a piece
of hardware, make sure to document what hardware you used, in-
cluding your headset, computing environment, and major software
libraries. If you implemented specific hardware devices, describe
how you decided on the design parameters for the hardware. For
example, if you built a VR headset, you’d apply the equations you
previously introduced in Section 3 to decide on the values you used
in your construction. If you implemented an algorithm, such as
volume rendering, then you’d describe the function implementation

details here (e.g., GitHub projects you built on, libraries you used, or
specific aspects you found challenging and how you resolved them).

4.1 Hardware Wearable
Our implementation for the hardware wearable was not as straight-
forward as we originally thought. Using a Raspberry Pi 4 and 3
AverMedia webcams, the physical construction of the wearable was
easy. However the software involved was much more complex and
difficult to wrangle. I used python and some existing 3rd party li-
braries like FFMPEG and vidlib4 in order to access each webcam in
a sort of round-robin queue and take a picture. Unfortunately due
to the age of the Pi and the heavy processing being done, it was not
possible to run both the audio and video capture simultaneously.
However we were able to take pictures and save them along with
processing both channels of the 3 microphones.

4.2 Unreal VR renderer
To achieve immersive visualization of the generated 3D Gaussian
Splats, we employed the Unreal Engine, a powerful real-time 3D
creation tool. Specifically, we utilized LumaAI in conjunction with
the MetaXR plugin to render the splats on the Quest 3 VR headset.
LumaAI provided tools or technology that facilitated the efficient
and high-fidelity rendering of the complex 3D scenes represented by
Gaussian Splats, enabling a more realistic and visually compelling
experience within the virtual environment. The MetaXR plugin
served as the crucial bridge between our Unreal Engine application
and the Quest 3 hardware, ensuring seamless integration and opti-
mal performance on the device. This integration handled essential
aspects of VR rendering, such as stereoscopic display, motion track-
ing, and controller input. To further enhance the sense of presence
and immersion for the user, we implemented custom code for user
movement within the virtual environment, allowing for natural
exploration of the reconstructed scenes.

4.3 Pipeline Improvements
Other explorations we took were involved in finding reuse-ability
with the point clouds being produced. Ideas that were explored
were: 1. Semantic Segmentation + Point Cloud Merging: here we
would segment our output point cloud and simply merge people
into an existing cached point cloud and then run the training. While
straightforward, wewould need to use ICP to align the clouds.We ex-
plored many different clustering techniques (thanks to SciKitLearn)
clustering on position (x, y, z) and color (r, g, b). While segmentation
results were good, we discovered a more effective result that didn’t
need to utilize merging point clouds.

2. Dynamic Oct-tree Point Clouds:While we did explore the use of
oct-trees for dynamic environments that change a lot, we ultimately
realized the rabbit hold would lead to a dead end and scrapped the
code and idea.
3. Sparse Point Cloud + New Images: Intuitively in our attempt

to solve the first exploration (segmentation + merging) we discov-
ered that just utilizing the sparse point cloud of the original with
images of the new scene would be just as effective AND efficient.
We recorded this result but realized it still was not feasible if we
wanted to scale and stitch tens if not hundreds of splats together...
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4. Chunking Technique: We settled on this to explore after the
results found about in point 3. Read below for Chunking technique.

4.4 Measurement
To reconstruct the initial point cloud and camera pose estimation of
a scene, we utilized RealityCapture. We also implemented a custom
editor, leveraging Open3D and RealityCapture export data, to man-
age scaling, rotation, and translation using GPS data and IMU sensor
readings. To calibrate the sensor data, we measured the sensor out-
put for a few frames of our input, selected one of these frames as
a reference, and employed our assumptions regarding user height
and head rotation. While this complete process was not integrated
into our wearable device, we utilized IMU data streamed from our
previous homework and estimated GPS (latitude, longitude, and
altitude) data using online tools. Video for training was recorded
by positioning the capture device in front of the user’s head. Our
editor automates calculations based on camera pose and sensor data
to transform the initial point cloud accordingly, prior to uploading
it into our database. Our editor also incorporates functionality for
manual editing of the point cloud, enabling us to address minor
errors.

