
Point, Detect, and Discover
Real-Time Object Awareness and Annotation using the MetaQuest

ARUSHI JELOKA, KRISHNA PANCHAPAGESAN, and KRITI SHARMA, University of Washington

1 INTRODUCTION
Augmented Reality (AR) bridges digital information with physical
environments, enhancing user interaction and understanding. Our
project, Point, Detect, and Discover, aims to advance AR usability by
combining precise hand-tracking, real-time object detection, and
informative annotations directly within the user’s field of view.
Motivated by real-world applications in education, accessibility, and
everyday convenience, our system transforms passive observation
into active learning.

1.1 Contributions
• Integrated YOLO object detection withMeta Quest Pro using

a screen capture approach on a Macbook to overcome direct
video feed limitations.

• Implemented on-device inference using LLaVA-34B for ac-
curate, contextual annotations displayed within AR (this
had to be heavily quantized to run on our computer). We
also peformed various inference optimizations to reduce
time-to-response, both on the YOLO side as well as the llm.

• Used Unity + Depth Sensing via the Passthrough API to
create annotations on objects which stick to objects in space.
We also created a "box" in which objects in physical space
could be put in such that the YOLO would run on it.

2 RELATED WORK
We’ve seen a lot of work in this space, notably by Meta in delivering
Mixed reality experiences that enable people to understand the
space around them. However, most of these demos were on Orion,
their new AR proof of concept. Given that, we based our work off
the following related work.

2.1 On-device Object Detection and Annotation in the
Hololens2

Real-timeAR object detection and labeling have been explored exten-
sively, especially in the Hololens2. Notably, IntelligentEdgeHOL
implemented object recognition on the HoloLens, demonstrating
feasibility in mixed-reality contexts. A demo of this in action can be
seen here. The github repo can be found here. The takeaway here
for us is that simple object detection was possible almost a decade
ago, but there’s been little advancement in this space. We wanted to
use the additional compute available on these newer devices along
with higher performing models to deliver better information on
objects in a viewer’s space as well as enable the viewer to create
their own annotations.

Authors’ address: Arushi Jeloka, arushi.jeloka@uw.edu; Krishna Panchapagesan,
kpanchap@uw.edu; Kriti Sharma, krits29@uw.edu, University of Washington.

2.2 Pairing Object Detection Models with vLLMs
One of the challenges that arises when using vLLMs is the aspect
of constraining the potential video space into meaningful chunks
that we could run inference on. We found an application of this in
the recent Treehacks 2025 winning project HawkWatch, which
effectively combined YOLO with large vision-language model to
detect events, inspiring our use of YOLO alongside LLaVA. By doing
this we were able to only process video streams which contained
meaninful objects. See the github repo here.

3 METHOD
Our AR annotation framework consists of three core components:
1. Real-time Object Detection: Utilizing YOLO, the system

continuously processes captured screen frames to detect and track
objects.

2. Gesture-based Selection: Hand-tracking via Meta’s SDK en-
ables intuitive gesture-based interactions, including gaze-based ob-
ject selection and pointing gestures.

3. Contextual Annotation: Once an object is selected, cropped
image data is passed to an on-device LLaVA model (34B) to gen-
erate annotations comprising object name, usage, and price range.
The user can also click on any object in passthrough to add a text
annotation which remains in place.

4 IMPLEMENTATION DETAILS

4.1 Hardware and Software
The project employs a Meta Quest 3 headset and a local workstation
for development. The headset provides the AR environment and
initial user interactions, while the workstation handles computa-
tionally intensive tasks such as running deep learning models. Unity
was used to populate the components needed to add annotations
into the pass-through world such as a virtual keyboard, an input
field, and text boxes which contain the annotations.

