
3D Gaussian Splatting based VR Video Chat
JASON ZHANG, University of Washington

Fig. 1. With 3D Gaussian Splatting, users can generate a 3D scene from just a few images. Through Unity, these scene can be viewed using VR headsets,
creating an immersive and interactive video chat experience. This is the point cloud of the scene constructed from 6 images

Conventional video chat applications are only capable of providing a basic
visual and audio connection, displaying users on a screen and transmitting
voice through device speaking. They lack interactivity and immersive fea-
tures that replicate the natural dynamics of in person conversations. In an
effort to create a more natural video chat experience, companies like Google
and Apple have developed their own solution to address these limitations of
traditional video calls. Google introduced the Project Starline, while Apple’s
integrated VR/AR FaceTime features into Apple Vision Pro, both aiming to
enhance immersion and interactivity in virtual communication. However,
both approaches require specialized hardware like stereo cameras and depth
sensors for Project Starline, and the Apple Vision Pro for Apple’s solution.
With the emergence of 3D Gaussian Splatting, it seems like we are entering
an era where 3D scenes can be reconstructed with just a few images taken by
everyday cameras. In this project, I aim to integrate 3D Gaussian Splatting
generated scenes with VR view models, allowing users to navigate through
immersive 3D environments. I also aim to make these scenes dynamically
update in real-time, reflecting changes captured by streaming cameras. Com-
pared to prior solutions, this appproach offers a more accessible alternative
to hardware depenedent immersive communication methods. I was able to
achieve streaming offline (preconstructed) 3D Gaussian Splatting models
in VR using Unity. However, real-time generation of consecutive frames

Author’s address: Jason Zhang, jasonz04@cs.washington.edu, University of Washing-
ton.

remains a significant challenge, as the generation of each scene takes tens of
seconds to minutes. Future alternatives could involve optimizing the training
workflow of the 3D Gaussian Splatting, or implement a hybrid approach.
One potential solution is to generate an initial 3D scene and use Computer
Vision based tracking techniques like YOLO to update object coordinates,
reconstructing movements without regenerating the full scene. Which a
new reconstruction of the scene through 3D Gaussian Splatting would only
be needed when detecting the entry of a new object into the scene, which is
promising in significantly improving real time performance.

1 INTRODUCTION
Modern video chat application typically only requires a device with
a screen, camera, microphone, and basic network connectivity. How-
ever, while these applications have made remote communication
widely accessible, the experience they provide lacks immersion and
interactivity, and essentially fails to replicate the natural dynamic
of in person conversations. Conventional video calls often present a
flat, two dimensional representation of the participants on a screen,
lacking depth cues, spatial awareness, and interactivity inherent in
face to face interactions. As result, these limitations often lead to
reduced engagement, difficulty in perceiving nonverbal cues, and
an over all less immersive experience.



2 • Jason Zhang

To address these shortcomings, companies like Google and Apple
have introduced advanced solutions aimed to enhance immersive
remote communications. Google’s Project Starline utilizes sets of
stereo cameras, depth sensors, and light field displays to create a
lifelike 3D video chat experience, allowing users to see one another
with depth ques without using any headsets. However, this approach
relies on specialized hardware and requires users to remain seated
in front of the display and camera throughout the conversation.
Additionally, users are only able to view their conversation partner
from a fixed perspective, limiting their ability to move around and
explore the other person’s space, which is a crucial aspect of natu-
ral, in person conversations. On the other hand, Apple’s solution
with Apple Vision Pro integrates VR/AR FaceTime, offering similar
capabilities while providing a more spatially aware virtual reality en-
vironment. While both of these approaches significantly improved
immersion, they both rely on specialized hardware, making them
expensive and less accessible to average consumers.

With the emergence of 3D Gaussian Splatting, a novel approach
to real-time 3D scene reconstruction, new possibilities arise for im-
mersive video communication without requiring high-end hardware.
Gaussian Splatting enables 3D scene reconstruction using only a
few standard RGB images, eliminating the need for depth sensors
or LiDAR. compared to Google’s and Apple’s hardware dependent
solution, this approach has the potential to offer a more accessi-
ble alternative by allowing immersive video chats to function with
multi-camera setups using conventional devices.

In this project, I explore the interaction of 3D Gaussian Splatting
with VR view models, enabling users to navigate immersive 3D
environment. I successfully implemented offline streaming of pre-
constructed 3D Gaussian Splatting models in Unity, demonstrating
the feasibility of viewing and interacting with 3D scenes in VR.
However, as real time generation of consecutive frames remain a
significant challenge, the real time streaming feature, crucial to
video call experience, is currently infeasible.