4.5 Chunking Database
To implement our caching approach, we construct a global repre-
sentation of the point cloud that aligns with real-world coordinates.
To optimize storage, we store data only for areas likely to be of
interest for splatting. Therefore, we employ a database that orga-
nizes point clouds based on a chunking technique. Currently, we
store each chunk as a 1m x 1m x 1m representation of the recorded
scene. Each chunk stores an associated point cloud, which can be
updated by user uploads, along with associated camera and image
details relevant to that specific chunk. Following transformation
using data from our wearable device, the captured data is divided
into chunks representing corresponding spatial blocks in the real
world. Each chunk is assigned a global coordinate derived from
local data collected by our wearable and GPS data. Point clouds are
stored as relative distances from a reference point (the bottom-left
corner of the chunk), with values ranging from 0 to 1, allowing for
optimization techniques such as quantization or sphere mapping
[Cigolle et al. 2014].
To associate camera poses with specific chunks, we utilize ray

casting. For each estimated camera pose and its corresponding frame
image, a ray is cast to determine its intersection with the chunks. We
currently set the ray intersection check distance to 5 meters. This
parameter can be modified depending on the setting and situation;
for instance, outdoor scenes may necessitate a longer ray distance
due to the sparser nature of their point clouds.
This database is characterized by write-heavy and read-heavy

operations, with limited deletion functionality. Currently, point
clouds from users are merged using concatenation and downsam-
pling within each chunk. This process relies on the assumption that
our wearable device’s measurements are reasonably accurate. Minor
discrepancies can be addressed with ICP due to sufficient overlap
between point clouds within each chunk. However, this approach is
less effective in dynamic scenes with significant movement, such as

Fig. 6. Chunk intersection determination via ray casting. The figure depicts
rays originating from two random camera pose estimations. Chunks identi-
fied as intersecting with the rays are marked in red.

roads with cars and trucks. It performs adequately for reconstruct-
ing smaller objects to be added to a scene, as demonstrated in the
table example in 5.2. Future work could incorporate segmentation to
store only static objects (e.g., buildings, structures) and potentially
employ a frequency count from users to identify objects that remain
static over extended periods, leading to a consensus on the point
cloud representation of those objects.

Fig. 7. Result of our database implementation: 3x3 chunk retrieval centered
around the origin.

The database query system retrieves a set of images, camera poses,
and point clouds based on GPS data (indicating the chunk at the
query’s center) and a chunk distance (specifying how many neigh-
boring chunks to retrieve). This will create a comprehensive dataset
suitable for jump-starting the 3DGS training phase. This approach
assumes that users employ our wearable device, resulting in similar
frames and rotations, enabling the substitution of image datasets.
Our pipeline is designed as follows: Assuming a database with a
near-accurate representation of a scene (e.g., a room), constructed
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from numerous user contributions, a new user seeking to recon-
struct the room would only need to record the relevant portions
where detailed accuracy is desired. Our system would then output
the relevant point clouds and camera poses for 3DGS training to
generate the scene. This provides users with a rapid method for ob-
taining a 3D representation of their desired capture. Concurrently,
our system executes the COLMAP pipeline to reconstruct point
clouds and integrate that data, further enhancing the database for
subsequent users.
Our results are promising. Using an NVIDIA GeForce RTX 4070

Laptop GPU and Postshot, a complex scene that previously required
201 images for reconstruction can now be constructed with a smaller
set of images. New details in the scene emerge in approximately 2-3
minutes.

4.6 Audio
The implementation and research for audio was done in python with
significant effort in audio signal preprocessing and synchroniza-
tion of the six microphones. Since the webcams operate indepen-
dently, their audio streams must be aligned using cross-correlation
techniques. This involves using generalized Cross-Correlation with
Phase Transform (GCC-PHAT) which we implemented from scratch
in order to do processing on the PI to estimate Time Differences of
Arrival (TDoA) between each microphone pair. We had to force the
system to continuously buffer audio data in real-time, calculating
cross-correlations for overlapping segments, and identifing peaks
in the delay estimates (intensity checking). These delays are then
used in an Iterative Least-Squares solver selected from scikitLearn,
which refines the estimated (x, y, z) position of the sound source
relative to the microphone array. I also attempted to run EMA and
Kalman filters to filter out significantly noisy inputs but they did
not work as well and changes were negligible.