4.2 Challenges with Direct Video Feed
Initially, our goal was to utilize the direct video feed from the Meta
Quest Pro headset to perform object detection. However, we en-
countered significant SDK limitations and API access constraints
that prevented direct camera feed utilization. As a workaround, we
implemented a robust screen-capture method leveraging Python
libraries:
from mss import mss
import numpy as np
import cv2
from ultralytics import YOLO

The implementation captures the entire screen area in real-time
using mss, which efficiently grabs frames at a high frame rate. Each
captured frame is then resized and processed through the YOLO
object detection model. YOLO identifies objects within the screen

https://youtu.be/zxGcUmcl1qo?si=fhzl3I2zYNnnqH9B&t=233
https://github.com/toolboc/IntelligentEdgeHOL
https://github.com/Grace-Shao/Treehacks2025

2 • Arushi Jeloka, Krishna Panchapagesan, and Kriti Sharma

capture, providing bounding box coordinates for each detected ob-
ject.

Upon detection, each object is cropped from the frame using the
bounding box coordinates. These cropped images are encoded into
a PNG format and further encoded into a base64 string to facilitate
integration with the LLaVA-34B vision-language model running
locally on-device. The core inference method is implemented as
follows:
def run_llava_inference_from_crop(cropped_image):

_, buffer = cv2.imencode('.png', cropped_image)
image_b64 = base64.b64encode(buffer).decode('utf-8')

prompt = (
"Describe this object in three parts:\n"
"1. What is the object?\n"
"2. What could it be used for?\n"
"3. What is its typical price range?\n"
"ONLY RESPOND in JSON with keys:

object_name, object_usage, object_pred_price."
)

response = client.chat.completions.create(
model="llava:34b",
messages=[{"role": "user", "content": [

{"type": "text", "text": prompt},
{"type": "image_url", "image_url":

{"url": f"data:image/png;base64,{image_b64}"}}
]}]

)
JSON parsing omitted for brevity

The LLaVA model processes each encoded image alongside the
provided textual prompt, returning structured annotations in JSON
format. These annotations include detailed information about the
object’s identity, possible uses, and estimated price range. This struc-
tured JSON response, combined with the original YOLO-generated
bounding box information, is sent back to the headset for real-time
AR annotation overlays, enhancing the user’s interactive experience.

4.3 Challenges with Annotating in AR
Multiple challenges were encountered to get the annotations to
populate correctly. Initially, we tried to populate a new text input
and keyboard for each annotation. However, handling interactions
and populating multiple instances of prefabs poses tracking and
linking challenges. We improvised by creating a stand still text
input and keyboard and extracting user controller poses to add
text annotations. Overall, navigating Quest controller and hand
interactions combined with the challenge of correctly scripting
annotation behaviour with Unity was challenging.

4.4 Making it Seamless
One of the challenges we came across was that even when running
a heavily quantized version of llava:34b, we still encountered
blocking inference calls that would halt the screen recording loop.
Initially, the synchronous LLaVA inference would freeze the YOLO

detection pipeline until a response was received, interrupting the
real-time video stream.
To address this, we decoupled the inference process from the

main detection loop by integrating an asynchronous processing
framework using Python’s asyncio. Specifically, we wrapped the
blocking inference function in an asynchronous wrapper using
asyncio.to_thread. This allowed us to offload the computationally
intensive inference task to a background thread, ensuring that the
YOLO detection pipeline continued to capture and process frames
in real time.
In addition, we implemented a throttling mechanism to prevent

excessive inference calls. A global timestamp variable records the
last time an inference was triggered, and we enforce a cooldown pe-
riod (e.g., two seconds) before a new inference task can be spawned.
By doing so, only the detection with the highest confidence within
the given time frame initiates an inference call, balancing computa-
tional load with responsiveness.
The inference results are then sent to a persistent JSON viewer

(implemented in a separate process) via a multiprocessing connec-
tion. This decoupled architecture ensures that the viewer is updated
with the latest annotation data as soon as it becomes available, while
the screen recording and object detection continue to run seamlessly.
Overall, by offloading the LLaVA inference asynchronously and reg-
ulating its execution frequency, we maintained a smooth, real-time
detection experience without noticeable interruptions in the video
stream.