Despite these limitations, my findings indicate that Gaussian
Splatting has the potential to improve immersive communication if
future research focuses on optimizing training workflows, reducing
reconstruction times, and possibly integrating computer vision tech-
niques for motion tracking to levitate the need of reconstructing
the whole scene. By addressing these challenges, Gaussian Splatting
could become a viable alternative to hardware heavy solutions like
Project Starline and Apple Vision Pro, making high quality, real
time 3D video communication more practical and accessible.

1.1 Contributions
Our primary technical contributions are:

• Developed a VR based streaming system for pre-constructed
3D Gaussian Splatting models using Unity, enabling immer-
sive 3D scene exploration within a virtual reality environ-
ment.

• Identified and analyzed the challenges of real-time 3DGauss-
ian Splatting scene generation, highlighting the significant
computational bottleneck that makes continuous scene up-
dates infeasible.

• Demonstrated feasibility of using few images from everyday
cameras for 3D scene reconstruction, eliminating the need
for specialized hardware like stereo cameras or LiDAR

• Proposed a hybrid approach for improving real-time per-
formance, integrating computer vision-based tracking tech-
niques (e.g., YOLO) to update object positions dynamically,
reducing the need for full scene reconstruction and paving
the way for more efficient real-time updates..

2 RELATED WORK

2.1 Other Products

Feature Google Project Star-
line

Apple Vision Pro 3D Gaussian Splat-
ting

Hardware Requirement Stereo cameras, depth
sensors, light-field dis-
play

Vision Pro headset RGB cameras (multi-
view setup)

Immersion Level Moderate Low Moderate
Real-Time Interactivity Fixed viewpoint, lim-

ited movement
Fully interactive Limited (requires faster

scene updates)
Consumer Accessibility Low (high cost, large

setup)
Medium (expensive, but
portable)

High (if optimized for
real-time updates)

Table 1. Comparison of Hardware-Based Immersive Communication Solu-
tions

Several companies have developed hardware-dependent solution
to enhance depth perception and immersion in video communica-
tion. Google’s Project Starline proposed the idea of using stereo
cameras and depth sensors to generate a volumetric 3D representa-
tion of users and projecting them onto a gigantic light field display
to provide a more realistic scenes of depth without using a VR
headset. On the other hand, Apple’s approach requires the user to
purchase the Apple Vision Pro, which contains a few camera and
sensors to recreate you facial feature in FaceTime. Finally, Gaussian
Splatting requires the least amount of specialized hardware, and
only requires a few RGB cameras but they have to be synchronized
correctly. Comparing immersion of each product, Google Starline
only creates face to face interaction, requiring the user to stay in
the same position throughout the conversation and have limited
views. Vision Pro’s approach doesn’t have any 3D constructions but
rather just have other’s face displayed in the headset. 3D Gaussian
Splatting setup allowed users to explore fully constructed 3D scene
in Unity with a VR head set, possibly creating the most immersive
experience.

2.2 Other Rendering techniques and scene construction

Technique NeRFs 3D Gaussian Splatting
Rendering Speed Slow (seconds per frame) Fast (real-time rendering)
Scene Construction Time Slow (minutes per scene) Moderate (tens of seconds)
Hardware Dependency Requires GPU acceleration Requires GPU but no depth

sensors
Interactivity Limited (precomputed

views)
Moderate (viewpoint move-
ment)

Table 2. Comparison of Neural Rendering Techniques

Compared to traditional rendering techniques like NeRFs, which
often suffer from slow rendering times, taking several seconds per
frame, and slow scene construction times, requiring minutes per
scene, 3D Gaussian Splatting offers a significant advantage. While

https://starline.google/
https://support.apple.com/guide/apple-vision-pro/tan1e660fd7d/visionos


3D Gaussian Splatting based VR Video Chat • 3

scene construction time remains similar, once the scene is generated,
Gaussian Splatting enables real-time rendering, allowing users to
freely move around the 3D scene without performance bottlenecks.
This makes it a more practical choice for applications requiring
interactive movements.

3 METHOD AND IMPLEMENTATION DETAILS

3.1 Hardware
All the implementation are done with a PC with NVIDIA RTX 3080
(10GB VRAM), Intel i9-12900KF, 32GB DDR5 4800MHz, and Sam-
sung 990 EVO PRO 1TB running on Windows 10. The headset used
was Meta Quest 2. All pictures for scene reconstruction were taken
with iPhone 13 Pro at 12MP 4032x3024 resolution.