Once the source position is established (as well as it can through
the ILS), beamforming techniques reconstruct the spatial audio field
by summing the six microphone signals with dynamic delay com-
pensation. The compensation algorithm I took inspiration from was
one designed by Wedge in one of their white papers where we con-
duct the delay compensation on the intensity checks noted from
the preprocessing step before. We chose to use the delayed-sum-
beamformer in order to align the wavefronts of the source audio
based on the computed TDoAs, creating a focused spatial representa-
tion of the sound. To transform the audio into Ambisonic B-format,
the microphone signals are mapped into First-Order Ambisonic
components, ensuring rotational invariance and spatial coherence.
If any spatial information is missing due to microphone sparsity,
we use plane-wave decomp to interpolate additional signals. These
combined approaches generate a 360-degree spatial sound repre-
sentation that can be processed into multiple audio output formats
in the actual spatial audio environment (we were able to add this
attenuation into Unreal). We also tried to translate the ambisonic
field to HRTF to build the binaural audio but ran into issues with
how Unreal XR would project that binaural audio so we hit the
roadblock there. Hopefully that will be fixed in future work on this
topic.

5 EVALUATION OF RESULTS

5.1 Hardware Wearable

Fig. 8. Our wearable (though we removed it from the hat for easier testing)

Our wearable performed as well as you would expect 3 webcams
jerry-rigged to a raspberry pi would work. It was clunky, hacky, and
a pain to wear. But to its credit, it worked. We were able to capture
images from each camera and use them for splatting. We were also
able to use the audio collected to do experiments and testing in
order to produce the spatial audio fields. As an MVP it functioned
fairly well.

5.2 Improved Pipeline

Fig. 9. This is a dense point cloud we use as a "cache" and objects like
a draped shirt and a poster are added into it and aligned through ICP.
However this proved to be extremely complex and was somewhat inefficient
(merging took 1 minute while alignment took 8 minutes)

One of our methods we looked into was semantic segmentation
of the point clouds involved with the gaussian splatting. As stated in
the section above, we looked through a variety of clusteringmethods
with DBScan and GMMs producing the best results for semantic
segmentation. We would then select these clouds and attempt to
merge them into another point cloud and train the new splat from
there, however we ran into issues where methods of using iterative
closes point (ICP) for alignment took extremely long which led us
to explore other avenues in the "caching" idea. As referred by the
image above, we wanted to see if we could use saved point clouds to
save some time recomputing point clouds and use existing ones. Our
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Fig. 10. One of our testing point clouds known as "table", where the use of
a GMM classified 3 "parts" of the point cloud. The goal of the test is to see
if given a point cloud of an empty table (time t), we could find some way of
making a splat with objects on the table (time t+1)

test was with image folders involving an empty table and the same
table but with random objects on it. What we ended up discovering
was that if we used the sparse or dense point cloud precomputed for
the empty table we could use it and some new images of the table
with objects to produce a new splat without needing to recompute a
new point cloud. The results are showing here: This is a promising

Fig. 11. Dense point cloud associated with a empty table (notice how there
are no blue or gray objects on the table’s surface)

Fig. 12. Resultant splat

result, as it means that for environments subject to lots of change,
we can in fact do some minor optimizations to improve the pipeline.

6 DISCUSSION OF BENEFITS AND LIMITATIONS
Honestly, the most promising and novel part of our research was ul-
timately in our attempts at improving the caching methods involved
with computing splats in general. Just like how KV-Caching funda-
mentally changed the nature of scalable LLM systems, I think some
of the results we found by using semantic segmentation of point
clouds, point cloud merging, and a sparse point cloud caching are
routes to pursue in the future to make splatting global environments
easier and more scalable.
Our chunking technique is also a form of caching. By dividing