5 EVALUATION OF RESULTS
Initial evaluations demonstrate reliable real-time detection and an-
notation performance, averaging inference latencies below two sec-
onds per object annotation. However, accuracy and latency trade-
offs remain an active area for optimization. On the Quest, themanual
annotations are implemented such that there is a red dot on the
object which is being annotated and the text is right above it. The
position tracking from the controller and the position setting for
the annotation is highly accurate, and the annotation does not move
around with the user. However, the angle of the annotation relative
to the angle of the user does not change dynamically as well as
expected.

6 DISCUSSION
Our method effectively enables rapid interaction and provides con-
textual information in real-time AR. However, latency in object
annotation on the vLLM remains a key limitation, especially for
rapid movements and cluttered environments.

7 FUTURE WORK
Future efforts will focus on:

• Enhanced Object Highlighting Using Advanced Depth
Sensing: With the imminent release of Meta’s video feed
API—which will grant developers direct access to both the
raw camera feed and high-resolution depth data—future
work will leverage this new capability to improve object
boundary creation. Instead of relying solely on rectangular
bounding boxes from YOLO, we aim to integrate depth maps

Point, Detect, and Discover • 3

to extract more precise, three-dimensional object boundaries.
This would enable natural AR overlays that accurately align
with an object’s true shape and location in 3D space. In our
current setup, lacking the raw video feed meant that we
could not project detections back into a 3D environment
using depth information.

• On-Device Processing andLatencyReduction:Currently,
our system uses an auxiliary device (a MacBook) for running
the heavy YOLO and LLaVA models. With Meta’s upcom-
ing API providing a direct camera feed, we plan to port the
entire pipeline to run on the Meta Quest device itself. By
deploying a leaner version of our models (potentially us-
ing frameworks like executorch) and further optimizing
via model quantization, we expect to dramatically reduce
latency and simplify the overall system architecture.

• Expanded Gesture Recognition for Targeted Inference:
Our current approach processes the entire video frame with
YOLO and then selects the highest-confidence detection for
LLaVA inference. In future iterations, we intend to integrate
advanced hand tracking so that users can point directly to
objects of interest. This targeted interaction would allow
us to run inference specifically on the object being pointed
at, rather than on the whole scene. Such a feature would
not only enhance the user experience but also optimize
computational resources by focusing on the area of interest.

• Video Annotations and Immersion: Our current XR ap-
plication only supports text annotations. However, in the
future we intend to add video and voice annotations for more
immersive educational environments. We would also like to
include live immersion with audio feedback depending on
user interactions in the XR space.

8 CONCLUSION
Point, Detect, and Discover demonstrates a practical and immersive
approach to AR-based object interaction and annotation, opening
numerous potential applications in education, accessibility, and
everyday convenience.

ACKNOWLEDGMENTS
We thank the CSE 493 staff for their guidance and support through-
out this project.

REFERENCES
https://developers.meta.com/horizon/develop/unity
https://docs.unity3d.com/6000.0/Documentation/Manual/AROverview.html
https://developers.meta.com/horizon/downloads/package/meta-xr-

sdk-all-in-one-upm/
https://huggingface.co/liuhaotian/llava-v1.6-34b
https://www.v7labs.com/blog/yolo-object-detection
https://doi.org/10.48550/arXiv.1506.02640

	1 Introduction
	1.1 Contributions

	2 Related Work
	2.1 On-device Object Detection and Annotation in the Hololens2
	2.2 Pairing Object Detection Models with vLLMs

	3 Method
	4 Implementation Details
	4.1 Hardware and Software
	4.2 Challenges with Direct Video Feed
	4.3 Challenges with Annotating in AR
	4.4 Making it Seamless

	5 Evaluation of Results
	6 Discussion
	7 Future Work
	8 Conclusion
	References