3.2 Software
The 3D Gaussian Splatting reconstructions in this project were
based on the GitHub repository "InstantSplat: Sparse-view SfM-free
Gaussian Splatting in Seconds by Jonathan Stephens. This codebase
was used to process multi-view images and generate 3D Gaussian
Splatting representations, allowing for faster scene reconstruction
compared to original codebase published with the paper 3D Gauss-
ian Splatting for Real-Time Radiance Field Rendering.

The Unity integration was implemented using the GitHub reposi-
tory "Gaussian Splatting Playground in Unity" by Aras Pranckevičius.
This provided the necessary tools to render Gaussian Splatting
scenes in Unity, enabling users to move within precomputed 3D
environments.
The project was developed using Unity 2022.3, which provided

support for VR rendering, along with the Oculus Integration SDK for
handling user movement and scene navigation on the Meta Quest
2. This specific Unity version is chosen as the Gaussian Splatting
Playground in Unity is originally written in this version. To avoid
any compatibility issues, I decided to stay with Unity 2022.3.

3.3 Implementation steps
Below are steps after having all software downloaded and completed
setup.

First we have to capture 6 images (specified in InstantSplat) using
any camera (desirably using the same camera at the same resolu-
tion). Then we run the InstantSplat application, where we specify a
input directory (with the 5 images) and a output directory which is
where the Splat files would be saved to. We select the corresponding
number of views, and desired training iteration (1000 iteration in
this implementation). After we start the training process, it should
take around 1-2 minutes, and then a mp4 video and a point cloud
file would be saved to the specified directory.

After obtaining the point cloud file (.ply), we can run the Gaussian
Splatting Playground in Unity, and then create a Gaussian Splat
Asset using built in toolkits of this CodeBase using the point cloud
file, which then we would just have to drag created asset in to the
"Asset variable" of the Gaussian Splat Renderer script and we will
have the Gaussian Splatting running in Unity.
For the purpose of this project, I constructed point clouds from

consecutive sets of images captured and have turn them into point

cloud files. Then I wrote a Unity script for it to alternate in an order
of the assets I created as the "game" runs. I also implemented some
Unity script control which connects the Oculus Quest 2’s joystick
to the movements of the main camera, and i also limited it’s vertical
position to stay always above 0.

This implementation doesn’t require blurring out the back ground
where even simple flat images are realistically constructed and well
incorporated into the scene.

4 EVALUATION OF RESULTS
I was able to accomplish part of the original goal of implementing
the system on Meta (Oculus) Quest 2. Specifically, I was able to
pre-construct multiple 3D scenes with Gaussian Splatting and have
them exported to Unity. Within Unity, I implemented a system that
alternates between the scenes (to simulate 3D video playback) while
user can move around with joy sticks on the Quest 2 controllers.
To ensure a seamless transition between scenes, all scenes were
constructed with aligned axes, so when alternating between scenes,
we just have to keep track of the current user position, and they will
be in relatively the same location visually, maintaining a consistent
immersive experience.

My implementation allows users to move around the scene with
around 60 Frames Per Second(FPS) while streaming from a PC (with
RTX 3080), and around 30 FPS when running on Meta Quest 2.
However, several limitations exists in the current implementation.
One major limitation is that, due to only using 5 cameras for scene
capture, the scene constructed have quite a lot of occluded areas,
which caused dark portions and graphical distortions in such area
where less image information is available. Another key limitation
is due to the high computation cost of reconstructing 3D scenes.
Because of this, I was only able to have "offline" reconstruction
where scenes have to be pre-constructed, which rather than live
video calling, this is more of looking at a 3D scene as a video, which
users cannot interact with dynamically updated content.

5 DISCUSSION OF BENEFITS AND LIMITATIONS
3D Gaussian Splatting has demonstrated its ability to produce high-
quality 3D reconstructions from images. However, like any tech-
nique, it comes with its own set of advantages and challenges. In
this discussion, we explore the key benefits, such as its efficiency
in generating detailed scenes, as well as its limitations, including
computational demands and real-time performance constraints.

5.1 Benefits
5.1.1 High-Fidelity Immersion. The primary benefit of Gaussian
Splatting is its ability to generate photorealistic rendering with
realistic lighting, texture, and depth cues, making it ideal for VR
applications. Unlike traditioanl mesh based rendering, which re-
quires complex geometry processing, Gaussian Splatting sllows for
continuous, smooth representation of 3D environments without the
need for explicit polygonal structures.