the environment into blocks, we can process and store each block
separately. Then, if we only need to render a specific part of the
environment, we can just load the corresponding chunks as input
to Postshot, rather than the entire environment. This allows us to
reuse previously processed data. This approach offers significant
advantages in terms of efficiency and scalability. Instead of having
to process and store an entire environment as one large dataset, we
break it down into smaller, manageable units. Each chunk, repre-
senting a 1m x 1m x 1m space, stores associated point clouds, camera
information, and image details relevant to that specific block. This
means that when a user wants to explore a specific area, we only
need to retrieve and render the chunks relevant to that area, effec-
tively "caching" and reusing the pre-processed data and avoiding
unnecessary computation or data loading. This is particularly bene-
ficial for large-scale environments, as it allows for selective loading
and rendering, reducing the computational load and memory foot-
print. Furthermore, the chunking approach facilitates collaborative
reconstruction, as different users can contribute to the creation of
a shared 3D representation by capturing and uploading data for
different chunks.
We encountered a number of limitations however; the wearable

was clunky, it was hacky, and worst of all it wasn’t consistently
performant, it was a struggle to implement ambisonic attenuation
into Unreal, and some of our attempts at improving the splatting
pipeline itself was less than satisfactory. Hardware definitely stands
to be a limitation on making splatting dynamically at scale.

7 FUTURE WORK
Our research lays a foundation for several promising avenues of
future work, each with the potential to significantly enhance the
capture, reconstruction, and immersive experience of 3D environ-
ments.
EnhancedWearable Device:A primary direction involves refining
the hardware wearable. Future iterations should focus on:

• ImprovedCaptureCapabilities: Integrating higher-resolution
cameras with wider fields of view or even 360-degree cap-
ture capabilities to minimize occlusion and maximize scene
coverage in a single pass. Incorporating depth sensors or Li-
DAR could further enhance the accuracy and completeness
of the captured 3D data.

• Robustness and Reliability: Addressing the performance
inconsistencies of the current prototype by utilizing more
robust hardware components, implementing real-time error
detection and correction mechanisms, and optimizing power
consumption for extended operation.
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Refinements to the Splatting Pipeline: Several improvements
can be made to the software pipeline:

• Advanced Point Cloud Caching and Management: Ex-
panding upon our initial exploration of point cloud caching.
This includes developing more sophisticated strategies for
merging point clouds from different captures, handling dy-
namic scene elements (e.g., moving objects), and implement-
ing efficient data structures for storing and retrieving cached
point clouds at various levels of detail. Researching efficient
methods to update and refine cached point clouds over time
is crucial.

• Semantic Segmentation Integration: Fully integrating
semantic segmentation into the pipeline to enable more
intelligent object-based manipulation and editing of splats.
This could involve using segmentation to isolate objects for
removal, replacement, or modification, as well as to improve
the accuracy of point cloud merging by aligning objects
based on their semantic labels.

• Splat Optimization and Compression: Investigating tech-
niques to optimize the representation of Gaussian Splats for
efficient storage, transmission, and rendering. This could
involve exploring methods for splat pruning, adaptive splat
density, or compression algorithms specifically designed for
Gaussian Splat data.

Scalability and Real-world Deployment: Addressing the chal-
lenges of scaling the system for real-world deployment:

• Distributed Processing: Investigating the use of distributed
computing or cloud-based processing to handle the compu-
tational demands of large-scale splatting and storage.

• Data Management and Storage: Developing robust and
scalable data management systems for storing and retrieving
large collections of Gaussian Splats and associated metadata.
This includes addressing issues of data redundancy, consis-
tency, and security. * Collaborative Capture and Recon-
struction: Designing workflows and tools to support col-
laborative capture and reconstruction of 3D environments,
enabling multiple users to contribute to the creation of a
shared 3D representation.

By pursuing these future research directions, we can move closer
to realizing the vision of capturing and reliving memories in a truly
immersive and efficient manner.

8 CONCLUSION
In this project, we explored the pipeline for capturing, reconstruct-
ing, and rendering immersive 3D environments using Gaussian
Splatting and spatial audio. We developed a hardware wearable for
capturing visual and audio data , investigated methods for optimiz-
ing the splatting process through point cloud caching and chunking,
and explored techniques for spatial audio reconstruction. While our
results demonstrate promising directions for future research, partic-
ularly in the area of caching for reconstruction, we also encountered
limitations in hardware performance and the complexities of inte-
grating various components of the pipeline. Ultimately, our work
contributes to the ongoing efforts to create more efficient and scal-
able methods for capturing and reliving immersive experiences, and

suggests that further research into point cloud caching, among other
areas, could yield significant advancements in the field.
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