5.1.2 Efficient Rendering. While scene construction remains com-
putationally intensive, once trained, Gaussian Splatting can be
rendered in real time. This allows users to freely move within a
pre-constructed 3D scene without performance bottlenecks, which

https://github.com/jonstephens/instantsplat
https://github.com/jonstephens/instantsplat
https://github.com/aras-p/gaussian-splatting-playground


4 • Jason Zhang

makes it an ideal solution for applications requiring interactive
features, such as virtual meeting, remote collaborations, or even
immersive media experiences.

5.1.3 No Need for specialized hardware. A key breakthrough of
Gaussian Splatting is that it eliminates the needs specialized depth
sensors or LiDAR to generate 3D scene. Compared to Google’s and
Apple’s approaches, Gaussian Splatting offers a more accessible
alternative for immersive video chat, making it more feasible for
general consumers. However, in order to stream the footage, it still
requires multiple cameras to accurately reconstruct a high quality
3D scene.

5.2 Limitations
5.2.1 Computational Bottleneck. The training process for each new
scene is computationally expensive, often requiring tens of seconds
to minutes per scene. This limitation is particularly evident when
constructing scenes from only six images, which often results in
lower image quality. To improve the quality of Guassian Splatting
reconstructions, more images need to be included in the training
process. However, increasing the number of input images further
extends computation time, making real-time scene generation even
more challenging.

5.2.2 Limited real-time interactivity. Gaussian Splatting is primar-
ily optimized for static scene representation. Unlike traditional 3D
rendering techniques that allow for dymica objects movement and
continuous updates, Gaussian Splatting struggles with real-time
modifications, making it less suitable for highly interactive environ-
ments where objects and users frequently change positions. In my
original implementation, representation of movements of objects
requires a full reconstruction whenever significant changes occur in
the scene. Unlike mesh-based approaches that allow for incremental
updates by modifying vertices or textures, Gaussian Splatting lacks
the ability to update for only certain parts of the scene without
regenerating the whole model.

5.2.3 Dependence on Multi-Camera Input. Unlike conventioanl 2D
veideo chat applications, which require only a single camera, Gauss-
ian Splatting needs multiple viewpoints to accurately capture depth,
structure, and lighting conditions of a scene. The reliance on multi-
camera setup introduces challenges in terms of accessibility and
complexity, making it somewhat less piratical for consumers and
also hard to implement in real time settings. Gaussian Splatting re-
construct 3D scenes by learning from multiple 2D images, which is
only a single camera is used, the system lacks necessary viewpoints,
leading to incomplete reconstructions, depth ambiguities, and poor
quality in occluded areas. Another challenge with multi-camera
setup is that it complicates real time scene acquisition. Capturing
live 3D scene requires synchronized multi camera setup, where each
camera must be calibrated and positioned correctly to provide con-
sistent image input. Any misalignment, differences, in exposure, or
time synchronization errors can lead to artifacts in the final in the
final 3D reconstruction.

6 FUTURE WORK
Immediate extension to this work includes optimizing the training
workflow of 3D Gaussian Splatting, which remains a significant
bottleneck in achieving real time scene reconstruction. While 3D
Gaussian Splatting excels in rendering speed, enabling users to move
around within the scene, it still takes a really significant time to
training the model. This limitation makes it impractical for continu-
ous updates, preventing truly dynamic and interactive experience.
If the training process can be optimized to just a few seconds, this
approach would become significantly more viable for real-time im-
mersive communication. This direction of future work can require
leveraging hardware acceleration techniques, such as parallel pro-
cessing GPU (as currently implemented in CUDA for NVIDIA GPUs)
to speed up training iterations. Another possible approach to im-
proving real time 3D Gaussian Splatting workflow is to integrate
a auxiliary pre-trained model that stores and processes common
scenery details, reducing the computational burden of training each
new scene from scratch. instead of requiring full training for every
fame, this auxiliary model could provide pre-learned features, al-
lowing the system to generate new scenes with minimal additional
computation.
Another promising direction is the idea of a hybrid approach,

which leverages Computer Vision-based tracking algorithms (e.g.,
YOLO) alongside Gaussian Splatting to reduce computational bot-
tlenecks while enabling more dynamic scene interaction. Since mul-
tiple cameras are used to stream video footage to an application for
processing, these same inputs can be used to simultaneously track
object movement in real-time, enhancing the responsiveness of the
reconstructed scene. The proposed method involves grouping the
Gaussian Splatting point clouds into distinct objects after the initial
3D scene construction. Once segmented, a computer vision track-
ing algorithm can determine how much each object moves across
consecutive frames. By incorporating data from multiple cameras, a
3D motion vector can be computed for each object, which can then
be applied to the corresponding Gaussian Splatting point group
to simulate real world movement. This approach allows us to be
disburdened from the computation bottleneck of Gaussian Splatting,
but interact with the scene more like VR game with like movement
tracking. However, this approach still requires reconstruction of the
scene when a new object is introduced to the scene, which we would
either have to reconstruct the whole scene from scratch again, or
we can just construct an artifact of the object and have it integrated
in to the scene. Also, since we are using three dimensional motion
vectors constructed from CV based tracking algorithms, it could be
hard to recreate facial expressions as tracking of facial features often
requires more detailed frames and more precise tracking systems.

Additionally, beyond VR based implementations, future research
could explore how Gaussian Splatting can be adapted for projec-
tion based systems. This break through would eliminate the need
for VR headsets, which can create a more immersive and natural
communication experience. Unlike VR, where users are confined to
wearing headsets, a projection based approach could enable holo-
graphic style displays, allowing participants to see and interact with
each other in 3D space without any wearable devices. Moreover,



3D Gaussian Splatting based VR Video Chat • 5

this approach also addresses a common challenge in scene recon-
struction, where users wearing headsets often appear with their
devices captured in the generated 3D model, obscuring their fa-
cial expressions. By removing the need for VR headsets, Gaussian
Splatting powers projections could provide a more authentic repre-
sentation of participants, enhancing the sense of realism in virtual
communication.

7 CONCLUSION
This work explores the integration of 3D Gaussian Splatting with VR
view models, demonstrating its potential as an accessible alternative
to hardware-dependent immersive communications methods. By im-
plementing offline streaming of pre-constructed 3D Gaussian Splat-
ting models in Unity, we demonstrated the feasibility and challenges
of real time 3D scene reconstruction. While Gaussian Splatting pro-
vides a promising approach for immersive video communication,
the computational cost of real time scene updates remains a major
limitation. To address these challenges, we could explore the pos-
sibilities of hybrid solutions, such as combination with computer
vision based tracking techniques for object movement updates, or
significantly improve the training speed of Gaussian Splatting. This
work reinforces the idea that 3D reconstructions do not have to be
limited to hardware setups, and if further research on improving the

work flow of 3D Gaussian Splatting construction or other ways to
hack around the problem, Gaussian Splatting could forever change
how people view virtual meetings or remote collaboration, with its
imagery quality and ability to move around within scenes.

ACKNOWLEDGMENTS
Special thanks to Dr. Douglas Lanman, Evan Zhao, Shaan Charttrath,
and John Akers for invaluable feedback and Hardware/Software
support. We also recognize and have a special thanks to Aras Pranck-
evičius for code base of the prototype of implementing Gaussian
Splatting in Unity which made this project possible.

REFERENCES

REFERENCES
[1] J. Stephens, InstantSplat: Sparse-view SfM-free Gaussian

Splatting in Seconds, GitHub Repository, 2023. Available:
https://github.com/jonstephens85/InstantSplat_Windows

[2] A. Pranckevičius, Gaussian Splatting Playground in Unity, GitHub Repository, 2023.
Available: https://github.com/aras-p/UnityGaussianSplatting

[3] J. Kerbl, T. Leimkühler, T. Müller, A. Keller, 3D Gaussian Splatting for
Real-Time Radiance Field Rendering, arXiv preprint, 2023. Available:
https://arxiv.org/abs/2308.04079

[4] Google, Project Starline, Available: https://starline.google/
[5] Apple, Apple Vision Pro Guide, Available: https://support.apple.com/guide/apple-

vision-pro/tan1e660fd7d/visionos

https://github.com/jonstephens85/InstantSplat_Windows?tab=readme-ov-file
https://github.com/aras-p/UnityGaussianSplatting?tab=readme-ov-file
https://arxiv.org/abs/2308.04079
https://starline.google/
https://support.apple.com/guide/apple-vision-pro/tan1e660fd7d/visionos
https://support.apple.com/guide/apple-vision-pro/tan1e660fd7d/visionos

	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Work
	2.1 Other Products
	2.2 Other Rendering techniques and scene construction

	3 Method and Implementation Details
	3.1 Hardware
	3.2 Software
	3.3 Implementation steps

	4 Evaluation of Results
	5 Discussion of Benefits and Limitations
	5.1 Benefits
	5.2 Limitations

	6 Future Work
	7 Conclusion
	References
	References

